Carnegie Mellon

Virtual Memory: Concepts

15-213 / 18-213: Introduction to Computer Systems
16t Lecture, Mar. 20, 2012

Instructors:
Todd C. Mowry & Anthony Rowe

Carnegie Mellon

Today

Address spaces
VM as a tool for caching

O
O
m VM as a tool for memory management
m VM as a tool for memory protection

O

Address translation

Carnegie Mellon

Recall: Byte-Oriented Memory Organization

m Programs refer to data by address
= Conceptually, envision it as a very large array of bytes
= In reality, it’s not, but can think of it that way
" An address is like an index into that array
= and, a pointer variable stores an address

m Note: system provides private address spaces to each “process”
" Think of a process as a program being executed
= So, a program can clobber its own data, but not that of others

Recall: Simple Addressing Modes

m Normal (R) Mem[Reg[R]]
= Register R specifies memory address

movl (%ecx) ,%eax

m Displacement D(R) Mem[Reg[R]+D]
= Register R specifies start of memory region
" Constant displacement D specifies offset

movl 8(%ebp) ,%edx

Carnegie Mellon

Why Virtual Memory?

m There are three motivations for Virtual Memory (VM):
1. Allow main memory (DRAM) to act as a “cache” for disk
2. Simplifying memory management
3. Protecting address spaces

m But VM works very differently from SRAM caches. Why?

" To understand why, let’s begin with the first motivation

= (Once we understand that, the other aspects of VM will make
more sense.)

Carnegie Mellon

Motivation 1: DRAM a “Cache” for Disk

m The full address space is quite large:
= 32-bit addresses: ~4,000,000,000 (4 billion) bytes
" 64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion) bytes

m Disk storage is “100X cheaper than DRAM storage
= 2 TB of DRAM: ~ $10,000
= 2 TB of disk: ~ $100

m To access very large amounts of data in a cost-effective manner,
the bulk of the data must be stored on disk

16 GB: ~$100 2 1B: ~$100
8 MB: ~$100

e DRAM

Carnegie Mellon

An Example Memory Hierarchy (Review)

A
LO: . .
. CPU registers hold words retrieved
egisters from L1 cache
L1: L1 cache
Smaller (SRAM) L1 cache holds cache lines retrieved
! from L2 cache
faster,
; L2:
costlier L2 cache
per byte (SRAM) L2 cache holds cache lines
retrieved from main memory
L3:
Main memory
L;';\rger, (DRAM) Main memory holds disk blocks
s}:)wer, retrieved from local disks
cheaper
per byte L4: Local secondary storage Local disks hold files
(local disks) retrieved from disks on
remote network servers
Remote secondary storage
L5: _ .
(tapes, distributed file systems, Web servers)

DRAM vs. SRAM as a “Cache”

m DRAM vs. disk is more extreme than SRAM vs. DRAM

= access latencies:
= DRAM is ~10X slower than SRAM
= disk is ~¥100,000X slower than DRAM
" importance of exploiting spatial locality:
= first byte is ~100,000X slower than successive bytes on disk
— vs. ~4X improvement for page-mode vs. regular accesses to DRAM
= “cache” size:

= main memory is ~1000X larger than an SRAM cache

= addressing for disk is based on sector address, not memory address

2 TB: ~$100

16 GB: ~$100
8 MB: ~$100

——JOEY

Impact of These Properties on Design

m If DRAM was to be organized similar to an SRAM cache, how
would we set the following design parameters?

" Line size?
= Associativity?
= Replacement policy (if associative)?

= Write through or write back?

m What would the impact of these choices be on:
" miss rate
= hit time
" miss latency
= tag overhead

Locating an Object in a “Cache”

1. Search for matching tag “Cache”
= SRAM cache Tag Data
Object Name O D | 243
X = X? ;
N-1:
2. Use indirection to look up actual object location
u Virtual Memory Lookup Table “Cache”

Location
Object Name

X

10

Carnegie Mellon

Motivations for VM Revisited

.° Physical Memory .
O QQ

m #1: How does everything fit? (We just talked about this.)
= 32-bit addresses: ~4,000,000,000 (4 billion) bytes
= 64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion) bytes

m #2: How to decide which memory to use in your program?
= What about after a fork()?

m #3: What if another process stores data into your memory?

= How could you debug your program?

11

Indirection solves all three problems

m Each process gets its own private image of memory

= appears to be a full-sized private memory range

m This fixes “how to choose” and “others shouldn’t mess
w/yours”
" in addition to “making everything fit”
m Implementation: translate addresses transparently
= add a mapping function

= to map private (i.e. “virtual”) addresses to physical addresses
= do the mapping on every load or store

= This mapping trick is the heart of virtual memory

12

Carnegie Mellon

Address Spaces

m Linear address space: Ordered set of contiguous non-negative integer
addresses:
0,1,2,3...}

m Virtual address space: Set of N = 2" virtual addresses
{0,1,2,3,.. N-1}

m Physical address space: Set of M = 2™ physical addresses
{0,1,2,3, .. M-1}

m Clean distinction between data (bytes) and their attributes (addresses)
m Each datum can now have multiple addresses

m Every byte in main memory:
one physical address, one (or more) virtual addresses

13

Carnegie Mellon

A System Using Physical Addressing

Main memory
0:
1:
Physical address 2:

(PA) 3:
CPU 7 - 4 L
v 5:
6: [
7:
8:
M-1:
Data word

m Used in some “simple” systems, like embedded
microcontrollers in cars, elevators, and digital picture frames

14

Carnegie Mellon

A System Using Virtual Addressing

Main memory

0:
CPU Chip 1:
Virtual address Physical address .
(VA) (PA)
CPU > MMU 7 —>
4100

>
ONOUV AW
%r_J

Data word

m Used in all modern servers, desktops, and laptops
m One of the great ideas in computer science

15

Why Virtual Memory? (Further Details)

(1) VM allows efficient use of limited main memory (RAM)
= Use RAM as a cache for the parts of a virtual address space
= some non-cached parts stored on disk

= some (unallocated) non-cached parts stored nowhere
= Keep only active areas of virtual address space in memory
= transfer data back and forth as needed

(2) VM simplifies memory management for programmers
= Each process gets a full, private linear address space

(3) VM isolates address spaces
" One process can’t interfere with another’s memory

= because they operate in different address spaces
= User process cannot access privileged information

= different sections of address spaces have different permissions

16

Carnegie Mellon

Today

Address spaces
(1) VM as a tool for caching

O
O
m (2) VM as a tool for memory management
m (3) VM as a tool for memory protection

O

Address translation

17

Carnegie Mellon

(1) VM as a Tool for Caching

m Virtual memory is an array of N contiguous bytes stored
on disk.

m The contents of the array on disk are cached in physical
memory (DRAM cache)

" These cache blocks are called pages (size is P = 2P bytes)

Virtual memory Physical memory

0

VP 0 | Unallocated

VP 1 | Cached ° Empty PPO
Uncached \ PP 1

Unallocated Empty

Cached

Uncached >< Empty

Cached PP 2m-P-1

VP 2"P-1 | Uncached M-1

N-1

Virtual pages (VPs) Physical pages (PPs)
stored on disk cached in DRAM

18

Carnegie Mellon

Enabling data structure: Page Table

m A page table is an array of page table entries (PTEs) that
maps virtual pages to physical pages.
= Per-process kernel data structure in DRAM
Physical memory

Physical page (DRAM)
number or BT oP 0

Valid disk address /
PTEO| 0 / VP2

null . VP 7
./—4 VP 4 PP3
.‘ \\

=|lo|lo|r|lOo]|kr |~

null "> Virtual memory
o ~ (disk)
PTE 7 o« "~] 71
Memory resident \\ \\ VP 2
page table S~ o ~a —
(DRAM) N
‘\\ VP4
VP 6
VP 7 19

Page Hit

Carnegie Mellon

m Page hit: reference to VM word that is in physical memory
(DRAM cache hit)

Virtual address

Physical memory

Physical page (DRAM)
number or o
Valid disk address / I PP O
2 — VP4 PP3
> 1
0 e
1 | g E\\
0 null Y Virtual memory
0 o« ~ | . (disk)
rer i - R VP 1
Memory re;:dent R . VP 2
page table “a
(DRAM) VP3
- VP 4
VP 6
VP 7

20

Page Fault

Carnegie Mellon

m Page fault: reference to VM word that is not in physical
memory (DRAM cache miss)

Virtual address

Physical memory

Physical page (DRAM)
number or o
Valid disk address / I PP O
2 — VP4 PP3
1
>0 e
1 | g E\\
0 null Y Virtual memory
0 o« ~ | . (disk)
FIE7LL o< ~~ \\\ VP 1
Memory re;:dent \\ \\\ =
page table S “a
(DRAM) \\\\ VP 3
S~ VP 4
VP 6
VP 7

21

Handling Page Fault

m Page miss causes page fault (an exception)

Virtual address

PTEO] 0

Carnegie Mellon

Physical memory

Physical page (DRAM)
number or o

Valid disk address — PPO
VP 7

VP4 PP3

—
.‘ S

~

null P

ml|lo|lo|r|lOo|Rr |~

PTE 7

o ~
o« -

<

Memory resident ~~_
page table
(DRAM)

N
~
~
~
~
~
~
~
~

Virtual memory
(disk)

VP1

VP 2

VP 3

VP 4

VP 6

VP 7

22

Carnegie Mellon

Handling Page Fault

m Page miss causes page fault (an exception)
m Page fault handler selects a victim to be evicted (here VP 4)
Physical memory

Physical page
Virtual address number or (DRAM)

VP 1 PPO

Valid disk address /
VP 2
PTEO]| 0 null /

VP4 PP 3

—
.‘ \\\

ml|lo|lo|r|lOo|Rr |~

null P Virtual memory
« ~ (disk)
PTE 7 o« "~ = . 71
Memory resident \\ \\ VP 2
page table S~ ~a
(DRAM) N vP3
Seo VP 4
VP 6
VP 7

23

Handling Page Fault

m Page miss causes page fault (an exception)

Carnegie Mellon

m Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE 7

Physical memory

0

Physical page (DRAM)
number or
VP 1 PPO
VP 2
VP 7
VP3 PP3

\\
null < A

Valid disk address /
null — /
— |
.

~l|lo|lo|lo|r |k |~

Virtual memory

o ~ (disk)

o« ~ _| R VP 1

Memory re;:dent RN VP 2

age table RN RN

Pag S Se VP3
(DRAM) Sl Y

~. VP 4

VP 6

VP 7

24

Handling Page Fault

m Page miss causes page fault (an exception)

Carnegie Mellon

m Page fault handler selects a victim to be evicted (here VP 4)

m Offending instruction is restarted: page hit!

Virtual address

Physical memory

Physical page (DRAM)
number or T
Valid disk address / I PP O
1 ./4‘ VP 3 PP 3
1
0 e
0 null "~ Virtual memory
0 *\/‘\\\ (dISk)
PTE7]| 1 ' > \\ 71
Memory re;:dent R <~ s VP 2
page table RV
(DRAM) Sso s vP3
S VP 4
VP 6
VP 7

25

Carnegie Mellon

Locality to the Rescue Again!

m Virtual memory works because of locality

m At any point in time, programs tend to access a set of active
virtual pages called the working set

" Programs with better temporal locality will have smaller working sets

m If (working set size < main memory size)
" Good performance for one process after compulsory misses

m If (SUM(working set sizes) > main memory size)

" Thrashing: Performance meltdown where pages are moved (copied) in
and out continuously

26

Carnegie Mellon

Today

Address spaces
(1) VM as a tool for caching

O
O
m (2) VM as a tool for memory management
m (3) VM as a tool for memory protection

O

Address translation

27

Carnegie Mellon

(2) VM as a Tool for Memory Management

m Key idea: each process has its own virtual address space
" |t can view memory as a simple linear array

" Mapping function scatters addresses through physical memory
= Well chosen mappings simplify memory allocation and management

Virtual
Address
Space for

Process 1:

Virtual
Address
Space for

Process 2:

N-1

N-1

Address 0
vy |
VP 2 PP 2
PP 6
—> PP8
VP 1
VP2
M-1

Physical
Address
Space

(DRAM)

(e.g., read-only
library code)

28

Carnegie Mellon

Simplifying allocation and sharing

m Memory allocation
= Each virtual page can be mapped to any physical page

= Avirtual page can be stored in different physical pages at different times
m Sharing code and data among processes
= Map multiple virtual pages to the same physical page (here: PP 6)

0 Address 0

Virtual lati Physical
Address VP 1 w} Address
Space for VP2 PP 2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
PP 6 library code)
: 0
Virtual > prs
Address VP 1
Space for VP 2
Process 2: oo

N-1 M-1 29

Simplifying Linking and Loading

0Oxc0000000

m Linking
= Each program has similar virtual

address space

® Code, stack, and shared libraries
always start at the same address

0x40000000

m Loading

= execve() allocates virtual pages
for .text and .data sections
= creates PTEs marked as invalid

" The .text and .data sections
are copied, page by page, on
demand by the virtual memory

system
0x08048000

0

Kernel virtual memory

User stack
(created at runtime)

v
T

Memory-mapped region for
shared libraries

T

Run-time heap
(created by mal loc)

Read/write segment
(.data, .bss)

Read-only segment
(.1nIt, .text, .rodata)

Unused

Memory
I invisible to
user code

<« Y%esp
(stack
pointer)

<« brk

Loaded
from

> the
executable
file

30

Carnegie Mellon

Today

Address spaces
(1) VM as a tool for caching

H
H
m (2) VM as a tool for memory management
m (3) VM as a tool for memory protection

H

Address translation

31

Carnegie Mellon

VM as a Tool for Memory Protection

m Extend PTEs with permission bits

m Page fault handler checks these before remapping
= |f violated, send process SIGSEGV (segmentation fault)

Process i:

VP 0:
VP 1:
VP 2:

Process j:

VP 0:
VP 1:
VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8

PP 9

SUP READ WRITE Address
No Yes No PP 6
No Yes Yes PP4
Yes Yes Yes PP 2
.
[]
SUP READ WRITE Address
No Yes No PP9
Yes Yes Yes PP 6
No Yes Yes PP 11

PP 11

32

Carnegie Mellon

Today

Address spaces
(1) VM as a tool for caching

O
O
m (2) VM as a tool for memory management
m (3) VM as a tool for memory protection

O

Address translation

33

Carnegie Mellon

VM Address Translation

m Virtual Address Space
= V={0,1,.. N-1}
m Physical Address Space
= p={0, 1, .. M-1}
m Address Translation
" MAP: V— P U {&)}
= For virtual address a:
= MAP(a) = a’ if data at virtual address a is at physical address a’in P

= MAP(a) = Jif data at virtual address a is not in physical memory
— Either invalid or stored on disk

34

Carnegie Mellon

Summary of Address Translation Symbols

m Basic Parameters
= N=2": Number of addresses in virtual address space
= M=2": Number of addresses in physical address space
= P=2P :Pagesize (bytes)
m Components of the virtual address (VA)
= VPO: Virtual page offset
= VPN: Virtual page number
" TLBI: TLB index
" TLBT: TLB tag

m Components of the physical address (PA)
= PPO: Physical page offset (same as VPO)
" PPN: Physical page number
" CO: Byte offset within cache line
® Cl: Cache index
" CT: Cache tag

35

Carnegie Mellon

Address Translation With a Page Table

Virtual address
Page table n p P o
base register Virtual page number (VPN) Virtual page offset (VPO)
(PTBR)
Page table address Page table
for process)Valid Physical page number (PPN)
—>
Valid bit = 0:
page not in memory €
(page fault)
m-1 v p p-1 v 0

Physical page number (PPN) Physical page offset (PPO)

Physical address

36

Address Translation: Page Hit
(2

CPU Chip PTEA .
3 8 PTE
—>
e ML 3 Cache/
PA > Memory

Data

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

37

Carnegie Mellon

Address Translation: Page Fault

Exception
j—— === == > Page fault handler
| 4
|
|
| (2 @
CPU Chlp o I PTEA N Victim page >
CPU VA 5 Mmu e—PTE Cache/ _
Disk
o e Memory

New page

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction .

Carnegie Mellon

Views of virtual memory

m Programmer’s view of virtual memory
= Each process has its own private linear address space

= Cannot be corrupted by other processes

m System view of virtual memory
= Uses memory efficiently by caching virtual memory pages
= Efficient only because of locality
= Simplifies memory management and programming

= Simplifies protection by providing a convenient interpositioning point
to check permissions

39

Carnegie Mellon

Integrating VM and Cache

PTE
CPU Chip - oTEA PTE
hit
PTEA PTEA PTEA
> miss
CPU VA | MMmU Memory
A PA PA PA
miss
PA . Data
hit
L1
Data cache

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

40

Carnegie Mellon

Speeding up Translation with a TLB

m Page table entries (PTEs) are cached in L1 like any other
memory word
= PTEs may be evicted by other data references

® PTE hit still requires a small L1 delay

m Solution: Translation Lookaside Buffer (TLB)
= Small hardware cache in MMU
" Maps virtual page numbers to physical page numbers
= Contains complete page table entries for small number of pages

41

Carnegie Mellon

TLB Hit
CPU Chip e
QT PTE
VPN We
&
CPU Y 5 Mmu a > cache/
Memory
Data
(5

A TLB hit eliminates a memory access

42

Carnegie Mellon

TLB Miss
CPU Chip
TLB
4
9 PTE
VPN
@ 3
VA PTEA
CPU —> MMU > Cache/
PA s| Memory
5
Data

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?

43

