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ECF Exists at All Levels of a System

m Exceptions )
= Hardware and operating system kernel software

m Process Context Switch > Previous Lecture
= Hardware timer and kernel software

m Signals /
= Kernel software and application software \

m Nonlocal jumps

= Application code > This Lecture
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Today

m Multitasking, shells
m Signals

m Nonlocal jumps



Carnegie Mellon

The World of Multitasking

m System runs many processes concurrently

m Process: executing program

= State includes memory image + register values + program counter

m Regularly switches from one process to another
= Suspend process when it needs I/O resource or timer event occurs
= Resume process when |/O available or given scheduling priority

m Appears to user(s) as if all processes executing simultaneously
= Even though most systems can only execute one process at a time
= Except possibly with lower performance than if running alone



Carnegie Mellon

Programmer’s Model of Multitasking

m Basic functions
" fork spawns new process
» Called once, returns twice
" exit terminates own process
= Called once, never returns
= Puts itinto “zombie” status
" wait and waitpid wait for and reap terminated children
" execve runs new program in existing process

= Called once, (normally) never returns

m Programming challenge
" Understanding the nonstandard semantics of the functions

= Avoiding improper use of system resources
= E.g. “Fork bombs” can disable a system
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Unix Process Hierarchy

[0]

et >
Corandetia > CGrandetita
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Shell Programs

m Ashellis an application program that runs programs on
behalf of the user.

= sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
= csh BSD Unix Cshell (tesh: enhanced csh at CMU and elsewhere)
= bash "“Bourne-Again” Shell

oo Execution is a sequence of
char cmdline[MAXLINE] ; read/evaluate steps

while (1) {
/* read */
printf ("> ") ;
Fgets (cmdline, MAXLINE, stdin);
if (feof(stdin))
exit (0) ;

/* evaluate */
eval (cmdline) ;
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Simple Shell eval Function

void eval (char *cmdline) {

char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or fg? */

pid t pid; /* process id */

bg = parseline(cmdline, argv);

if ('builtin command(argv)) {
if ((pid = Fork()) == 0) { /* child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[0]);

exit (0) ;

}

if ('bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix error ("waitfg: waitpid error");

}

else /* otherwise, don’t wait for bg job */
printf ("%d %$s", pid, cmdline);




What Is a “Background Job”?

m Users generally run one command at a time
= Type command, read output, type another command

m Some programs run “for a long time”
= Example: “delete this file in two hours”

unix> sleep 7200; rm /tmp/junk # shell stuck for 2 hours

m A “background” job is a process we don't want to wait for

unix> (sleep 7200 ; rm /tmp/junk) &
[1] 907
unix> # ready for next command
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Problem with Simple Shell Example

m Our example shell correctly waits for and reaps foreground
jobs

m But what about background jobs?
= Will become zombies when they terminate
= Will never be reaped because shell (typically) will not terminate
= Will create a memory leak that could run the kernel out of memory

= Modern Unix: once you exceed your process quota, your shell can't run
any new commands for you: fork() returns -1

unix> limit maxproc # csh syntax
maxproc 202752
unix> ulimit -u # bash syntax

202752

10
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ECF to the Rescue!

m Problem
" The shell doesn't know when a background job will finish
= By nature, it could happen at any time

"= The shell's regular control flow can't reap exited background processes in
a timely fashion

= Regular control flow is “wait until running job completes, then reap it”

m Solution: Exceptional control flow

" The kernel will interrupt regular processing to alert us when a background
process completes

" |n Unix, the alert mechanism is called a signal

1"
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Today

m Multitasking, shells
m Signals
m Nonlocal jumps
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Signals

m Asignal is a small message that notifies a process that an
event of some type has occurred in the system
= akin to exceptions and interrupts

= sent from the kernel (sometimes at the request of another process) to a
process

= signal type is identified by small integer ID’s (1-30)
= only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event
SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV  Terminate & Dump Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

13



Sending a Signal

m Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination process

m Kernel sends a signal for one of the following reasons:
= Kernel has detected a system event such as divide-by-zero (SIGFPE) or the
termination of a child process (SIGCHLD)

= Another process has invoked the kill system call to explicitly request
the kernel to send a signal to the destination process

14



Receiving a Signal

m A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

m Three possible ways to react:
= Jgnore the signal (do nothing)
= Terminate the process (with optional core dump)
= Catch the signal by executing a user-level function called signal handler

= Akin to a hardware exception handler being called in response to an
asynchronous interrupt

15
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Pending and Blocked Signals

m Asignalis pending if sent but not yet received
" There can be at most one pending signal of any particular type
" |mportant: Signals are not queued

= |f a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

m A process can block the receipt of certain signals

= Blocked signals can be delivered, but will not be received until the signal
is unblocked

m A pending signal is received at most once

16
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Signal Concepts

m Kernel maintains pending and blocked bit vectors in the
context of each process
= pending: represents the set of pending signals
= Kernel sets bit k in pending when a sighal of type k is delivered
= Kernel clears bit k in pending when a signal of type k is received

"= blocked: represents the set of blocked signals
= Can be set and cleared by using the sigprocmask function

17
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Process Groups

m Every process belongs to exactly one process group

pid=20 id=40
pgid=20 >

pgid=40

Background Background
process group 32 process group 40
pid=21 pid=22 getpgrp ()
pgid=20 pgid=20 Return process group of current process
Foreground setpgid ()

process group 20 Change process group of a process

18
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Sending Signals with /bin/kill Program

m /bin/kill program
sends arbitrary signal to a
process or process group

m Examples

= /bin/kill -9 24818
Send SIGKILL to process 24818

= /bin/kill -9 -24817
Send SIGKILL to every process
in process group 24817

linux> ./forks 16
Childl: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
PID TTY
24788 pts/2

TIME CMD
00:00:00 tcsh

24818 Pts/2 00:00:02 forks

24819 Pts/2 00:00:02 forks

24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps

linux>

19
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Sending Signals from the Keyboard

m Typing ctrl-c (ctrl-z) sends a SIGINT (SIGTSTP) to every job in the
foreground process group.

= S|GINT — default action is to terminate each process
= S|GTSTP — default action is to stop (suspend) each process

pid=20

1d= pid=40
pgid=20 pgid=40
Background Background
process group 32 process group 40

pid=21 pid=22
pgid=20 pgid=20
Foreground

process group 20 2
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Example of ctrl-cand ctrl-z

bluefish> ./forks 17 STAT (process state) Legend:
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107 First letter:
<types ctrl-z> S: sleeping
Suspended T: stopped
bluefish> ps w R: running
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17 Second letter:
28108 pts/8 T 0:01 ./forks 17 s: session leader
28109 pts/8 R+ 0:00 ps w +: foreground proc group
bluefish> fg
./forks 17 See “man ps” for more
<types ctrl-c> details
bluefish> ps w
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh

28110 pts/8 R+ 0:00 ps w

21
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Sending Signals with kill Function

void forkl2()
{

pid t pid[N];
int i, child status;
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
while(1l); /* Child infinite loop */

/* Parent terminates the child processes */
for (i = 0; i < N; i++) {
printf ("Killing process %d\n", pid[i]);
kill (pid[i], SIGINT) ;
}

/* Parent reaps terminated children */
for (i = 0; i < N; i++) {
pid_t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else

printf ("Child %d terminated abnormally\n", wpid);

22
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Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

Process A

user code
kernel code } context switch
Time user code

kernel code } context switch

user code

Important: All context switches are initiated by calling
some exceptional hander.

23
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Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

m Kernel computes pnb = pending & ~blocked
" The set of pending nonblocked signals for process p

m If (pnb == 0)
® Pass control to next instruction in the logical flow for p
m Else

= Choose least nonzero bit kin pnb and force process p to receive
signal k

" The receipt of the signal triggers some action by p
= Repeat for all nonzero k in pnb

= Pass control to next instruction in logical flow for p
24
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Default Actions

m Each signal type has a predefined default action, which is
one of:
= The process terminates
" The process terminates and dumps core
" The process stops until restarted by a SIGCONT signal
" The process ignores the signal

25
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Installing Signal Handlers

m The signal function modifies the default action associated
with the receipt of sighal signum:

" handler t *signal(int signum, handler t *handler)

m Different values for handler:
= SIG_IGN: ignore signals of type signum
= SIG_DFL: revert to the default action on receipt of signals of type signum
= Otherwise, handler is the address of a signal handler
= Called when process receives signal of type signum
= Referred to as “installing” the handler
= Executing handler is called “catching” or “handling” the signal

= When the handler executes its return statement, control passes back
to instruction in the control flow of the process that was interrupted by
receipt of the signal

26
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Signal Handling Example

void int handler (int sig) {
safe printf ("Process %d received signal $d\n", getpid(), sig):;
exit (0) ;

}

void forkl3() {
pid_t pid[N];
int i, child status;
signal (SIGINT, int handler);

for (i = 0; i< N; i++) linu§> ./forks 13
if ((pid[i] = fork()) == Killing process 25417
while(l); /* child inf Killing process 25418
} Killing process 25419
for (i = 0; i < N; i++) { Killing process 25420
printf ("Killing process $d Killing process 25421 _
kill (pid[i], SIGINT); Process 25417 received signal 2
} Process 25418 received signal 2
for (i = 0; i < N; i++) { Process 25420 received signal 2
Process 25421 received signal 2

pid t wpid = wait(&child s
if TWIFEXITED(child status Process 25419 received signal 2
printf ("Child od termi Child 25417 terminated with exit status

wpid, WEXITSTAT Child 25418 terminated with exit status
Child 25420 terminated with exit status
printf ("Child %d termi Child 25419 terminated with exit status
} Child 25421 terminated with exit status
} linux>

else

O O O O o

27
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Signals Handlers as Concurrent Flows

m Asignal handler is a separate logical flow (not process) that
runs concurrently with the main program

= “concurrently” in the “not sequential” sense

Process A Process A Process B

while (1) handler () {

Time

28
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Another View of Signal Handlers as
Concurrent Flows

Process A Process B

Signal delivered —> | user code (main)

curr

kernel code } context switch
user code (main)

kernel code } context switch
Signal received —>

user code (handler)

kernel code

<
<

next user code (main)

29
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Signal Handler Funkiness

int ccount = 0; m Pending signals are not
void child handler (int sig) queued
{
int child status; = For each signal type, just
pid t pid = wait(&child_status); have single bit indicating
ST whether or not signal is
safe printf ( )
"Received signal %d from process %d\n", penchng
sig, pid);

} . i
= Even if multiple processes

void forkl4 () have sent this signal

{
pid t pid[N];
int i, child status;
ccount = N;
signal (SIGCHLD, child handler) ;
for (i = 0; i < N; i+ linux> ./forks 14
if ((pid[i] = fo Received SIGCHLD signal 17 for process 21344

sleep(l); /* . .
exit (0) ; /* Received SIGCHLD signal 17 for process 21345

}

while (ccount > 0)
pause(); /* Suspend until signal occurs */

30



Living With Nonqueuing Signals

m Must check for all terminated jobs
= Typically loop with waitpid

void child;handlerZ(int sig)

{
int child status;

pid t pid;

while ((pid = waitpid(-1, &child status, WNOHANG)) > 0) ({
ccount--;
safe printf ("Received signal %d from process %d\n",

Sig r Pld) ’

}

greatwhite> forks 15
void forkl5() Received signal 17 from process 27476
{ Received signal 17 from process 27477
Received signal 17 from process 27478
Slgnal(SIGcRecelved signal 17 from process 27479
Received signal 17 from process 27480
} greatwhite>

3
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More Signal Handler Funkiness

m Signal arrival during long system calls (say a read)

m Signal handler interrupts read call
= Linux: upon return from signal handler, the read call is restarted

automatically
= Some other flavors of Unix can cause the read call to fail with an

EINTR error number (exrrno)
in this case, the application program can restart the slow system call

m Subtle differences like these complicate the writing of

portable code that uses signals
= Consult your textbook for details

32
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A Program That Reacts to
Externally Generated Events (Ctrl-c)

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler (int sig) {
safe printf("You think hitting ctrl-c will stop the bomb?\n");

sleep(2) ;
safe printf("Well..."); .
sleep (1) ; llﬂU?> ./external
printf ("OK\n") ; Sctr _?> e :
i . You think hitting ctrl-c will stop
exit (0);
} the bomb?
Well...OK
main () { linux>
signal (SIGINT, handler); /* installs ctl-c handler */
while (1) {

}

}
external.c

33
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A Program That Reacts to Internally

Generated Events

#include <stdio.h>
#include <signal.h>

int beeps = 0;

/* SIGALRM handler */
void handler (int sig) {

main () {
signal (SIGALRM, handler);
alarm(l); /* send SIGALRM in
1l second */

while (1) {
/* handler returns here */

safe_printf ("BEEP\n") ; }
}

if (++beeps < 5)

alarm(1l); linux> ./internal
else { BEEP
safe printf ("BOOM!\n") ; BEEP
exit(0) ; BEEP
} BEEP
} BEEP
internal.c BOOM!

bass>

34



Async-Signal-Safety

m Function is async-signal-safe if either reentrant (all variables
stored on stack frame, CS:APP2e 12.7.2) or non-interruptible

by signals.
m Posix guarantees 117 functions to be async-signal-safe

= writeisonthelist, printf isnot

m One solution: async-signal-safe wrapper for print£:

void safe printf(const char *format, ...) {
char buf [MAXS];
va_list args;

va_start(args, format); /* reentrant */
vsnprintf (buf, sizeof (buf), format, args); /* reentrant */
va_end(args) ; /* reentrant */
write(l, buf, strlen(buf)) ; /* async-signal-safe */

}
safe_printf.c

35
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Today

m Multitasking, shells
m Signals
m Nonlocal jumps
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Nonlocal Jumps: setjmp/longjmp

m Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location

= Controlled to way to break the procedure call / return discipline
= Useful for error recovery and signal handling

m int setjmp (jmp buf j)
" Must be called before longjmp
= |dentifies a return site for a subsequent longjmp
= Called once, returns one or more times

m Implementation:

= Remember where you are by storing the current register context,
stack pointer, and PCvalue in jmp buf

" Return O

37



setjmp/longjmp (cont)

m void longjmp (jmp buf j, int 1)
" Meaning:
= return from the setjmp remembered by jump buffer j again ...
= ... this time returning i instead of O
= Called after setjmp
= Called once, but never returns

m longjmp Implementation:
= Restore register context (stack pointer, base pointer, PC value) from jump
buffer j
= Set $eax (thereturnvalue)to i
= Jump to the location indicated by the PC stored in jump buf j

38



setjmp/longjmp Example

#include <setjmp.h>
jmp buf buf;

main () {

if (setjmp(buf) !'= 0) {
printf ("back in main due to an error\n");
else

printf ("first time through\n") ;
pl(); /* pl calls p2, which calls p3 */
}
p3() {
<error checking code>

if (error)
longjmp (buf, 1)

39
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Limitations of Nonlocal Jumps

m Works within stack discipline

= Can only long jump to environment of function that has been called but

not yet completed
y P Before longjmp  After longjmp

jmp buf env; env
......... » Pl Pl
P1()
{
if (setjmp(env)) ({ P2
/* Long Jump to here */
} else {
P2(); P2
}
} P2
P2 ()
{ . . .P2(); . . . P3(); } P3
P3()
{
longjmp (env, 1) ;
}

40
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Limitations of Long Jumps (cont.)

m Works within stack discipline

= Can only long jump to environment of function that has been called but
not yet completed

jmp buf env; =
PL() | p2
{ env

P2(); P3(); At setjmp
}
P2 () Pl
{

if (setjmp(env)) { env

/* Long Jump to here */ )l P2

}
} P2 returns Pl
P3() env

longjmp (env, 1);
} At longjmp

#
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Putting It All Together: A Program
That Restarts Itself When ctrl-c’d

#include <stdio.h>
#include <signal.h>
#include <setjmp.h>

greatwhite> ./restart

sigjmp buf buf; starting
processing. ..
void handler (int sig) { processing. ..
siglongjmp (buf, 1); processing. ..
} o
restartin
. g < Ctrl-C
main() { process%ng...
signal (SIGINT, handler) processing. ..
restarting
if (!sigsetjmp(buf, 1)) processing. « Ctrl-c
printf ("starting\n"); processing. ..
else processing. ..

printf ("restarting\n") ;

while (1) {
sleep (1) ;
printf ("processing...\n");

} restart.c
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Summary

m Signals provide process-level exception handling
= Can generate from user programs
= Can define effect by declaring signal handler

m Some caveats
= Very high overhead
= >10,000 clock cycles
= Only use for exceptional conditions
= Don’t have queues
= Just one bit for each pending signal type

m Nonlocal jumps provide exceptional control flow within
process
= Within constraints of stack discipline
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