Carnegie Mellon

System-Level 1/0

15-213 / 18-213: Introduction to Computer Systems
15t Lecture, Mar. 8, 2012

Instructors:
Todd C. Mowry & Anthony Rowe

Carnegie Mellon

Today

m Unix1/O
m Metadata, sharing, and redirection
m Standard /O

m RIO (robust I/0) package

m Closing remarks

Carnegie Mellon

Unix Files

m A Unix file is a sequence of m bytes:
= B,B,,...,B,..,B

m-1

m All1/0 devices are represented as files:
" /dev/sda2 (/usr disk partition)
= /dev/tty2 (terminal)

m Even the kernel is represented as a file:
= /dev/kmem (kernel memory image)
= /proc (kernel data structures)

Carnegie Mellon

Unix File Types

m Regular file
" File containing user/app data (binary, text, whatever)
= OS does not know anything about the format
= other than “sequence of bytes”, akin to main memory

m Directory file
= A file that contains the names and locations of other files

m Character special and block special files

= Terminals (character special) and disks (block special)
m FIFO (named pipe)

= A file type used for inter-process communication

m Socket
= A file type used for network communication between processes

Unix 1/0

m Key Features

= Elegant mapping of files to devices allows kernel to export simple
interface called Unix 1/0O

" |mportant idea: All input and output is handled in a consistent and
uniform way
m Basic Unix I/O operations (system calls):
® QOpening and closing files
= open()andclose ()
= Reading and writing a file
= read () and write ()
® Changing the current file position (seek)
= indicates next offset into file to read or write
» 1seek ()

By |B; |®°° B.1| By |Bis1| ®®®

t

Current file position = k

Carnegie Mellon

Opening Files

m Opening a file informs the kernel that you are getting ready to
access that file

int £d; /* file descriptor */

if ((fd = open("/etc/hosts", O RDONLY)) < 0) {
perror ("open'") ;
exit(1l);

m Returns a small identifying integer file descriptor
= fd == -1 indicates that an error occurred

m Each process created by a Unix shell begins life with three open
files associated with a terminal:

= (O:standard input
= 1:standard output
= 2:standard error

Carnegie Mellon

Closing Files

m Closing a file informs the kernel that you are finished
accessing that file

int fd; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror ("close") ;
exit(1l);

m Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

m Moral: Always check return codes, even for seemingly
benign functions such as close ()

Reading Files

m Reading a file copies bytes from the current file position to
memory, and then updates file position

char buf[512];

int £d; /* file descriptor */
int nbytes; /* number of bytes read */
/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror ("read") ;
exit(1l);

m Returns number of bytes read from file £d into buf

" Returntype ssize tissigned integer
" nbytes < 0 indicates that an error occurred

= Short counts (nbytes < sizeof (buf))are possible and are not
errors!

Writing Files

m Writing a file copies bytes from memory to the current file
position, and then updates current file position

char buf[512];

int fd; /* file descriptor */
int nbytes; /* number of bytes read */
/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
perror ("write") ;
exit (1) ;

m Returns number of bytes written from buf to file £d

" nbytes < 0 indicates that an error occurred
= As with reads, short counts are possible and are not errors!

Carnegie Mellon

Simple Unix I/O example

m Copying standard in to standard out, one byte at a time

int main (void)

{

char c;
int len;
while ((len = read(0 /*stdin*/, &c, 1)) == 1) {
if (write(l /*stdout*/, &c, 1) '= 1) {
exit (20) ;

}

}

if (len < 0) {
printf (“read from stdin failed”);
exit (10);

}
exit (0) ;

10

Carnegie Mellon

On Short Counts

m Short counts can occur in these situations:
= Encountering (end-of-file) EOF on reads
= Reading text lines from a terminal
= Reading and writing network sockets or Unix pipes

m Short counts never occur in these situations:
= Reading from disk files (except for EOF)
= Writing to disk files

1"

Carnegie Mellon

Today

m Unix1/0
m Metadata, sharing, and redirection
m Standard /O

m RIO (robust I/0) package

m Closing remarks

12

Carnegie Mellon

File Metadata

m Metadata is data about data, in this case file data
m Per-file metadata maintained by kernel

= accessed by users with the stat and £stat functions

/* Metadata returned by the stat and fstat functions */

struct stat {
dev t st _dev; /* device */
ino t st _ino; /* inode */
mode t st mode; /* protection and file type */
nlink t st nlink; /* number of hard links */
uid t st uid; /* user ID of owner */
gid t st gid; /* group ID of owner */
dev t st rdev; /* device type (if inode device) */
off t st size; /* total size, in bytes */
unsigned long st blksize; /* blocksize for filesystem I/O */
unsigned long st blocks; /* number of blocks allocated */
time t st atime; /* time of last access */
time t st mtime; /* time of last modification */
time t st ctime; /* time of last change */

}i

13

Example of Accessing File Metadata

/* statcheck.c - Querying and manipulating a file’s meta data */
#include "csapp.h"

unix> ./statcheck statcheck.c

int main (int argc, char **argv) type: regular, read: yes
{ unix> chmod 000 statcheck.c
struct stat stat; unix> ./statcheck statcheck.c
char *type, *readok; type: regular, read: no
unix> ./statcheck
Stat (argv[1l], &stat); type: directory, read: yes
if (S_ISREG(stat.st mode)) unix> ./statcheck /dev/kmem
type = '"regular"; type: other, read: yes
else if (S_ISDIR(stat.st mode))
type = "directory";
else

type = "other";
if ((stat.st mode & S IRUSR)) /* OK to read?*/

readok = '"yes";
else
readok = "no";

printf ("type: %s, read: %s\n", type, readok);
exit (0) ;

} statcheck.c

14

Carnegie Mellon

Repeated Slide: Opening Files

m Opening a file informs the kernel that you are getting ready to
access that file

int £d; /* file descriptor */

if ((fd = open("/etc/hosts", O RDONLY)) < 0) {
perror ("open'") ;
exit(1l);

m Returns a small identifying integer file descriptor
= fd == -1 indicates that an error occurred

15

Carnegie Mellon

How the Unix Kernel Represents Open Files

m Two descriptors referencing two distinct open disk files.
Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

_File A (terminal)

»

stdin fdoO = File access
— .
stdout fd1 File pos File size Info In
fent=1 lle type
fd 3 re ‘fn .yp struct
fd 4 —~— 5 .
I File access
. File size
File pos
refcnt=1 File t.ype

16

File Sharing

m Two distinct descriptors sharing the same disk file through

two distinct open file table entries
= E.g., Calling open twice with the same £filename argument

Descriptor table
[one table per process]

stdin fdO
stdout fd1
stderr fd2
fd 3
fd4

File A (disk)

Open file table
[shared by all processes]

v-node table
[shared by all processes]

—

File access

File pos

File size

refcnt=1

File type

\File B (disk)
/

File pos

refcnt=1

Carnegie Mellon

17

Carnegie Mellon

How Processes Share Files: Fork()

m A child process inherits its parent’s open files
= Note: situation unchanged by exec functions (use £cntl to change)

m Before fork() call:

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

_File A (terminal)

»

stdin fdoO = File access
stdout fd1 =] R . .
File size
stderr fd2 File pos :
fd 3 refent=1 File type
fd 4 ~_| : :
_ File access
. File size
File pos
refcnt=1 File t.ype

18

Carnegie Mellon

How Processes Share Files: Fork()

m A child process inherits its parent’s open files
m After fork():

® Child’s table same as parent’s, and +1 to each refcnt

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

Parent _File A (terminal) .
fd 0 / — File access
fd1 = File pos File size
fd 2 :
fd 3 refcnt=2 File type
fd 4 ~_ . -

child File B (disk) »

_— File access

fd 0 /| ——
fd 1 /- File pos File size
:: ; refcnt=2 File t.ype
fd4

19

Carnegie Mellon

/0O Redirection

m Question: How does a shell implement 1/0 redirection?

unix> ls > foo.txt

m Answer: By calling the dup2 (oldfd, newfd) function
= Copies (per-process) descriptor table entry o1ld£fd to entry newfd

Descriptor table Descriptor table
before dup2 (4,1) after dup2 (4,1)
fdo fd 0

fdl|a fdl|b

fd 2 fd 2

fd 3 fd 3

fdd | b fdd | b

20

Carnegie Mellon

/O Redirection Example

m Step #1: open file to which stdout should be redirected
"= Happens in child executing shell code, before exec

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

_File A -
stdin fdoO = File access
stdout fd1 =] R . .
File size
stderr fd2 File pos :
fd 3 refent=1 File type
fd 4 ~_| : :
_ File access
. File size
File pos
refcnt=1 File t.ype

21

Carnegie Mellon

I/O Redirection Example (cont.)
m Step #2: call dup2 (4,1)

= cause fd=1 (stdout) to refer to disk file pointed at by fd=4

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A -
stdin fdoO — File access
stdout fd1 o . File si
ile size
stderr fd2 N File pos :
fd 3 refcnt=0 File type
fd 4 ~ : :
File B »
_ File access
. File size
File pos
refcnt=2 File t.ype

22

Carnegie Mellon

Today

Unix I/O
Metadata, sharing, and redirection

|

|

m Standard /O
m RIO (robust I/0) package
m Closing remarks

23

Carnegie Mellon

Standard 1/0O Functions

m The Cstandard library (1ibc. so) contains a collection of
higher-level standard 1/0 functions

= Documented in Appendix B of K&R

m Examples of standard 1/0 functions:
= Opening and closing files (fopen and fclose)
= Reading and writing bytes (fread and fwrite)

= Reading and writing text lines (Egets and fputs)
® Formatted reading and writing (Escanf and fprintf)

24

Carnegie Mellon

Standard 1/0O Streams

m Standard I/O models open files as streams
= Abstraction for a file descriptor and a buffer in memory

m C programs begin life with three open streams
(defined in stdio.h)
= stdin (standard input)
= stdout (standard output)
" stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf (stdout, "Hello, world\n");

}

25

Buffered 1/0: Motivation

m Applications often read/write one character at a time
" getc, putc, ungetc
" gets, fgets
= Read line of text on character at a time, stopping at newline
m Implementing as Unix 1/0 calls expensive

" readandwrite require Unix kernel calls
= > 10,000 clock cycles

m Solution: Buffered read
= Use Unix read to grab block of bytes
= User input functions take one byte at a time from buffer
= Refill buffer when empty

Buffer | already read unread

26

Carnegie Mellon

Buffering in Standard 1/0

m Standard I/O functions use buffered 1/0

printf ("h") ;

printf ("e") ;

printf ("1") ;

printf ("1") ;

printf ("o") ;

buf | printf ("\n") ;

hlell |l 1 ol\n

fflush (stdout) ;

write(1l, buf, 6);

m Buffer flushed to output fd on “\n” or ££1ush () call

27

Standard 1/0 Buffering in Action

m You can see this buffering in action for yourself, using the
always fascinating Unix strace program:

#include <stdio.h> linux> strace ./hello
execve ("./hello", ["hello"], [/* ... */]).
int main() ...
{ write(l, "hello\n", 6) = 6
printf ("h") ; .c..
printf("e") ; exit group (0) = ?
printf("1") ;

printf ("1") ;
printf("o") ;
printf ("\n") ;
fflush (stdout) ;
exit (0) ;

28

Carnegie Mellon

Today

m Unix1/0
m Metadata, sharing, and redirection
m Standard /O

m RIO (robust I/0) package

m Closing remarks

29

Carnegie Mellon

The RIO Package

m RIO is a set of wrappers that provide efficient and robust 1/0
in apps, such as network programs that are subject to short
counts

m RIO provides two different kinds of functions
" Unbuffered input and output of binary data
* rio readnandrio writen
= Buffered input of binary data and text lines
* rio readlinebandrio readnb

= Buffered RIO routines are thread-safe and can be interleaved
arbitrarily on the same descriptor

m Download from http://csapp.cs.cmu.edu/public/code.html
- src/csapp.c and include/csapp.h

30

Carnegie Mellon

Implementation of rio readn
/*

* rio readn - robustly read n bytes (unbuffered)

*/

ssize t rio readn(int fd, void *usrbuf, size t n)

{

size t nleft = n;
ssize_t nread;
char *bufp = usrbuf;

while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {
if (errno == EINTR) /* interrupted by sig handler return */

nread = 0; /* and call read() again */
else
return -1; /* errno set by read() */
}
else if (nread == 0)
break; /* EOF */
nleft -= nread;

bufp += nread;
}

return (n - nleft); /* return >= 0 */

csapp.c

Carnegie Mellon

Today

m Unix1/0
m Metadata, sharing, and redirection
m Standard /O

m RIO (robust I/0) package

m Closing comments

32

Carnegie Mellon

Unix 1/0 vs. Standard 1/0O vs. RIO

m Standard I/0O and RIO are implemented using low-level
Unix 1I/0

fopen fdopen
fread fwrite
fscanf fprintf

sscanf sprintf |» C application program
fgets fputs \ rio readn

fflush fseek \ _ "
fclose Y Standard I/O RIO rio_writen

functions functions

-- - rio_;eadinitb
rio_readlineb

d . . ' dn
opc.en rea Unix I/0 functions rio_readnb
write 1lseek ¢----

accessed via system calls
stat close (y)

m Which ones should you use in your programs?

33

Pros and Cons of Unix I/O

m Pros
= Unix I/O is the most general and lowest overhead form of 1/0.

= All other I/O packages are implemented using Unix |I/O functions.
= Unix I/O provides functions for accessing file metadata.

" Unix I/O functions are async-signal-safe and can be used safely in
signal handlers.

m Cons
= Dealing with short counts is tricky and error prone.

= Efficient reading of text lines requires some form of buffering, also
tricky and error prone.

= Both of these issues are addressed by the standard I/O and RIO
packages.

34

Pros and Cons of Standard 1/0

m Pros:
= Buffering increases efficiency by decreasing the number of read
and write system calls

= Short counts are handled automatically

m Cons:
" Provides no function for accessing file metadata
= Standard I/O functions are not async-signal-safe, and not
appropriate for signal handlers.
= Standard I/O is not appropriate for input and output on network
sockets

= There are poorly documented restrictions on streams that
interact badly with restrictions on sockets (CS:APP2e, Sec 10.9)

35

Carnegie Mellon

Choosing I/O Functions

m General rule: use the highest-level 1/0 functions you can

= Many C programmers are able to do all of their work using the standard
|/0 functions

= But, be sure to understand the functions you use!

m When to use standard 1/0
= When working with disk or terminal files

m When to use raw Unix I/O

" |nside signal handlers, because Unix I/O is async-signal-safe
" |n rare cases when you need absolute highest performance

m When to use RIO

= When you are reading and writing network sockets
= Avoid using standard 1/O on sockets

36

Carnegie Mellon

Aside: Working with Binary Files

m Binary File Examples
= QObject code, Images (JPEG, GIF),

m Functions you shouldn’t use on binary files

" Line-oriented I/O such as fgets, scanf, printf,
rio readlineb

= Different systems interpret 0x0A (‘\n’) (newline) differently:
— Linux and Mac OS X: LF (0x0a) [‘\n’]
— HTTP servers & Windoes: CR+LF (0x0d 0x0a) [‘\r\n’]
= Use things like rio readnor rio readnb instead

= String functions
» strlen, strcpy
= |nterprets byte value O (end of string) as special

37

Carnegie Mellon

For Further Information

m The Unix bible:

= W. Richard Stevens & Stephen A. Rago, Advanced Programming in
the Unix Environment, 2" Edition, Addison Wesley, 2005

= Updated from Stevens’s 1993 classic text.

m Stevens is arguably the best technical writer ever.
" Produced authoritative works in:
= Unix programming
= TCP/IP (the protocol that makes the Internet work)
= Unix network programming
= Unix IPC programming

m Tragically, Stevens died Sept. 1, 1999

= But others have taken up his legacy

38

Carnegie Mellon

Fun with File Descriptors (1)

#include "csapp.h"

int main(int argc, char *argv[])

{
int £d1, £d4d2, £d3;
char cl, c2, c3;
char *fname = argv[1l];

fdl = Open(fname, O RDONLY, O);
fd2 = Open(fname, O RDONLY, O);
fd3 = Open(fname, O RDONLY, O);

Dup2 (fd2, £d3);

Read (fdl, &cl, 1);

Read (fd2, &c2, 1);

Read (£d3, &c3, 1);

printf("cl = %c, c2 = %c, c¢3 = %c\n", cl, c2, c3);
return O;

} ffilesl.c

m What would this program print for file containing “abcde”?

39

Carnegie Mellon

Fun with File Descriptors (2)

#include "csapp.h"
int main(int argc, char *argv[])

{

int £d1l;
int s = getpid() & O0x1;
char cl, c2;
char *fname = argv[l];
fdl = Open(fname, O RDONLY, O0);
Read (fdl, &cl, 1);
if (fork()) { /* Parent */
sleep(s) ;
Read (fdl, &c2, 1);
printf ("Parent: cl = %c, c2 = %c\n", cl, c2);
} else { /* Child */
sleep(1-s);
Read (fdl, &c2, 1);
printf ("Child: cl = %c, c2 = %c\n", cl, c2);
}

return 0;

} ffiles2.c

m What would this program print for file containing “abcde”?

40

Fun with File Descriptors (3)

#include "csapp.h"
int main(int argc, char *argv|[])
{
int £dl1l, £d4d2, £d3;
char *fname = argv|[l];
fdl = Open(fname, O CREAT|O _TRUNC|O RDWR, S IRUSR|S IWUSR) ;
Write (£dl, "pqgrs", 4);
fd3 = Open (fname, O APPEND|O WRONLY, 0);
Write (£d3, "jklmn", 5);
fd2 = dup(fdl); /* Allocates descriptor */
Write (£d2, "wxyz", 4);
Write (£d3, "ef", 2);
return O;
} ffiles3.c

m What would be the contents of the resulting file?

4

Accessing Directories

m Only recommended operation on a directory: read its entries
" dirent structure contains information about a directory entry

= DIR structure contains information about directory while stepping
through its entries

#include <sys/types.h>
#include <dirent.h>

{
DIR *directory;

struct dirent *de;

if (! (directory = opendir (dir name)))
error ("Failed to open directory");

while (0 !'= (de = readdir (directory))) {
printf ("Found file: %s\n", de->d name) ;
}

closedir (directory) ;

42

Carnegie Mellon

Unbuffered RIO Input and Output

m Same interface as Unix read and write
m Especially useful for transferring data on network sockets

#include "csapp.h"

ssize t rio readn(int fd, void *usrbuf, size t n);
ssize t rio writen(int fd, void *usrbuf, size t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

" rio readn returnsshort count only if it encounters EOF
= Only use it when you know how many bytes to read
" rio writen never returnsa short count

" Callstorio readnand rio_writen can be interleaved arbitrarily on
the same descriptor

43

Carnegie Mellon

Buffered 1/0: Implementation

m For reading from file

m File has associated buffer to hold bytes that have been read
from file but not yet read by user code

rio cnt —

Buffer | already read unread

rio buf '/ j

rio bufptr

m Layered on Unix file:

Buffered Portion

not in buffer already read unread unseen

J

Current File Position

44

Carnegie Mellon

Buffered 1/0O: Declaration

m All information contained in struct

< rio cnt =

Buffer | already read unread

rio buf "/,‘ _,/,

rio bufptr

typedef struct ({

int rio fd; /* descriptor for this internal buf */
int rio cnt; /* unread bytes in internal buf */
char *rio bufptr; /* next unread byte in internal buf */

char rio buf[RIO BUFSIZE]; /* internal buffer */
} rio_t;

45

Carnegie Mellon

Buffered RIO Input Functions

m Efficiently read text lines and binary data from a file partially
cached in an internal memory buffer

#include "csapp.h"
void rio readinitb(rio t *rp, int £d);
ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_ t maxlen);

Return: num. bytes read if OK, 0 on EOF, -1 on error

" rio readlineb reads atext line of up to maxlen bytes from file
fd and stores the line in usrbuf
= Especially useful for reading text lines from network sockets
= Stopping conditions
= maxlen bytes read
= EOF encountered
= Newline (‘\n’) encountered

46

Carnegie Mellon

Buffered RIO Input Functions (cont)

#include "csapp.h"
void rio_readinitb(rio_t *rp, int £d);

ssize_ t rio_readlineb(rio t *rp, void *usrbuf, size t maxlen);
ssize t rio readnb(rio t *rp, void *usrbuf, size t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

" rio readnb reads up to n bytes from file £d

= Stopping conditions
= maxlen bytesread
= EOF encountered

" Callstorio readlineband rio readnb can be interleaved
arbitrarily on the same descriptor

= Warning: Don’t interleave with callsto rio readn

47

Carnegie Mellon

RIO Example

m Copying the lines of a text file from standard input to
standard output

#include "csapp.h"

int main(int argc, char **argv)
{
int n;
rio t rio;
char buf [MAXLINE] ;

Rio readinitb(&rio, STDIN FILENO) ;

while((n = Rio readlineb(&rio, buf, MAXLINE)) !'= 0)
Rio writen (STDOUT FILENO, buf, n);
exit (0) ;

} cpfile.c

48

