Carnegie Mellon

Exceptional Control Flow:
Signals and Nonlocal Jumps

15-213 / 18-213: Introduction to Computer Systems
14t Lecture, Mar. 1, 2012

Instructors:
Todd C. Mowry & Anthony Rowe

Carnegie Mellon

ECF Exists at All Levels of a System

m Exceptions)
= Hardware and operating system kernel software

m Process Context Switch > Previous Lecture
= Hardware timer and kernel software

m Signals /
= Kernel software and application software \

m Nonlocal jumps

= Application code > This Lecture

Carnegie Mellon

Today

m Multitasking, shells
m Signals

m Nonlocal jumps

Carnegie Mellon

The World of Multitasking

m System runs many processes concurrently

m Process: executing program

= State includes memory image + register values + program counter

m Regularly switches from one process to another
= Suspend process when it needs I/O resource or timer event occurs
= Resume process when |/O available or given scheduling priority

m Appears to user(s) as if all processes executing simultaneously
= Even though most systems can only execute one process at a time
= Except possibly with lower performance than if running alone

Carnegie Mellon

Programmer’s Model of Multitasking

m Basic functions
" fork spawns new process
» Called once, returns twice
" exit terminates own process
= Called once, never returns
= Puts itinto “zombie” status
" wait and waitpid wait for and reap terminated children
" execve runs new program in existing process

= Called once, (normally) never returns

m Programming challenge
" Understanding the nonstandard semantics of the functions

= Avoiding improper use of system resources
= E.g. “Fork bombs” can disable a system

Carnegie Mellon

Unix Process Hierarchy

[0]

et >
Corandetia > CGrandetita

Carnegie Mellon

Shell Programs

m Ashellis an application program that runs programs on
behalf of the user.

= sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
= csh BSD Unix Cshell (tesh: enhanced csh at CMU and elsewhere)
= bash "“Bourne-Again” Shell

oo Execution is a sequence of
char cmdline[MAXLINE] ; read/evaluate steps

while (1) {
/* read */
printf ("> ") ;
Fgets (cmdline, MAXLINE, stdin);
if (feof(stdin))
exit (0) ;

/* evaluate */
eval (cmdline) ;

Carnegie Mellon

Simple Shell eval Function

void eval (char *cmdline) {

char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or fg? */

pid t pid; /* process id */

bg = parseline(cmdline, argv);

if ('builtin command(argv)) {
if ((pid = Fork()) == 0) { /* child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[0]);

exit (0) ;

}

if ('bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix error ("waitfg: waitpid error");

}

else /* otherwise, don’t wait for bg job */
printf ("%d %$s", pid, cmdline);

What Is a “Background Job”?

m Users generally run one command at a time
= Type command, read output, type another command

m Some programs run “for a long time”
= Example: “delete this file in two hours”

unix> sleep 7200; rm /tmp/junk # shell stuck for 2 hours

m A “background” job is a process we don't want to wait for

unix> (sleep 7200 ; rm /tmp/junk) &
[1] 907
unix> # ready for next command

Carnegie Mellon

Problem with Simple Shell Example

m Our example shell correctly waits for and reaps foreground
jobs

m But what about background jobs?
= Will become zombies when they terminate
= Will never be reaped because shell (typically) will not terminate
= Will create a memory leak that could run the kernel out of memory

= Modern Unix: once you exceed your process quota, your shell can't run
any new commands for you: fork() returns -1

unix> limit maxproc # csh syntax
maxproc 202752
unix> ulimit -u # bash syntax

202752

10

Carnegie Mellon

ECF to the Rescue!

m Problem
" The shell doesn't know when a background job will finish
= By nature, it could happen at any time

"= The shell's regular control flow can't reap exited background processes in
a timely fashion

= Regular control flow is “wait until running job completes, then reap it”

m Solution: Exceptional control flow

" The kernel will interrupt regular processing to alert us when a background
process completes

" |n Unix, the alert mechanism is called a signal

1"

Carnegie Mellon

Today

m Multitasking, shells
m Signals
m Nonlocal jumps

12

Carnegie Mellon

Signals

m Asignal is a small message that notifies a process that an
event of some type has occurred in the system
= akin to exceptions and interrupts

= sent from the kernel (sometimes at the request of another process) to a
process

= signal type is identified by small integer ID’s (1-30)
= only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event
SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

13

Sending a Signal

m Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination process

m Kernel sends a signal for one of the following reasons:
= Kernel has detected a system event such as divide-by-zero (SIGFPE) or the
termination of a child process (SIGCHLD)

= Another process has invoked the kill system call to explicitly request
the kernel to send a signal to the destination process

14

Receiving a Signal

m A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

m Three possible ways to react:
= Jgnore the signal (do nothing)
= Terminate the process (with optional core dump)
= Catch the signal by executing a user-level function called signal handler

= Akin to a hardware exception handler being called in response to an
asynchronous interrupt

15

Carnegie Mellon

Pending and Blocked Signals

m Asignalis pending if sent but not yet received
" There can be at most one pending signal of any particular type
" |mportant: Signals are not queued

= |f a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

m A process can block the receipt of certain signals

= Blocked signals can be delivered, but will not be received until the signal
is unblocked

m A pending signal is received at most once

16

Carnegie Mellon

Signal Concepts

m Kernel maintains pending and blocked bit vectors in the
context of each process
= pending: represents the set of pending signals
= Kernel sets bit k in pending when a sighal of type k is delivered
= Kernel clears bit k in pending when a signal of type k is received

"= blocked: represents the set of blocked signals
= Can be set and cleared by using the sigprocmask function

17

Carnegie Mellon

Process Groups

m Every process belongs to exactly one process group

pid=20 id=40
pgid=20 >

pgid=40

Background Background
process group 32 process group 40
pid=21 pid=22 getpgrp ()
pgid=20 pgid=20 Return process group of current process
Foreground setpgid ()

process group 20 Change process group of a process

18

Carnegie Mellon

Sending Signals with /bin/kill Program

m /bin/kill program
sends arbitrary signal to a
process or process group

m Examples

= /bin/kill -9 24818
Send SIGKILL to process 24818

= /bin/kill -9 -24817
Send SIGKILL to every process
in process group 24817

linux> ./forks 16
Childl: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
PID TTY
24788 pts/2

TIME CMD
00:00:00 tcsh

24818 Pts/2 00:00:02 forks

24819 Pts/2 00:00:02 forks

24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps

linux>

19

Carnegie Mellon

Sending Signals from the Keyboard

m Typing ctrl-c (ctrl-z) sends a SIGINT (SIGTSTP) to every job in the
foreground process group.

= S|GINT — default action is to terminate each process
= S|GTSTP — default action is to stop (suspend) each process

pid=20

1d= pid=40
pgid=20 pgid=40
Background Background
process group 32 process group 40

pid=21 pid=22
pgid=20 pgid=20
Foreground

process group 20 2

Carnegie Mellon

Example of ctrl-cand ctrl-z

bluefish> ./forks 17 STAT (process state) Legend:
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107 First letter:
<types ctrl-z> S: sleeping
Suspended T: stopped
bluefish> ps w R: running
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17 Second letter:
28108 pts/8 T 0:01 ./forks 17 s: session leader
28109 pts/8 R+ 0:00 ps w +: foreground proc group
bluefish> fg
./forks 17 See “man ps” for more
<types ctrl-c> details
bluefish> ps w
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh

28110 pts/8 R+ 0:00 ps w

21

Carnegie Mellon

Sending Signals with kill Function

void forkl2()
{

pid t pid[N];
int i, child status;
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
while(1l); /* Child infinite loop */

/* Parent terminates the child processes */
for (i = 0; i < N; i++) {
printf ("Killing process %d\n", pid[i]);
kill (pid[i], SIGINT) ;
}

/* Parent reaps terminated children */
for (i = 0; i < N; i++) {
pid_t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else

printf ("Child %d terminated abnormally\n", wpid);

22

Carnegie Mellon

Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

Process A

user code
kernel code } context switch
Time user code

kernel code } context switch

user code

Important: All context switches are initiated by calling
some exceptional hander.

23

Carnegie Mellon

Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

m Kernel computes pnb = pending & ~blocked
" The set of pending nonblocked signals for process p

m If (pnb == 0)
® Pass control to next instruction in the logical flow for p
m Else

= Choose least nonzero bit kin pnb and force process p to receive
signal k

" The receipt of the signal triggers some action by p
= Repeat for all nonzero k in pnb

= Pass control to next instruction in logical flow for p
24

Carnegie Mellon

Default Actions

m Each signal type has a predefined default action, which is
one of:
= The process terminates
" The process terminates and dumps core
" The process stops until restarted by a SIGCONT signal
" The process ignores the signal

25

Carnegie Mellon

Installing Signal Handlers

m The signal function modifies the default action associated
with the receipt of sighal signum:

" handler t *signal(int signum, handler t *handler)

m Different values for handler:
= SIG_IGN: ignore signals of type signum
= SIG_DFL: revert to the default action on receipt of signals of type signum
= Otherwise, handler is the address of a signal handler
= Called when process receives signal of type signum
= Referred to as “installing” the handler
= Executing handler is called “catching” or “handling” the signal

= When the handler executes its return statement, control passes back
to instruction in the control flow of the process that was interrupted by
receipt of the signal

26

Carnegie Mellon

Signal Handling Example

void int handler (int sig) {
safe printf ("Process %d received signal $d\n", getpid(), sig):;
exit (0) ;

}

void forkl3() {
pid_t pid[N];
int i, child status;
signal (SIGINT, int handler);

for (i = 0; i< N; i++) linu§> ./forks 13
if ((pid[i] = fork()) == Killing process 25417
while(l); /* child inf Killing process 25418
} Killing process 25419
for (i = 0; i < N; i++) { Killing process 25420
printf ("Killing process $d Killing process 25421 _
kill (pid[i], SIGINT); Process 25417 received signal 2
} Process 25418 received signal 2
for (i = 0; i < N; i++) { Process 25420 received signal 2
Process 25421 received signal 2

pid t wpid = wait(&child s
if TWIFEXITED(child status Process 25419 received signal 2
printf ("Child od termi Child 25417 terminated with exit status

wpid, WEXITSTAT Child 25418 terminated with exit status
Child 25420 terminated with exit status
printf ("Child %d termi Child 25419 terminated with exit status
} Child 25421 terminated with exit status
} linux>

else

O O O O o

27

Carnegie Mellon

Signals Handlers as Concurrent Flows

m Asignal handler is a separate logical flow (not process) that
runs concurrently with the main program

= “concurrently” in the “not sequential” sense

Process A Process A Process B

while (1) handler () {

Time

28

Carnegie Mellon

Another View of Signal Handlers as
Concurrent Flows

Process A Process B

Signal delivered —> | user code (main)

curr

kernel code } context switch
user code (main)

kernel code } context switch
Signal received —>

user code (handler)

kernel code

<
<

next user code (main)

29

Carnegie Mellon

Signal Handler Funkiness

int ccount = 0; m Pending signals are not
void child handler (int sig) queued
{
int child status; = For each signal type, just
pid t pid = wait(&child_status); have single bit indicating
ST whether or not signal is
safe printf ()
"Received signal %d from process %d\n", penchng
sig, pid);

} . i
= Even if multiple processes

void forkl4 () have sent this signal

{
pid t pid[N];
int i, child status;
ccount = N;
signal (SIGCHLD, child handler) ;
for (i = 0; i < N; i+ linux> ./forks 14
if ((pid[i] = fo Received SIGCHLD signal 17 for process 21344

sleep(l); /* . .
exit (0) ; /* Received SIGCHLD signal 17 for process 21345

}

while (ccount > 0)
pause(); /* Suspend until signal occurs */

30

Living With Nonqueuing Signals

m Must check for all terminated jobs
= Typically loop with waitpid

void child;handlerZ(int sig)

{
int child status;

pid t pid;

while ((pid = waitpid(-1, &child status, WNOHANG)) > 0) ({
ccount--;
safe printf ("Received signal %d from process %d\n",

Sig r Pld) ’

}

greatwhite> forks 15
void forkl5() Received signal 17 from process 27476
{ Received signal 17 from process 27477
Received signal 17 from process 27478
Slgnal(SIGcRecelved signal 17 from process 27479
Received signal 17 from process 27480
} greatwhite>

3

Carnegie Mellon

More Signal Handler Funkiness

m Signal arrival during long system calls (say a read)

m Signal handler interrupts read call
= Linux: upon return from signal handler, the read call is restarted

automatically
= Some other flavors of Unix can cause the read call to fail with an

EINTR error number (exrrno)
in this case, the application program can restart the slow system call

m Subtle differences like these complicate the writing of

portable code that uses signals
= Consult your textbook for details

32

Carnegie Mellon

A Program That Reacts to
Externally Generated Events (Ctrl-c)

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler (int sig) {
safe printf("You think hitting ctrl-c will stop the bomb?\n");

sleep(2) ;
safe printf("Well..."); .
sleep (1) ; llﬂU?> ./external
printf ("OK\n") ; Sctr _?> e :
i . You think hitting ctrl-c will stop
exit (0);
} the bomb?
Well...OK
main () { linux>
signal (SIGINT, handler); /* installs ctl-c handler */
while (1) {

}

}
external.c

33

Carnegie Mellon

A Program That Reacts to Internally

Generated Events

#include <stdio.h>
#include <signal.h>

int beeps = 0;

/* SIGALRM handler */
void handler (int sig) {

main () {
signal (SIGALRM, handler);
alarm(l); /* send SIGALRM in
1l second */

while (1) {
/* handler returns here */

safe_printf ("BEEP\n") ; }
}

if (++beeps < 5)

alarm(1l); linux> ./internal
else { BEEP
safe printf ("BOOM!\n") ; BEEP
exit(0) ; BEEP
} BEEP
} BEEP
internal.c BOOM!

bass>

34

Async-Signal-Safety

m Function is async-signal-safe if either reentrant (all variables
stored on stack frame, CS:APP2e 12.7.2) or non-interruptible

by signals.
m Posix guarantees 117 functions to be async-signal-safe

= writeisonthelist, printf isnot

m One solution: async-signal-safe wrapper for print£:

void safe printf(const char *format, ...) {
char buf [MAXS];
va_list args;

va_start(args, format); /* reentrant */
vsnprintf (buf, sizeof (buf), format, args); /* reentrant */
va_end(args) ; /* reentrant */
write(l, buf, strlen(buf)) ; /* async-signal-safe */

}
safe_printf.c

35

Carnegie Mellon

Today

m Multitasking, shells
m Signals
m Nonlocal jumps

36

Carnegie Mellon

Nonlocal Jumps: setjmp/longjmp

m Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location

= Controlled to way to break the procedure call / return discipline
= Useful for error recovery and signal handling

m int setjmp (jmp buf j)
" Must be called before longjmp
= |dentifies a return site for a subsequent longjmp
= Called once, returns one or more times

m Implementation:

= Remember where you are by storing the current register context,
stack pointer, and PCvalue in jmp buf

" Return O

37

setjmp/longjmp (cont)

m void longjmp (jmp buf j, int 1)
" Meaning:
= return from the setjmp remembered by jump buffer j again ...
= ... this time returning i instead of O
= Called after setjmp
= Called once, but never returns

m longjmp Implementation:
= Restore register context (stack pointer, base pointer, PC value) from jump
buffer j
= Set $eax (thereturnvalue)to i
= Jump to the location indicated by the PC stored in jump buf j

38

setjmp/longjmp Example

#include <setjmp.h>
jmp buf buf;

main () {

if (setjmp(buf) !'= 0) {
printf ("back in main due to an error\n");
else

printf ("first time through\n") ;
pl(); /* pl calls p2, which calls p3 */
}
p3() {
<error checking code>

if (error)
longjmp (buf, 1)

39

Carnegie Mellon

Limitations of Nonlocal Jumps

m Works within stack discipline

= Can only long jump to environment of function that has been called but

not yet completed
y P Before longjmp After longjmp

jmp buf env; env
......... » Pl Pl
P1()
{
if (setjmp(env)) ({ P2
/* Long Jump to here */
} else {
P2(); P2
}
} P2
P2 ()
{ . . .P2(); . . . P3(); } P3
P3()
{
longjmp (env, 1) ;
}

40

Carnegie Mellon

Limitations of Long Jumps (cont.)

m Works within stack discipline

= Can only long jump to environment of function that has been called but
not yet completed

jmp buf env; =
PL() | p2
{ env

P2(); P3(); At setjmp
}
P2 () Pl
{

if (setjmp(env)) { env

/* Long Jump to here */)l P2

}
} P2 returns Pl
P3() env

longjmp (env, 1);
} At longjmp

#

Carnegie Mellon

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d

#include <stdio.h>
#include <signal.h>
#include <setjmp.h>

greatwhite> ./restart

sigjmp buf buf; starting
processing. ..
void handler (int sig) { processing. ..
siglongjmp (buf, 1); processing. ..
} o
restartin
. g < Ctrl-C
main() { process%ng...
signal (SIGINT, handler) processing. ..
restarting
if (!sigsetjmp(buf, 1)) processing. « Ctrl-c
printf ("starting\n"); processing. ..
else processing. ..

printf ("restarting\n") ;

while (1) {
sleep (1) ;
printf ("processing...\n");

} restart.c

42

Carnegie Mellon

Summary

m Signals provide process-level exception handling
= Can generate from user programs
= Can define effect by declaring signal handler

m Some caveats
= Very high overhead
= >10,000 clock cycles
= Only use for exceptional conditions
= Don’t have queues
= Just one bit for each pending signal type

m Nonlocal jumps provide exceptional control flow within
process
= Within constraints of stack discipline

43

