Carnegie Mellon

Exceptional Control Flow:
Exceptions and Processes

15-213 / 18-213: Introduction to Computer Systems
13t Lecture, Feb. 28, 2011

Instructors:
Todd C. Mowry & Anthony Rowe

Carnegie Mellon

Today

m Exceptional Control Flow
m Processes

Carnegie Mellon

Control Flow

m Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>

inst,

) inst

Time .2
inst;
inst,
<shutdown>

Carnegie Mellon

Altering the Control Flow

m Up to now: two mechanisms for changing control flow:
= Jumps and branches

= Call and return

Both react to changes in program state

m Insufficient for a useful system:
Difficult to react to changes in system state
= data arrives from a disk or a network adapter
® instruction divides by zero
= user hits Ctrl-C at the keyboard
= System timer expires

m System needs mechanisms for “exceptional control flow”

Carnegie Mellon

Exceptional Control Flow

m Exists at all levels of a computer system
m Low level mechanisms

" Exceptions

= change in control flow in response to a system event
(i.e., change in system state)

" Combination of hardware and OS software

m Higher level mechanisms
= Process context switch
= Signals
= Nonlocal jumps: setjmp()/longjmp()
" Implemented by either:
= OS software (context switch and signals)
= Clanguage runtime library (nonlocal jumps)

Carnegie Mellon

Exceptions

m An exception is a transfer of control to the OS in response to
some event (i.e., change in processor state)

User Process 0S

event — |_current? exception .
I_next exception processing
by exception handler

]

[

* return to |_current
*return to |_next
*abort

m Examples:
div by 0, arithmetic overflow, page fault, |/O request completes, Ctrl-C

Exception Tables

Exception
numbers

0
1
2

n-1

Exception

vTable

code for
exception handler 0

v _~
o

code for
exception handler 1

./

code for
exception handler 2

b

code for
exception handler n-1

Carnegie Mellon

Each type of event has a
unique exception number k

k = index into exception table
(a.k.a. interrupt vector)

Handler k is called each time
exception k occurs

Carnegie Mellon

Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor
" |ndicated by setting the processor’s interrupt pin
= Handler returns to “next” instruction

m Examples:

= |/O interrupts
= hitting Ctrl-C at the keyboard
= arrival of a packet from a network
= arrival of data from a disk

" Hard reset interrupt
= hitting the reset button

= Soft reset interrupt
= hitting Ctrl-Alt-Delete on a PC

Carnegie Mellon

Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:

" Traps
= |ntentional
= Examples: system calls, breakpoint traps, special instructions
= Returns control to “next” instruction

" Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= unintentional and unrecoverable

= Examples: parity error, machine check

= Aborts current program

Carnegie Mellon

Trap Example: Opening File

m Usercalls: open (filename, options)
m Function open executes system call instruction int

0804d070 < libc open>:

804d082: cd 80 int S0x80

804d084: 5b pop %ebx
User Process 0S
int ¥ exception ‘

pop - .
returns

v

m OS must find or create file, get it ready for reading or writing

m Returns integer file descriptor
10

Carnegie Mellon

Fault Example: Page Fault

int a[1000];
m User writes to memory location Tain ()
m That portion (page) of user’s memory a[500] = 13;
is currently on disk }
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
User Process 0S

] exception: page fault

movl >
Create page and
returns load into memory

v

m Page handler must load page into physical memory
m Returns to faulting instruction

m Successful on second try
1

Carnegie Mellon

Fault Example: Invalid Memory Reference

int a[1000];
main ()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User Process 0OS

l exception: page fault

movl >

detect invalid address

 / _

> signal process

m Page handler detects invalid address
m Sends SIGSEGV signal to user process

m User process exits with “segmentation fault”
12

Carnegie Mellon

Exception Table IA32 (Excerpt)

Exception Number Description Exception Class

0 Divide error Fault

13 General protection fault Fault

14 Page fault Fault

18 Machine check Abort

32-127 OS-defined Interrupt or trap
128 (0x80) System call Trap

129-255 OS-defined Interrupt or trap

Check Table 6-1:
http://download.intel.com/design/processor/manuals/253665.pdf

13

Carnegie Mellon

Today

m Exceptional Control Flow
m Processes

14

Carnegie Mellon

Processes

m Definition: A process is an instance of a running program.
" One of the most profound ideas in computer science
" Not the same as “program” or “processor”

m Process provides each program with two key abstractions:
= Logical control flow
= Each program seems to have exclusive use of the CPU
= Private virtual address space
= Each program seems to have exclusive use of main memory

m How are these lllusions maintained?
" Process executions interleaved (multitasking) or run on separate cores
= Address spaces managed by virtual memory system

= we’ll talk about this in a couple of weeks
15

Carnegie Mellon

Concurrent Processes

m Two processes run concurrently (are concurrent) if their
flows overlap in time

m Otherwise, they are sequential

m Examples (running on single core):
" Concurrent: A&B,A&C
= Sequential: B& C

Process A Process B Process C

Time

16

Carnegie Mellon

User View of Concurrent Processes

m Control flows for concurrent processes are physically
disjoint in time

m However, we can think of concurrent processes as
running in parallel with each other

Process A Process B Process C

Time ____________

17

Context Switching

m Processes are managed by a shared chunk of OS code
called the kernel

" |mportant: the kernel is not a separate process, but rather runs as part
of some user process

m Control flow passes from one process to another via a

context switch
I
Process A 1 Process B

I

I

: user code

I

kernel code } context switch

Time user code

kernel code } context switch

user code

18

Carnegie Mellon

fork: Creating New Processes

m int fork (void)

= creates a new process (child process) that is identical to the calling

process (parent process)
= returns O to the child process

returns child’s pid (process id) to the parent process

pid t pid = fork();
if (pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n") ;

}

m Fork is interesting (and often confusing) because
it is called once but returns twice

19

Carnegie Mellon

Understanding fork

Process n Child Process m
» pid t pid = fork(); » pid_t pid = fork();
if (pid == 0) { if (pid == 0) {
printf ("hello from child\n") ; printf ("hello from child\n") ;
} else { } else {
printf ("hello from parent\n"); printf ("hello from parent\n") ;
} }
pid t pid = fork(); pid t pid = fork();
» if (pid == 0) { » if (pid == 0) {
pid=m printf ("hello from child\n"); pid=0 printf ("hello from child\n");
} else { } else {
printf ("hello from parent\n"); printf ("hello from parent\n");
} }
pid t pid = fork(); pid t pid = fork();
if (pid == 0) { if (pid == 0) {
printf ("hello from child\n") ; » printf ("hello from child\n") ;
} else { } else {
» printf ("hello from parent\n") ; printf ("hello from parent\n") ;

} }

hello from parent Which one is first? hello from child
20

Carnegie Mellon

Fork Example #1

m Parent and child both run same code

= Distinguish parent from child by return value from fork

m Start with same state, but each has private copy
" |Including shared output file descriptor
= Relative ordering of their print statements undefined

void forkl ()
{
int x = 1;
pid t pid = fork();
if (pid == 0) {
printf ("Child has x = %d\n", ++x);
} else {
printf ("Parent has x = %d\n", --x);
}

printf ("Bye from process %d with x

$d\n", getpid(), x);

21

Carnegie Mellon

Fork Example #2

m Two consecutive forks

void fork2 ()

{
printf ("LO\n") ; _Bye
fork () ; Ll Bye
printf ("L1\n") ; Bve
fork () ; ‘r—l—-
_ L0 |11 | Bye
printf ("Bye\n") ;

22

Carnegie Mellon

Fork Example #3
m Three consecutive forks
\{roid fork3() Bve
2
printf ("LO\n") ; f = 2ye
fork(); —ye
printf ("L1\n") ; Ll [L2 | Bye
fork() ; | Bye
printf ("L2\n") ; 2 | Bye
fork () ; 1
printf ("Bye\n") ; —ye
} LO |Ll |L2 | Bye

23

Carnegie Mellon

Fork Example #4

m Nested forks in parent

void fork4 ()

{
printf ("LO\n") ;
if (fork() '= 0) {
printf ("L1\n") ; p Bye
if (fork() '= 0) {
printf ("L2\n") ; Bye
fork () ; Bye
\ } 10 |11 [r2 [Bye

printf ("Bye\n") ;

24

Carnegie Mellon

Fork Example #5

m Nested forks in children

void fork5 ()

{
printf ("LO\n") ;

if (fork() == 0) {
printf ("L1\n") ; —xe
if (fork() == 0) { L2 | Bye
printf ("L2\n") ; |
fork () ; “Ll Bye
} LO | Bye

}
printf ("Bye\n") ;

25

Carnegie Mellon

exit: Ending a process

m void exit(int status)
= exits a process
= Normally return with status O
= atexit () registers functions to be executed upon exit

void cleanup (void) {
printf ("cleaning up\n");

}

void fork6 () {
atexit (cleanup) ;
fork () ;
exit(0) ;

26

Zombies

m ldea
" When process terminates, still consumes system resources

= Various tables maintained by OS
= Called a “zombie”
= Living corpse, half alive and half dead

m Reaping
= Performed by parent on terminated child (using wait or waitpid)
= Parent is given exit status information
= Kernel discards process

m What if parent doesn’t reap?

" |f any parent terminates without reaping a child, then child will be
reaped by init process (pid ==1)
= So, only need explicit reaping in long-running processes

= e.g., shells and servers

27

Carnegie Mellon

Zombie
Example

linux> ./forks 7 &
[1] 6639

Running Parent, PID
Terminating Child, PID
linux> ps

6

PID TTY TIME
6585 ttyp9 00:00:00
6639 ttyp9 00:00:03
6640 ttyp9 00:00:00
6641 ttyp9 00:00:00

linux> kill 6639
[1] Terminated
linux> ps

PID TTY TIME
6585 ttyp9 00:00:00
6642 ttyp9 00:00:00

void fork7()
{

if (fork() == 0) {
/* Child */
printf ("Terminating Child, PID = %d\n",
getpid()) ;
exit(0) ;
} else {
printf ("Running Parent, PID = %d\n",
getpid()) ;
while (1)
639 ; /* Infinite loop */
= 6640 }
}
CMD
tcsh .
forks m ps shows child process as
forks <defunct> “defunct”
ps
m Killing parent allows child to be
reaped by init
CMD
tcsh

PsS

28

Carnegie Mellon

void fork8 ()

) ® {
Nonterminating if (fork() == 0) {
/* Child */
Child Example printf ("Running Child, PID = %d\n",
getpid());
while (1)
; /* Infinite loop */
} else {
printf ("Terminating Parent, PID = %d\n",
getpid());
exit (0) ;
}
}
linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676 m Child process still active even though
linux> ps parent has terminated
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttypd 00:00:06 forks m Must kill explicitly, or else will keep

6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tecsh
6678 ttyp9 00:00:00 ps

running indefinitely

29

Carnegie Mellon

wait: Synchronizing with Children

m Parent reaps child by calling the wait function

m int wait(int *child status)
= suspends current process until one of its children terminates
= return value is the pid of the child process that terminated

" ifchild status != NULL, then the object it points to will be set
to a status indicating why the child process terminated

30

Carnegie Mellon

wait: Synchronizing with Children

void fork9 () {
int child status;

if (fork() == 0) {
} printf ("HC: hello from child\n"); HC Bye
else {
printf ("HP: hello from parent\n") ; HP CT Bye

wait (&child status);

printf ("CT: child has terminated\n") ;
}
printf ("Bye\n") ;
exit (),

3

Carnegie Mellon

wait () Example

m If multiple children completed, will take in arbitrary order

m Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void fork1lO ()
{
pid t pid[N];
int i;
int child status;
for (1 = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (i = 0; 1 < N; i++) {
pid t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminate abnormally\n", wpid);

32

Carnegie Mellon

waitpid () : Waiting for a Specific Process

m wailtpid(pid, &status, options)
" suspends current process until specific process terminates
= various options (see textbook)

void forkll ()
{
pid t pid[N];
int 1i;
int child status;
for (1 = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (1 = N-1; i >= 0; i--) {
pid t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n"
wpid, WEXITSTATUS (child status));
else

printf ("Child %d terminated abnormally\n", wpid);

33

Carnegie Mellon

execve: Loading and Running Programs

int execve (
char *filename,
char *argv]|],
char *envp|[]

)

Loads and runs in current process:
= Executable filename
= With argument list argv
= And environment variable list envp

Does not return (unless error)
Overwrites code, data, and stack
= keeps pid, open files and signal context

Environment variables:
" “name=value” strings

" getenv and putenv

Null-terminated
env var strings

Null-terminated
cmd line arg strings

unused

envp[n] == NULL

envp[n-1]

envp[0]

argv(argc] == NULL

argvlargc-1]

argv|[0]

Linker vars

envp

argv

argc

Stack frame for

main

Stack bottom

environ

Stack top 34

Carnegie Mellon

execve Example

if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[0]);

exit (0) ;
}
}
argv[argc] = NULL
argv(argc-1] —> “/usr/include”
.. —> “-1t”
argv|[0] —> “1s”
argv >
envp[n] = NULL
envp[n-1] —> “PWD=/usr/droh”
. — > “PRINTER=iron”
envp|0] —> “USER=droh”

environ > .

Carnegie Mellon

Summary

m Exceptions
= Events that require nonstandard control flow

= Generated externally (interrupts) or internally (traps and faults)

m Processes

= At any given time, system has multiple active processes
= Only one can execute at a time on a single core, though

= Each process appears to have total control of
processor + private memory space

36

Carnegie Mellon

Summary (cont.)

m Spawning processes
" Call fork
® One call, two returns

m Process completion
" Callexit
® One call, no return

m Reaping and waiting for processes
" Callwait orwaitpid

m Loading and running programs

" Call execve (or variant)

= One call, (normally) no return

37

