Carnegie Mellon Carnegie Mellon

Today
= Unix1/0

System-Level |/O m Metadata, sharing, and redirection
m Standard I/O

15-213 / 18-213: Introduction to Computer Systems m RIO (robust I/0) package

15t Lecture, Mar. 8, 2012 m Closing remarks

Instructors:
Todd C. Mowry & Anthony Rowe

, S i
Unix Files Unix File Types
m A Unix file is a sequence of m bytes: m Regular file

= By, By, ., By, .., B = File containing user/app data (binary, text, whatever)

m-1

= 0OS does not know anything about the format

. . = other than “sequence of bytes”, akin to main memory
m All 1/0 devices are represented as files:

= /dev/sda2 (/usr disk partition) = Directory file
* /dev/tty2 (terminal) = A file that contains the names and locations of other files
m Character special and block special files

® Terminals (character special) and disks (block special)
FIFO (named pipe)

= Afile type used for inter-process communication

m Even the kernel is represented as a file:
* /dev/kmem (kernel memory image)

= /proc (kernel data structures)
m Socket

= Afile type used for network communication between processes

Carnegie Mellon

Unix I/0

m Key Features

® Elegant mapping of files to devices allows kernel to export simple
interface called Unix 1/O

" |mportant idea: All input and output is handled in a consistent and
uniform way
m Basic Unix I/O operations (system calls):
= Opening and closing files
= open ()and close()
= Reading and writing a file
= read () and write()
= Changing the current file position (seek)
= indicates next offset into file to read or write
= lseek()

|Bo |51 |- oo IBHI B, |Bm| coe

Current file position = k

Carnegie Mellon

Closing Files

m Closing a file informs the kernel that you are finished
accessing that file

int £d; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror("close") ;
exit(1);

m Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

m Moral: Always check return codes, even for seemingly
benign functions such as close ()

Opening Files

m Opening a file informs the kernel that you are getting ready to
access that file

int £d; /* file descriptor */

if ((fd = open("/etc/hosts", O RDONLY)) < 0) {
perror ("open") ;
exit(1);

m Returns a small identifying integer file descriptor
" fd == -1 indicates that an error occurred

m Each process created by a Unix shell begins life with three open
files associated with a terminal:
= (:standard input
= 1:standard output
= 2:standard error

Carnegie Mellon

Reading Files

m Reading a file copies bytes from the current file position to
memory, and then updates file position

char buf[512];

int £d; /* file descriptor */
int nbytes; /* number of bytes read */
/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror ("read") ;
exit (1)

m Returns number of bytes read from file £d into buf
® Returntype ssize_tis signed integer
®" nbytes < 0 indicates that an error occurred

= Short counts (nbytes < sizeof (buf)) are possible and are not
errors!

Carnegie Mellon

Writing Files

m Writing a file copies bytes from memory to the current file
position, and then updates current file position

char buf[512];

int £d; /* file descriptor */
int nbytes; /* number of bytes read */
/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
perror ("write") ;
exit(1);

m Returns number of bytes written from buf to file £4
®" nbytes < 0 indicates that an error occurred
® As with reads, short counts are possible and are not errors!

Carnegie Mellon

On Short Counts

m Short counts can occur in these situations:
= Encountering (end-of-file) EOF on reads
= Reading text lines from a terminal
= Reading and writing network sockets or Unix pipes

m Short counts never occur in these situations:
= Reading from disk files (except for EOF)
= Writing to disk files

Carnegie Mellon

Simple Unix I/0 example

m Copying standard in to standard out, one byte at a time

int main(void)

{

char c;
int len;
while ((len = read(0 /*stdin*/, &c, 1)) == 1) {
if (write(l /*stdout*/, &c, 1) != 1) {
exit (20) ;

}

}

if (len < 0) {
printf (“read from stdin failed”);
exit (10);

exit(0);

Carnegie Mellon

Today

Unix I/0

Metadata, sharing, and redirection
Standard I/O

RIO (robust 1/0) package

Closing remarks

Carnegie Mellon

File Metadata

m Metadata is data about data, in this case file data

m Per-file metadata maintained by kernel
= accessed by users with the stat and £stat functions

/* Metadata returned by the stat and fstat functions */
struct stat {

dev_t st_dev; /* device */

ino_t st_ino; /* inode */

mode_t st_mode; /* protection and file type */
nlink t st _nlink; /* number of hard links */

uid_t st_uid; /* user ID of owner */

gid_t st_gid; /* group ID of owner */

dev_t st_rdev; /* device type (if inode device) */
off t st_size; /* total size, in bytes */

unsigned long st_blksize; /* blocksize for filesystem I/O */
unsigned long st blocks; /* number of blocks allocated */

time_t st_atime; /* time of last access */
time_t st _mtime; /* time of last modification */
time_t st_ctime; /* time of last change */

Carnegie Mellon

Repeated Slide: Opening Files

m Opening a file informs the kernel that you are getting ready to
access that file

int £d; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {
perror ("open") ;
exit(1);

m Returns a small identifying integer file descriptor
= fd == -1 indicates that an error occurred

Example of Accessing File Metadata

/* statcheck.c - Querying and manipulating a file’s meta data */
#include "csapp.h"

unix> ./statcheck statcheck.c

int main (int argc, char **argv) type: regular, read: yes

{ unix> chmod 000 statcheck.c
struct stat stat; unix> ./statcheck statcheck.c
char *type, *readok; type: regular, read: no

unix> ./statcheck ..
Stat(argv[l], &stat); type: directory, read: yes
if (S_ISREG(stat.st_mode)) unix> ./statcheck /dev/kmem
type = "regular"; type: other, read: yes

else if (S_ISDIR(stat.st_mode))
type = "directory";
else
type = "other";
if ((stat.st mode & S_IRUSR)) /* OK to read?*/

readok = "yes";
else
readok = "no";

printf("type: %s, read: %s\n", type, readok);
exit(0);
} statcheck.c

Carnegie Mellon

How the Unix Kernel Represents Open Files

m Two descriptors referencing two distinct open disk files.
Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A (terminal)

stdin fdO =) File access
— .
stdout fd1 Filelpos File size Info in
stderr fd2 il stat
= ile type
fd3 ref?nt 1 t'VP struct
fda ~ :
File B (disk)
] File access
File pos File size
refcnt=1 File fype

Carnegie Mellon

File Sharing

m Two distinct descriptors sharing the same disk file through
two distinct open file table entries

= E.g., Calling open twice with the same £ilename argument

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A (disk)
stdin fdO = File access
stdout fd1 ——
i File size
stderr fd2 File pos .
fd3 refcnt=1 File type
fda : :
File B (disk)
File pos
refcnt=1

Carnegie Mellon

How Processes Share Files: Fork()

m A child process inherits its parent’s open files
m After fork():

® Child’s table same as parent’s, and +1 to each refcnt

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]
Parent File A (terminal)
fdo =) File access
fa1 — File pos File size
fd2 =
fd3 refcnt=2 File type
fda ~ : B
Child File B (disk)
] File access
fdo S
fd1 File pos File size
fd2 _ File type
3 refc'nt—z o
fda

Carnegie Mellon

How Processes Share Files: Fork()

m A child process inherits its parent’s open files
= Note: situation unchanged by exec functions (use £entl to change)
m Before fork() call:

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A (terminal)

stdin fdO = File access
stdout fd1] . .
File size
stderr fd2 File pos =
fd3 refent=1 File type
fda ~ : 3
File B (disk)
] File access
File pos File size
refcnt=1 File t'ype

Carnegie Mellon

1/0 Redirection

m Question: How does a shell implement 1/0 redirection?
unix> 1ls > foo.txt

m Answer: By calling the dup2 (o1dfd, newfd) function
= Copies (per-process) descriptor table entry o1dfd to entry newfd

Descriptor table
before dup2 (4,1)

Descriptor table
after dup2 (4,1)

fdo fdo
fdi|a fdl|b
fd 2 fd2
fd3 fd3
fd4a|b fda|b

20

Carnegie Mellon

I/0 Redirection Example

m Step #1: open file to which stdout should be redirected
= Happens in child executing shell code, before exec

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A
stdin fdO = File access
stdout fd1 = ——
i File size
stderr fd2 File pos .
fd3 refcnt=1 File type
fda : :
File B
— File access
File pos File size
refcnt=1 File ?vpe

Carnegie Mellon

Today

Unix I/0

Metadata, sharing, and redirection
Standard 1/0

RIO (robust 1/0) package

Closing remarks

Carnegie Mellon

I/0 Redirection Example (cont.)
m Step #2: calldup2 (4,1)

= cause fd=1 (stdout) to refer to disk file pointed at by fd=4

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A
stdin fdO - File access
stdout fd1 N o i
File size
stderr fd2 File pos -
fd3 refcnt=0 File type
fda ~ : B
File B
] File access
File pos File size
refcnt=2 File t'ype

Carnegie Mellon

Standard 1/0O Functions

m The Cstandard library (1ibc . so) contains a collection of
higher-level standard I/0 functions
® Documented in Appendix B of K&R

m Examples of standard I/0 functions:
= Opening and closing files (fopen and fclose)
= Reading and writing bytes (fread and fwrite)
= Reading and writing text lines (Egets and £puts)
= Formatted reading and writing (Escanf and fprintf)

24

Standard 1/0O Streams

m Standard I/0 models open files as streams
= Abstraction for a file descriptor and a buffer in memory

m C programs begin life with three open streams
(defined in stdio.h)
" stdin (standard input)
" stdout (standard output)
® stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf (stdout, "Hello, world\n");

}

Buffering in Standard 1/0O

m Standard 1/0 functions use buffered I/O

printf("h");
printf("e");
printf ("1");
printf("1") ;
printf("o");
buf printf ("\n") ;

[hTeliTiTol\nl. . T.1]

\ fflush (stdout) ;
write (1, buf, 6);

m Buffer flushed to output fd on “\n” or ££1ush () call

Buffered 1/0: Motivation

m Applications often read/write one character at a time
® getc, putc, ungetc
= gets, fgets
= Read line of text on character at a time, stopping at newline
m Implementing as Unix /O calls expensive
" readand write require Unix kernel calls
= >10,000 clock cycles
m Solution: Buffered read
= Use Unix read to grab block of bytes
= User input functions take one byte at a time from buffer

= Refill buffer when empty

Buffer | already read unread

26

Standard 1/0 Buffering in Action

m You can see this buffering in action for yourself, using the
always fascinating Unix strace program:

#include <stdio.h> linux> strace ./hello
execve ("./hello", ["hello"], [/* ... */]).
int main() e
{ write (1, "hello\n", 6) =6
printf("h"); 000
printf("e"); exit group (0) =7
printf£("1");
printf("1");
printf ("o");

printf ("\n") ;
fflush (stdout) ;
exit(0);

28

Carnegie Mellon

Today

Unix I/O

Metadata, sharing, and redirection
Standard 1/0

RIO (robust 1/0) package

Closing remarks

Carnegie Mellon

Implementation of rio readn
/*

* rio_readn - robustly read n bytes (unbuffered)
=Y
ssize t rio_readn(int fd, void *usrbuf, size_t n)

{

size_t nleft = n;
ssize_t nread;
char *bufp = usrbuf;

while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {
if (errno == EINTR) /* interrupted by sig handler return */

nread = 0; /* and call read() again */
else
return -1; /* errno set by read() */
}
else if (nread == 0)
break; /* EOF */
nleft -= nread;

bufp += nread;
}

return (n - nleft); /* return >= 0 */

csapp.c

Carnegie Mellon

The RIO Package

m RIO is a set of wrappers that provide efficient and robust 1/0
in apps, such as network programs that are subject to short
counts

m RIO provides two different kinds of functions
= Unbuffered input and output of binary data
= rio_readnandrio_writen
= Buffered input of binary data and text lines
= rio_readlineband rio_readnb

= Buffered RIO routines are thread-safe and can be interleaved
arbitrarily on the same descriptor

m Download from http://csapp.cs.cmu.edu/public/code.html
- src/csapp.c and include/csapp.h

30

Carnegie Mellon

Today

m Unix 1/0
m Metadata, sharing, and redirection
m Standard I/O

m RIO (robust 1/0) package

m Closing comments

32

Unix I/0 vs. Standard 1/0 vs. RIO

m Standard 1/0 and RIO are implemented using low-level
Unix 1/0

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf |x

C application program

fgets fputs \ rio readn
fflush fseek AN rio writen
fclose Standard I/0 RO = rio:readinitb

functions functions

rio_readlineb
rio_readnb

open read
write lseek |« --
stat close

Unix 1/0 functions
(accessed via system calls)

m Which ones should you use in your programs?

Pros and Cons of Standard 1/O

m Pros:
= Buffering increases efficiency by decreasing the number of read
and write system calls
= Short counts are handled automatically

m Cons:

= Provides no function for accessing file metadata

= Standard I/O functions are not async-signal-safe, and not
appropriate for signal handlers.

= Standard I/O is not appropriate for input and output on network
sockets

= There are poorly documented restrictions on streams that
interact badly with restrictions on sockets (CS:APP2e, Sec 10.9)

Pros and Cons of Unix 1/0

m Pros
= Unix I/O is the most general and lowest overhead form of 1/0.
= All other I/O packages are implemented using Unix I/O functions.
= Unix I/O provides functions for accessing file metadata.

= Unix I/O functions are async-signal-safe and can be used safely in
signal handlers.

m Cons
= Dealing with short counts is tricky and error prone.

= Efficient reading of text lines requires some form of buffering, also
tricky and error prone.

= Both of these issues are addressed by the standard 1/0 and RIO
packages.

Carnegie Mellon

Choosing I/0O Functions

General rule: use the highest-level 1/0 functions you can

® Many C programmers are able to do all of their work using the standard
1/0 functions
® But, be sure to understand the functions you use!

m When to use standard 1/0
= When working with disk or terminal files
m When to use raw Unix I/0
= |nside signal handlers, because Unix I/0 is async-signal-safe
® In rare cases when you need absolute highest performance
= When to use RIO
® When you are reading and writing network sockets
= Avoid using standard 1/0 on sockets

36

Carnegie Mellon

Aside: Working with Binary Files

m Binary File Examples
= Object code, Images (JPEG, GIF),
m Functions you shouldn’t use on binary files

= Line-oriented I/O such as fgets, scanf, printf,
rio readlineb

= Different systems interpret 0x0A (‘\n’) (newline) differently:
— Linux and Mac OS X: LF (0x0a) [‘\n’]
— HTTP servers & Windoes: CR+LF (0x0d 0x0a) [‘\r\n’]
= Use things like rio_readn or rio_readnb instead

= String functions
» strlen, strcpy
= Interprets byte value 0 (end of string) as special

Carnegie Mellon

Fun with File Descriptors (1)

#include "csapp.h"
int main(int argc, char *argv[])
{
int £d1, £d2, £d3;
char cl1, c2, c3;
char *fname = argv[l];
£d1l = Open(fname, O _RDONLY, 0);
£d2 = Open(fname, O_RDONLY, 0);
£d3 = Open(fname, O RDONLY, 0);
Dup2 (£d2, £d3);
Read (£d1, &cl, 1);
Read (fd2, &c2, 1);
Read (£fd3, &c3, 1);
printf("cl = %c, c2 = %c, ¢3 = %c\n", cl, c2, c3);
return 0;
} ffilesl.c

m What would this program print for file containing “abcde”?

Carnegie Mellon

For Further Information

m The Unix bible:

= W. Richard Stevens & Stephen A. Rago, Advanced Programming in
the Unix Environment, 2" Edition, Addison Wesley, 2005
= Updated from Stevens’s 1993 classic text.

m Stevens is arguably the best technical writer ever.
® Produced authoritative works in:
= Unix programming
= TCP/IP (the protocol that makes the Internet work)
= Unix network programming
= Unix IPC programming

m Tragically, Stevens died Sept. 1, 1999
= But others have taken up his legacy

38

Carnegie Mellon

Fun with File Descriptors (2)

#include "csapp.h"
int main(int argc, char *argv[])

{

int £d1;
int s = getpid() & 0x1;
char cl, c2;
char *fname = argv[l];
£dl = Open(fname, O_RDONLY, 0);
Read(fdl, &cl, 1);
if (fork()) { /* Parent */
sleep(s) ;
Read (fdl, &c2, 1);
printf ("Parent: cl = %c, c2 = %c\n", cl, c2);
} else { /* Child */
sleep(1l-s);
Read(fdl, &c2, 1);
printf("Child: cl = %c, ¢2 = %c\n", cl, c2);
}
return 0;
} ffiles2.c

= What would this program print for file containing “abcde”?

40

10

Carnegie Mellon

Fun with File Descriptors (3)

#include "csapp.h"
int main(int argc, char *argv[])

{

int £d1, £d2, £d3;

char *fname = argv[l];

£fdl = Open(fname, O_CREAT|O_TRUNC|O_RDWR, S_IRUSR|S_IWUSR) ;
Write (£d1l, "pqrs", 4);

£d3 = Open(fname, O_APPEND|O_WRONLY, 0);

Write (£d3, "jklmn", 5);

fd2 = dup(fdl); /* Allocates descriptor */

Write (£42, "wxyz", 4);

Write (£d3, "ef", 2);

return 0;

ffiles3.c

m What would be the contents of the resulting file?

4“

Carnegie Mellon

Unbuffered RIO Input and Output

m Same interface as Unix read and write
m Especially useful for transferring data on network sockets

#include "csapp.h"

ssize t rio_readn(int fd, void *usrbuf, size_t n);
ssize t rio_writen(int fd, void *usrbuf, size t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

® rio_readn returnsshort count only if it encounters EOF
= Only use it when you know how many bytes to read
" rio_writen never returnsa short count

" Callstorio_readnand rio_writen can be interleaved arbitrarily on
the same descriptor

43

Carnegie Mellon

Accessing Directories

m Only recommended operation on a directory: read its entries
= dirent structure contains information about a directory entry

= DIR structure contains information about directory while stepping
through its entries

#include <sys/types.h>
#include <dirent.h>

DIR *directory;
struct dirent *de;

if (! (directory = opendir (dir_name)))
error ("Failed to open directory");

while (0 !'= (de = readdir(directory))) {
printf("Found file: %s\n", de->d_name);
}

closedir (directory) ;

42

Carnegie Mellon

Buffered 1/0: Implementation

m For reading from file
m File has associated buffer to hold bytes that have been read
from file but not yet read by user code

I‘_ rio_cnt _’I

Buffer | already read unread |

rio_buf '/ J

rio_bufptr

m Layered on Unix file:

|<— Buffered Portion ——’l
Y

not in buffer | already read unread unseen

Current File Position

11

Buffered 1/0O: Declaration

m All information contained in struct

|‘— rio_cnt _'l

Buffer | already read unread |

rio_buf j J

rio_bufptr

typedef struct {
int rio_f£d; /* descriptor for this internal buf */
int rio_cnt; /* unread bytes in internal buf */
char *rio_bufptr; /* next unread byte in internal buf */
char rio buf[RIO_BUFSIZE]; /* internal buffer */

} rio_t;

45

Carnegie Mellon

Carnegie Mellon

Buffered RIO Input Functions

m Efficiently read text lines and binary data from a file partially
cached in an internal memory buffer

#include "csapp.h"
void rio_readinitb(rio_t *rp, int £d);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

Return: num. bytes read if OK, 0 on EOF, -1 on error

" rio_readlineb reads a text line of up to maxlen bytes from file
£d and stores the line in usrbuf
= Especially useful for reading text lines from network sockets
= Stopping conditions
= maxlen bytes read
= EOF encountered
= Newline (“\n’) encountered

Carnegie Mellon

Buffered RIO Input Functions (cont)

#include "csapp.h"

void rio_readinitb(rio_t *rp, int £d);

ssize t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

" rio_readnb reads up to n bytes from file £d
= Stopping conditions

= maxlen bytes read

= EOF encountered

® Callstorio_readlineband rio_readnb can be interleaved
arbitrarily on the same descriptor

= Warning: Don’t interleave with calls to rio_readn

47

46

Carnegie Mellon

RIO Example

m Copying the lines of a text file from standard input to
standard output

#include "csapp.h"

int main(int argc, char **argv)
{

int n;

rio_t rio;

char buf [MAXLINE] ;

Rio_readinitb (&rio, STDIN_FILENO) ;

while((n = Rio_readlineb (&rio, buf, MAXLINE)) != 0)
Rio_writen (STDOUT_FILENO, buf, n);

exit(0);

cpfile.c

48

12

