Carnegie Mellon Carnegie Mellon

Today

m Storage technologies and trends
The Memory Hierarchy u

|
15-213 / 18-213: Introduction to Computer Systems
10t Lecture, Feb. 16, 2012
Instructors:
Todd C. Mowry & Anthony Rowe

1 2

Random-Access Memory (RAM) SRAM vs DRAM Summary

m Key features
= RAM is traditionally packaged as a chip.
® Basic storage unit is normally a cell (one bit per cell).

.) . Trans. Access Needs Needs
Multiple RAM chips form a memory. perbit time refresh? EDC? Cost Applications
m Static RAM (SRAM)

= Each cell stores a bit with a four or six-transistor circuit. SRAM 4o0r6 1X No Maybe 100x Cache memories
= Retains value indefinitely, as long as it is kept powered.))

. . e) . L DRAM 1 10X Yes Yes 1X Main memories,
= Relatively insensitive to electrical noise (EMI), radiation, etc.

frame buffers

® Faster and more expensive than DRAM.
= Dynamic RAM (DRAM)
= Each cell stores bit with a capacitor. One transistor is used for access
" Value must be refreshed every 10-100 ms.
= More sensitive to disturbances (EMI, radiation,...) than SRAM.
= Slower and cheaper than SRAM.

Conventional DRAM Organization

= d xw DRAM:
= dw total bits organized as d supercells of size w bits

16 x 8 DRAM chip

<:: Memory

controller
(to/from CPU)

1)

|

Internal row buffer

'
1
'
;
;
1
:
1
:
1
'
;
;
i

2 ——0dHF | : supercel
i
;
;
1
'
1
:
1
'
;
;
1
'
i

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.
Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually
back to the CPU.
16 x 8 DRAM chip
CAS = 1 |
G
addr ! !
To CPU : 1 i
— i Rows '
Memory ! :
controller : 2 :
supercell ; 3 :
1) . i
data | 3
upercell : 3
Q) e e ! :

Reading DRAM Supercell (2,1)

Step 1(a): Row access strobe (RAS) selects row 2.
Step 1(b): Row 2 copied from DRAM array to row buffer.

16 x 8 DRAM chip

Memory

controller 2 :
8 : 3 i
[1

Internal row buffer

Carnegie Mellon

Memory Modules

| addr (row = i, col = j)
O supercell (i,j)

DRAM 0|
g 64 MB
al T memory module
N DRAM 7 o » ansisting of
o 0 eight 8Mx8 DRAMs
0

bits 'bits ' bits bits 'bits ' bits bits ' bits
56-63 48-55 (40-47 32-39 24-31 1623 815 07

|83 56 |55 48 iﬂ 40 |39 32 iil 24|23 16 |15 8|7 Dl Memory

controller

64-bit doubleword at main memory address A

64-bit doubleword
8

Carnegie Mellon Carnegie Mellon

Enhanced DRAMs Nonvolatile Memories

m Basic DRAM cell has not changed since its invention in 1966. m DRAM and SRAM are volatile memories
* Commercialized by Intel in 1970. ® Lose information if powered off.

m DRAM cores with better interface logic and faster 1/0 : = Nonvolatile memories retain value even if powered off
= Synchronous DRAM (SDRAM) = Read-only memory (ROM): programmed during production

® Programmable ROM (PROM): can be programmed once
" Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)
= Electrically eraseable PROM (EEPROM): electronic erase capability
® Flash memory: EEPROMs with partial (sector) erase capability
= Wears out after about 100,000 erasings.

m Uses for Nonvolatile Memories

= Uses a conventional clock signal instead of asynchronous control
= Allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)

= Double data-rate synchronous DRAM (DDR SDRAM)
= Double edge clocking sends two bits per cycle per pin

= Different types distinguished by size of small prefetch buffer: = Firmware programs stored in a ROM (BIOS, controllers for disks,
— DDR (2 bits), DDR2 (4 bits), DDR4 (8 bits) network cards, graphics accelerators, security subsystems,...)

= By 2010, standard for most server and desktop systems = Solid state disks (replace rotating disks in thumb drives, smart

= Intel Core i7 supports only DDR3 SDRAM phones, mp3 players, tablets, laptops,...)

= Disk caches

Traditional Bus Structure Connecting
CPU and Memory

Memory Read Transaction (1)

m Abusis a collection of parallel wires that carry address, = CPU places address A on the memory bus.

data, and control signals.
m Buses are typically shared by multiple devices. Register file Load operation: movl A, %eax

Y%eax C:, AL
CPU chip

Main memory
Register file 0

I/O bridge A

|:: > Bus interface
ALU \l—l/l—l\f—l/ X A

System bus Memory bus

i l
) 110 Main
Bus interface <:_ bridge ::> memory

Memory Read Transaction (2)

m Main memory reads A from the memory bus, retrieves
word x, and places it on the bus.

Register file

—)

ALU

Load operation: movl A, %eax

Y%eax

ﬁ Main memory
/0 bridge X 0
A N '_g_| AT N
Bus interface \'—‘/I—I\'—/ A

Carnegie Mellon

Memory Write Transaction (1)

m CPU places address A on bus. Main memory reads it and
waits for the corresponding data word to arrive.

Register file Store operation: movl %eax, A
Y%eax IV ALY
ﬁ Main memory
10 bridge A 0
A N '_g_| AN

Bus interface

N— N/ A

Carnegie Mellon

Memory Read Transaction (3)

m CPU read word x from the bus and copies it into register
%eax.

Register file

—)

ALU

Load operation: movl A, %eax

Y%eax X

Bus interface <:

Main memory
0

S S\

1/0 bridge

Carnegie Mellon

Memory Write Transaction (2)

m CPU places data word y on the bus.

Register file

—)

ALU

Store operation: movl %eax, A

Y%eax y

Jﬁﬂ—xme—m_y_l\

Bus interface \l—l/l—l\f—l/ A

Main memory

Carnegie Mellon

Carnegie Mellon

Carnegie Mellon

Memory Write Transaction (3) What'’s Inside A Disk Drive?

m Main memory reads data word y from the bus and stores Arm Spindle

it at address A.

Platters

egister file

Store operation: movl %eax, A Actuator

—)

ALU

Y%eax Y

ﬁ main memory
1/0 bridge 0
woiere [Y S

Electronics
(including a
processor
and memory!)

connector

Image courtesy of Seagate Technology

Carnegie Mellon

Carnegie Mellon

Disk Geometry Disk Geometry (Muliple-Platter View)
m Disks consist of platters, each with two surfaces. m Aligned tracks form a cylinder.
m Each surface consists of concentric rings called tracks. Cylinder k
m Each track consists of sectors separated by gaps.
Surface 0
Surface 1 Platter 0
Tracks Surface 2 Pl
> Surface 3 atert
> Track k /Gaps Surface 4
/" \\/ Surface 5 Platter 2
() Spindle
N /

TT

Sectors

Disk Capacity

m Capacity: maximum number of bits that can be stored.
= Vendors express capacity in units of gigabytes (GB), where
1 GB = 10° Bytes (Lawsuit pending! Claims deceptive advertising).
m Capacity is determined by these technology factors:

= Recording density (bits/in): number of bits that can be squeezed
into a 1 inch segment of a track.

= Track density (tracks/in): number of tracks that can be squeezed
into a 1 inch radial segment.

= Areal density (bits/in2): product of recording and track density.
m Modern disks partition tracks into disjoint subsets called
recording zones

= Each track in a zone has the same number of sectors, determined
by the circumference of innermost track.

= Each zone has a different number of sectors/track

Carnegie Mellon

Disk Operation (Single-Platter View)

The disk surface
spins at a fixed
rotational rate

The read/write head

is attached to the end
of the arm and flies over
the disk surface on
athin cushion of air.

By moving radially, the arm can
position the read/write head over
any track.

Computing Disk Capacity

Capacity = (# bytes/sector) x (avg. # sectors/track) x
(# tracks/surface) x (# surfaces/platter) x
(# platters/disk)
Example:
= 512 bytes/sector
= 300 sectors/track (on average)
= 20,000 tracks/surface
= 2 surfaces/platter
= 5 platters/disk

Capacity =512 x 300 x 20000 x 2 x 5
=30,720,000,000
=30.72GB

Carnegie Mellon

Disk Operation (Multi-Platter View)

Read/write heads
move in unison
from cylinder to cylinder

Spindle

Disk Structure - top view of single platter

f. Surface organized into tracks
RN
[TT52000)

\\\‘45'.’;" Tracks divided into sectors
=

Carnegie Mellon

Disk Access

Rotation is counter-clockwise

Carnegie Mellon

Disk Access

Head in position above a track

Disk Access — Read

About to read blue sector

Carnegie Mellon

Disk Access — Read

After BLUE read

After reading blue sector

Disk Access — Seek

After BLUE read Seek for RED

Seek to red’s track

Carnegie Mellon

Disk Access — Read

After BLUE read

Red request scheduled next

Carnegie Mellon

Disk Access — Rotational Latency

After BLUE read Seek for RED Rotational latency

Wait for red sector to rotate around

Carnegie Mellon

Carnegie Mellon

Disk Access — Read

After BLUE read Seek for RED Rotational latency ~ After RED read

Complete read of red

Carnegie Mellon

Disk Access Time

Average time to access some target sector approximated by :
" Taccess = Tavg seek + Tavg rotation + Tavg transfer

Seek time (Tavg seek)
" Time to position heads over cylinder containing target sector.

" Typical Tavg seekis3—9 ms
m Rotational latency (Tavg rotation)
= Time waiting for first bit of target sector to pass under r/w head.
= Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min
" Typical Tavg rotation = 7200 RPMs
m Transfer time (Tavg transfer)
" Time to read the bits in the target sector.
= Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

Carnegie Mellon

Disk Access — Service Time Components

Y

After BLUE read Seek for RED Rotational latency ~ After RED read

R

Data transfer Seek Rotational Data transfer
latency

Carnegie Mellon

Disk Access Time Example

m Given:
= Rotational rate = 7,200 RPM
® Average seek time =9 ms.
= Avg # sectors/track = 400.
m Derived:
= Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.
= Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms
" Taccess =9 ms+4 ms+0.02ms
m Important points:
= Access time dominated by seek time and rotational latency.
" First bit in a sector is the most expensive, the rest are free.
= SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
= Disk is about 40,000 times slower than SRAM,
= 2,500 times slower then DRAM.

Logical Disk Blocks

m Modern disks present a simpler abstract view of the
complex sector geometry:
" The set of available sectors is modeled as a sequence of b-sized
logical blocks (0, 1, 2, ...)
m Mapping between logical blocks and actual (physical)
sectors
= Maintained by hardware/firmware device called disk controller.
= Converts requests for logical blocks into (surface,track,sector)
triples.
m Allows controller to set aside spare cylinders for each
zone.

= Accounts for the difference in “formatted capacity” and “maximum
capacity”.

Carnegie Mellon

Reading a Disk Sector (1)

CPU chip L . .
Register file CPU initiates a disk read by writing a
command, logical block number, and
C: ALU destination memory address to a port
ﬁ (address) associated with disk controller.

AN ;
Bus interface HI_ mm]ry
ﬁ F 1/0 bus >

O L

<

controller adapter controller
mouse keylloard Monitor
>

39

Carnegie Mellon

1/0 Bus

CPU chip
Register file
1 System bus Memory bus

susiatecs |G L o KT
us interface - bridge memory

{} /0 bus {} Expansion slots for
other devices such

<

USB Graphics Disk as network adapters.
controller adapter controller
Mouse Keyboard Monitor

Carnegie Mellon

Reading a Disk Sector (2)

CPU chip
Registerflle1

AN Main
Bus interface <: JH memory

T e
1l T

Disk controller reads the sector and
performs a direct memory access
(DMA,) transfer into main memory.

<

usB Graphics Dil k
controller adapter cont/oller
Mouse Keyboard Monitor -

40

10

Carnegie Mellon

Reading a Disk Sector (3)

RUND When the DMA transfer completes,
Registerfle = the disk controller notifies the CPU
Cj ALU with an interrupt (i.e., asserts a

special “interrupt” pin on the CPU)

Bus interf. Main
us interface memory

T
R

UsB Graphics Disk
controller adapter controller
Mouse Keyboard Monitor —

41

Carnegie Mellon

SSD Performance Characteristics

Sequential read tput 250 MB/s Sequential write tput 170 MB/s
Random read tput 140 MB/s Random write tput 14 MB/s
Rand read access 30 us Random write access 300 us

m Why are random writes so slow?
® Erasing a block is slow (around 1 ms)
= Write to a page triggers a copy of all useful pages in the block
= Find an used block (new block) and erase it
= Write the page into the new block
= Copy other pages from old block to the new block

Carnegie Mellon

Solid State Disks (SSDs)

1/0 bus

Requests to read and
. . te logical disk block
Solid State Disk (SSD) e logieal disicblocks

Flash
translation layer

Flash memory
Block O Block B-1

“Pageo |Page1 |---|PageP-1|‘ “Pageo |Page1 ‘ ---|PageP-1|‘

Pages: 512KB to 4KB, Blocks: 32 to 128 pages
Data read/written in units of pages.
Page can be written only after its block has been erased

A block wears out after 100,000 repeated writes.

SSD Tradeoffs vs Rotating Disks

m Advantages
= No moving parts = faster, less power, more rugged

m Disadvantages
® Have the potential to wear out
= Mitigated by “wear leveling logic” in flash translation layer

= E.g. Intel X25 guarantees 1 petabyte (10> bytes) of random
writes before they wear out

" |n 2010, about 100 times more expensive per byte

m Applications
= MP3 players, smart phones, laptops
® Beginning to appear in desktops and servers

11

Carnegie Mellon Carnegie Mellon

Storage Trends CPU Clock Rates Inflection point in computer history
when designers hit the “Power Wall”
SRAM e
Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980 -
1980 1990 1995 2000 | 2003{ 2005 2010 2010:1980
$IMB 19200 2900 320 256 100 75 60 320 ‘ ;
access (ns) 300 150 35 15 3 2 15 200 CPU 8080 386 Pentium P-Il i P-4 | Core2 Corei?
DRAM Clock
Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980 Mz 120 150 60030} 2000 2500 2500
Cycle 3 |
$IMB 8000 880 100 30 1 01 006 130,000 ; | i
access (ns) 5 o 100 10 6 5 10 o time (ns) 1000 50 6 16 103 | 05 04 2500
typical size (MB) 0064 0256 4 16 64 2000 8000 125,000 cores 1) L) PR A A
Disk , ! ;
Metri 1980 1985 1990 1995 2000 2005 2010 2010:1980 Effective Lo
slile : cycle 1000 50 6 16 103 025 01 10,000
$IMB 500 100 8 030 001l 0005 00003 1,600,000 time (ns) i
access (ms) 87 75 28 10 8 4 3 29 Ll
typical size (MB) 1 10 160 1,000 20,00 160,000 1,500,0001,500,000
46
The CPU-Memory Gap Locality to the Rescue!

The gap widens between DRAM, disk, and CPU speeds.

100,000,000.0 M The key to bridging this CPU-Memory gap is a fundamental
10,000,000.0 property of computer programs known as locality

1,000,000.0

SSD
100,000.0 A

—&—Disk seek time
—4—Flash SSD access time
—8-DRAM access time
—8—SRAM access time
DRAM —+CPU cycle time
—o—Effective CPU cycle time

10,000.0

%] 1,000.0
c

100.0

10.0

1.0

0.1 CPU

0.0
1980 1985 1990 1995 2000 2003 2005 2010
Year 47 48

Carnegie Mellon

Today

n
m Locality of reference
| |

Carnegie Mellon

Locality Example

sum = O;

for (i = 0; i < n; i++)
sum += a[i];

return sum;

m Data references

= Reference array elements in succession

(stride-1 reference pattern). Spatial locality

= Reference variable sum each iteration. Temporal locality
m Instruction references

= Reference instructions in sequence. Spatial locality

= Cycle through loop repeatedly. Temporal locality

Locality

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

(I

m Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

2
LT]

m Spatial locality:

" |tems with nearby addresses tend
to be referenced close together in time

Qualitative Estimates of Locality
m Claim: Being able to look at code and get a qualitative

sense of its locality is a key skill for a professional
programmer.

m Question: Does this function have good locality with
respect to array a?

int sum_array_rows(int a[M][N1)
{
int i, j, sum = 0;
for (i = 0; 1 < M; i++)
for G = 0; j < N; j++)
sum += a[i][i];
return sum;
3

13

Locality Example

m Question: Does this function have good locality with
respect to array a?

int sum_array_cols(int a[M][N]1)
{
int i, j, sum = 0;
for (G = 0; j < N; j++)
for (i = 0; 1 < M; i++)
sum += a[i][i];
return sum;
¥

Memory Hierarchies

m Some fundamental and enduring properties of hardware
and software:
" Fast storage technologies cost more per byte, have less capacity,
and require more power (heat!)
" The gap between CPU and main memory speed is widening.
= Well-written programs tend to exhibit good locality

m These fundamental properties complement each other
beautifully.

m They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

Locality Example
m Question: Can you permute the loops so that the function

scans the 3-d array a with a stride-1 reference pattern
(and thus has good spatial locality)?

int sum_array_3d(int a[MI[N]JIND)
{
int i, j, k, sum = 0;
for (i = 0; i < M; i++)
for (J = 0; j < N; j+o)
for (k = 0; k < N; k++)
sum += a[K][i1Lil:
return sum;
3

Carnegie Mellon

Today

|
|
m Caching in the memory hierarchy

14

Carnegie Mellon

An Example Memory Hierarchy

CPU registers hold words retrieved
from L1 cache

L1 cache
L1 cache holds cache lines retrieved

Smaller, (SRAM)
faster from L2 cache
g
costlier L2 cache
per byte (SRAM) L2 cache holds cache lines
retrieved from main memory
L3:
Main memory
I.Iarger, (DRAM) Main memory holds disk blocks
S:Wer, retrieved from local disks
cheaper

per byte L4: Local secondary storage Local disks hold files
(local disks) retrieved from disks on

remote network servers

Remote secondary storage
(tapes, distributed file systems, Web servers)

Carnegie Mellon

General Cache Concepts

Smaller, faster, more expensive
Cache I 4 ” 9 ” 10 ” 3 I memory caches a subset of
the blocks
Data is copied in block-sized
transfer units
Larger, slower, cheaper memory
Memory I 0 ” 1 ” 2 ” 3 I viewed as partitioned into “blocks”
Lall s Il s [7|
[8 Il o |l 20 |[1 |
| 122][13 |[14 |[15 |
00000000 OCOCFOIOGOIOGIOOIOIDO

Caches

m Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.

m Fundamental idea of a memory hierarchy:
= For each k, the faster, smaller device at level k serves as a cache for the
larger, slower device at level k+1.

= Why do memory hierarchies work?

= Because of locality, programs tend to access the data at level k more
often than they access the data at level k+1.

" Thus, the storage at level k+1 can be slower, and thus larger and
cheaper per bit.

m Big Idea: The memory hierarchy creates a large pool of
storage that costs as much as the cheap storage near the
bottom, but that serves data to programs at the rate of the
fast storage near the top.

Carnegie Mellon

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Block b is in cache:

Cache ([o JCml[31| o
Memory |[[o J[1][z][3]

La s e I 71

[8 |[9 || 10 || 1]

| 122][13 |[14 |[15 |

00000000 OCGCOIOIOIOOONOSNOIDS

Carnegie Mellon

Cache

Memory

Request: 12

[8 J[22 J] 14 [3 |
III Request: 12
Lo JL + I 2 J[3]
[a |[s |l ¢ I 7 |
[8 |[9 || 10 | 11 |
| 22 J[13 |[14 |[15 |
0000000000000 00O0CCS

General Cache Concepts: Miss

Data in block b is needed

Block b is not in cache:

Miss!

Block b is fetched from

memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)

Carnegie Mellon

Examples of Caching in the Hierarchy

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By
Registers 4-8 bytes words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 | Hardware

L1 cache 64-bytes block On-Chip L1 1 | Hardware

L2 cache 64-bytes block On/Off-Chip L2 10 | Hardware
Virtual Memory 4-KB page Main memory 100 | Hardware + OS

Buffer cache

Parts of files

Main memory

100

os

Disk cache Disk sectors Disk controller 100,000 | Disk firmware
Network buffer Parts of files Local disk 10,000,000 | AFS/NFS client
cache

Browser cache Web pages Local disk 10,000,000 | Web browser
Web cache Web pages Remote server disks 1,000,000,000 | Web proxy

server

Carnegie Mellon

General Caching Concepts:
Types of Cache Misses

m Cold (compulsory) miss
® Cold misses occur because the cache is empty.

m Conflict miss

= Most caches limit blocks at level k+1 to a small subset (sometimes a
singleton) of the block positions at level k.

= E.g.Blocki at level k+1 must be placed in block (i mod 4) at level k.

® Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.

= E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
m Capacity miss

® Occurs when the set of active cache blocks (working set) is larger than
the cache.

Carnegie Mellon

Summary

m The speed gap between CPU, memory and mass storage
continues to widen.

m Well-written programs exhibit a property called locality.

m Memory hierarchies based on caching close the gap by
exploiting locality.

16

