15-213 Spring 2012

Carnegic Mellon

Exceptional Control Flow:
Exceptions and Processes

15-213 / 18-213: Introduction to Computer Systems
13t Lecture, Feb. 28, 2011

Instructors:
Todd C. Mowry & Anthony Rowe

Carnegie Mellon

Today

m Exceptional Control Flow
m Processes

Control Flow

m Processors do only one thing:
= From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>

inst;

. inst

Time L2
inst,
inst,
<shutdown>

Altering the Control Flow

= Up to now: two mechanisms for changing control flow:
® Jumps and branches
= Call and return
Both react to changes in program state

m Insufficient for a useful system:
Difficult to react to changes in system state
data arrives from a disk or a network adapter

instruction divides by zero
user hits Ctrl-C at the keyboard

System timer expires

m System needs mechanisms for “exceptional control flow”

15-213 Spring 2012

Carnegic Mellon

Exceptional Control Flow

m Exists at all levels of a computer system
m Low level mechanisms
= Exceptions

= change in control flow in response to a system event
(i.e., change in system state)

= Combination of hardware and OS software
m Higher level mechanisms
® Process context switch
= Signals
= Nonlocal jumps: setjmp()/longjmp()
= Implemented by either:
= OS software (context switch and signals)
= Clanguage runtime library (nonlocal jumps)

Carnegie Mellon

Exceptions

m An exception is a transfer of control to the OS in response to
some event (i.e., change in processor state)

User Process oS

event —— Lcurrentl exception
I_next exception processing
by exception handler

* return to |_current
e return to |_next
*abort

m Examples:
div by 0, arithmetic overflow, page fault, 1/0 request completes, Ctrl-C

Carnegie Mellon

Exception Tables

Exception
numbers

code for m Each type of event has a
exception handler 0 unique exception number k
Exception code for
Table ion handler 1 = k=index into exception table
o (a.k.a. interrupt vector)
— code for
— ion handler 2

code for
exception handler n-1

u\

= Handler k is called each time
exception k occurs

Carnegie Mellon

Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor
= Indicated by setting the processor’s interrupt pin
= Handler returns to “next” instruction

m Examples:

= |/O interrupts
= hitting Ctrl-C at the keyboard
= arrival of a packet from a network
= arrival of data from a disk

® Hard reset interrupt
= hitting the reset button

= Soft reset interrupt
= hitting Ctrl-Alt-Delete on a PC

15-213 Spring 2012

Carnegic Mellon

Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:

= Traps
= Intentional
= Examples: system calls, breakpoint traps, special instructions
= Returns control to “next” instruction

" Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= unintentional and unrecoverable

= Examples: parity error, machine check

= Aborts current program

Carnegie Mellon

Trap Example: Opening File

m User calls: open (filename, options)
m Function open executes system call instruction int

0804d070 <__libc_open>:

804d082: cd 80 int $0x80

804d084: 5b Pop %ebx
User Process os
e exception
0|
pop open file
returns

m OS must find or create file, get it ready for reading or writing
m Returns integer file descriptor

Carnegie Mellon

Fault Example: Page Fault

int a[1000];
m User writes to memory location ‘;‘ai“ O
m That portion (page) of user’s memory a[500] = 13;
is currently on disk }
‘ 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User Process os

l exception: page fault

movl
Create page and

returns load into memory

m Page handler must load page into physical memory
m Returns to faulting instruction
m Successful on second try

Carnegie Mellon

Fault Example: Invalid Memory Reference

int a[1000];
main ()

a[5000] = 13;

}

‘ 80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360

User Process os

l exception: page fault
movl
detect invalid address
signal process

m Page handler detects invalid address

m Sends SIGSEGV signal to user process
m User process exits with “segmentation fault”

15-213 Spring 2012

Carnegic Mellon

Exception Table IA32 (Excerpt)

Exception Number Description Exception Class
0 Divide error Fault

13 General protection fault ~ Fault

14 Page fault Fault

18 Machine check Abort

32-127 0OS-defined Interrupt or trap
128 (0x80) System call Trap

129-255 0OS-defined Interrupt or trap

Check Table 6-1:
http://downloa

intel.com/design/processor/manuals/253665.pdf

Carnegie Mellon

Today

m Exceptional Control Flow
m Processes

Carnegie Mellon

Processes

m Definition: A process is an instance of a running program.
= One of the most profound ideas in computer science
= Not the same as “program” or “processor”

m Process provides each program with two key abstractions:
= Logical control flow
= Each program seems to have exclusive use of the CPU
= Private virtual address space
= Each program seems to have exclusive use of main memory

m How are these lllusions maintained?
= Process executions interleaved (multitasking) or run on separate cores
= Address spaces managed by virtual memory system
= we’ll talk about this in a couple of weeks

Carnegie Mellon

Concurrent Processes

m Two processes run concurrently (are concurrent) if their
flows overlap in time

m Otherwise, they are sequential

m Examples (running on single core):
= Concurrent: A&B,A&C
= Sequential: B&C

Process A Process B Process C

Time |

15-213 Spring 2012

Carnegic Mellon

User View of Concurrent Processes
m Control flows for concurrent processes are physically

disjoint in time

= However, we can think of concurrent processes as
running in parallel with each other

Process A Process B Process C
I

Time

Context Switching

m Processes are managed by a shared chunk of OS code
called the kernel

= Important: the kernel is not a separate process, but rather runs as part
of some user process

m Control flow passes from one process to another via a
context switch

Process A Process B

user code

kernel code } context switch
Time user code
kernel code } context switch

user code

Carnegie Mellon

fork: Creating New Processes

m int fork (void)

creates a new process (child process) that is identical to the calling
process (parent process)

returns O to the child process

returns child’s pid (process id) to the parent process

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");

}

m Fork is interesting (and often confusing) because
it is called once but returns twice

Carnegie Mellon

Understanding fork

Process n Child Process m

pid_t pid = fork();
if (pid == 0) { if (pid == 0) {

printf("hello from child\n"); printf ("hello from child\n");
} else { } else {

printf ("hello from parent\n"); printf("hello from parent\n");
} }

pid_t pid = fork();

pid_t pid = fork(); pid_t pid = fork();
if (pid == 0) { if (pid == 0) {
pid = m| printf("hello from child\n"); pid=0 printf("hello from child\n");

} else { } else {
printf ("hello from parent\n"); printf ("hello from parent\n");
} }

pid_t pid = fork(); pid_t pid = fork();
if (pid == 0) { if (pid == 0) {
printf ("hello from child\n"); » printf ("hello from child\n");
} else {
printf("hello from parent\n");

} else {
» printf("hello from parent\n");
} }

hello from parent Which one is first? hello from child

15-213 Spring 2012

Carnegic Mellon

Fork Example #1

m Parent and child both run same code

m Start with same state, but each has private copy
® Including shared output file descriptor
= Relative ordering of their print statements undefined

= Distinguish parent from child by return value from fork

void forkl ()
{
int x = 1;
pid_t pid = fork();
if (pid == 0) {
printf("Child has x = %d\n", ++x);
} else {
printf ("Parent has x = %d\n", --x);
}

printf ("Bye from process %d with x = %d\n", getpid(), x);

Carnegie Mellon

Fork Example #2

m Two consecutive forks

void fork2 ()
{
printf ("LO\n") ;

fork() ;
printf ("L1\n") ; Bye
okl 0] Fove

printf ("Bye\n") ; —

Carnegie Mellon

Fork Example #3
m Three consecutive forks
\{roid fork3 () Bye
printf ("LO\n") ; 121 Bye
fork() ; Bye
printf ("L1\n") ; Ll (12 | Bye
fork() ; Bye
printf ("L2\n") ; 12 | Bye
fork() ;
printf ("Bye\n") ; Bye
} 10 (11|12 | Bye

Fork Example #4

m Nested forks in parent

void fork4 ()
{
printf ("LO\n") ;
if (fork() '= 0) {

printf ("L1\n") ; — Bye
if (fork() !'= 0) {
printf ("L2\n") ; — Bye

fork() ; Bye
) } 10 |11 |12 | Bye

printf ("Bye\n") ;

15-213 Spring 2012

Carnegic Mellon

Fork Example #5

m Nested forks in children

void fork5 ()
{
printf ("LO\n") ;
if (fork() == 0) {
printf ("L1\n");
if (fork() == 0) {
printf ("L2\n") ;
fork() ;

}

printf ("Bye\n") ;

Carnegie Mellon

exit: Ending a process

m void exit(int status)
= exits a process
= Normally return with status 0
= atexit () registers functions to be executed upon exit

void cleanup (void) {
printf ("cleaning up\n") ;

}

void fork6() {
atexit (cleanup) ;
fork() ;
exit(0);

Carnegie Mellon

Zombies

m Idea
= When process terminates, still consumes system resources
= Various tables maintained by OS
= Called a “zombie”
= Living corpse, half alive and half dead
m Reaping
= Performed by parent on terminated child (using wait or waitpid)
= Parent is given exit status information
= Kernel discards process
m What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then child will be
reaped by init process (pid == 1)
= So, only need explicit reaping in long-running processes
= e.g., shells and servers

Carnegie Mellon

Zomble \(rold fork7()
if (fork() == 0) {
/* Child */
Example printf ("Terminating Child, PID = %d\n",
getpid()) ;
exit(0);
} else {
printf ("Running Parent, PID = %d\n",
linux> ./forks 7 & getpid());
[1] 6639 while (1)
Running Parent, PID = 6639 i /* Infinite loop */
Terminating Child, PID = 6640 }
linux> ps b
PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps
linux> kill 6639
1] Terminated m Killing parent allows child to be
linux> ps reaped by init
PID TTY TIME CMD
6585 ttyp9 00:00:00 tecsh
6642 ttyp9 00:00:00 ps

m ps shows child process as
“defunct”

15-213 Spring 2012

Carnegic Mellon

Nonterminating
Child Example

void fork8()

if (fork() == 0) {
/* Child */
printf ("Running Child, PID = %d\n",
getpid());
while (1)
; /* Infinite loop */
} else {
printf ("Terminating Parent, PID = %d\n",
getpid());
exit(0);

}

linux> ./forks 8
Terminating Parent, PID = 66
Running Child, PID = 6676
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 fork:
6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tecsh
6678 ttyp9 00:00:00 ps

75
m Child process still active even though

parent has terminated

s m Must kill explicitly, or else will keep
running indefinitely

Carnegie Mellon

wait: Synchronizing with Children

m Parent reaps child by calling the wait function

m int wait(int *child status)
suspends current process until one of its children terminates

return value is the pid of the child process that terminated

if child status != NULL, then the object it points to will be set
to a status indicating why the child process terminated

Carnegie Mellon

wait: Synchronizing with Children

void fork9() {
int child status;

if (fork() == 0) {

}
else {

wait (&child_status) ;
}

printf ("Bye\n") ;
exit();

printf ("HC: hello from child\n") ;

printf ("HP: hello from parent\n"); HP

printf ("CT: child has terminated\n");

HC Bye

CT Bye

Carnegie Mellon

wait () Example

m If multiple children completed, will take in arbitrary order

m Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void fork1O0 ()
{
pid_t pid[N];
int i;
int child status;
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */
for (i = 0; i < N; i++) {
pid_t wpid = wait(&child status);
if (WIFEXITED (child_status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf("Child %d terminate abnormally\n", wpid);

15-213 Spring 2012

waitpid () : Waiting for a Specific Process
m waitpid(pid, &status, options)

= suspends current process until specific process terminates
= various options (see textbook)

void forkll ()
{
pid_t pid[N];
int i;
int child_status;
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (i = N-1; i >= 0; i--) {
pid_t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED (child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child _status));
else
printf("Child %d terminated abnormally\n", wpid);

Carnegie Mellon

execve: Loading and Running Programs
N Stack bottom
. Null-terminated
= int execve(env var strings
s
char *filename, Null-terminated
char *argv[], cmd line arg strings
char *envp[] unused
) envp[n] == NULL
m Loads and runs in current process: envp[n-1]
= Executable filename
i K envp[0] environ
= With argument list
g argv argv[argc] == NULL]
= And environment variable list envp argy[arge-1]
m Does not return (unless error)
. argv([0
m Overwrites code, data, and stack Linkir[vjrs
= keeps pid, open files and signal context envp
m Environment variables: argv
= “name=value” strings S
. N a ‘ Stack frame for
getenv and putenv . Stack top N

Carnegie Mellon

execve Example

if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[0]);

exit(0);
}
}
argv(argc] = NULL
argv[argc-1] [—> “/usr/include”
l—s vo1¢7
argv([0] > “1s”
argv

envp[n] = NULL

envp[n-1] [—> “PWD=/usr/droh”
[—> “PRINTER=iron”
envp[0] [—> “USER=droh”

environ

Summary

m Exceptions
= Events that require nonstandard control flow
= Generated externally (interrupts) or internally (traps and faults)

m Processes
= At any given time, system has multiple active processes
= Only one can execute at a time on a single core, though

= Each process appears to have total control of
processor + private memory space

15-213 Spring 2012

Carnegic Mellon

Summary (cont.)

m Spawning processes
= Call fork
= One call, two returns
m Process completion
= Callexit
® One call, noreturn
m Reaping and waiting for processes
® Callwait orwaitpid
m Loading and running programs
= Call execve (or variant)
= One call, (normally) no return

10

