Carnegie Mellon

The Memory Hierarchy

15-213 / 18-213: Introduction to Computer Systems
10t Lecture, Feb. 16, 2012

Instructors:
Todd C. Mowry & Anthony Rowe

Carnegie Mellon

Today

m Storage technologies and trends
|
|

Carnegie Mellon

Random-Access Memory (RAM)

m Key features
= RAM is traditionally packaged as a chip.
= Basic storage unit is normally a cell (one bit per cell).
= Multiple RAM chips form a memory.

m Static RAM (SRAM)

= Each cell stores a bit with a four or six-transistor circuit.

= Retains value indefinitely, as long as it is kept powered.

= Relatively insensitive to electrical noise (EMI), radiation, etc.
= Faster and more expensive than DRAM.

m Dynamic RAM (DRAM)
= Each cell stores bit with a capacitor. One transistor is used for access
= Value must be refreshed every 10-100 ms.
= More sensitive to disturbances (EMI, radiation,...) than SRAM.
= Slower and cheaper than SRAM.

Carnegie Mellon

SRAM vs DRAM Summary

Trans. Access Needs Needs
per bit time refresh? EDC? Cost Applications

SRAM 4or6 1X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,
frame buffers

Carnegie Mellon

Conventional DRAM Organization

m d xw DRAM:

= dw total bits organized as d supercells of size w bits

Internal row buffer

16x8DRAMchip
cols
! 0 1 2 3 |
2 hits i 0] i
—_— |
addr :
: 1 i
> rows |
Memory | 2 - . supercell
controller : : 2,1)
(to/from CPU) : !
8 bits i 3 i
Gl :
data | :

Reading DRAM Supercell (2,1)

Step 1(a): Row access strobe (RAS) selects row 2.
Step 1(b): Row 2 copied from DRAM array to row buffer.

16x8DRAMchip

Cols

RAS = 2 | 21 2 3 :

— 0 |

addr

i 1 |

Memory EROWS
controller 21 _— _ _ _
8 3

4—_>: |

data ! N/ \/ \/ \/

Internal row buffer

Reading DRAM Supercell (2,1)

Step 2(a): Column access strobe (CAS) selects column 1.
Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually

supercell
(2,1)

back to the CPU.
16 X8 DRAM hiD ..
Cols
CAS = 1 ! g 1 2 3 i
2 | |
— 0 i
addr :
To CPU 1 !
, Rows :
Memory ! |
controller 2
supercell 3
21) — i

Internal row buffer

Carnegie Mellon

Memory Modules

addr (row = 1, col = j)

O : supercell (i,))

DRAM O
| - 64 MB
— ml ¥ memory module
l DRAM 7 Il . e Cf)nsisting of
[] L eight 8Mx8 DRAMs
[] I

bits | bits bits bits bits bits bits bits
56-63 48-55 40-47 < 32-39 24-31 16-23 8-15 0-7

63 56 55 4847 40 39 3231 2423 16 15 8 7 0

Memory
controller

64-bit doubleword at main memory address A

64-bit doubleword
~— 8

Enhanced DRAMs

m Basic DRAM cell has not changed since its invention in 1966.

= Commercialized by Intel in 1970.

m DRAM cores with better interface logic and faster 1/O :
= Synchronous DRAM (SDRAM)

= Uses a conventional clock signal instead of asynchronous control
= Allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)

" Double data-rate synchronous DRAM (DDR SDRAM)
= Double edge clocking sends two bits per cycle per pin
= Different types distinguished by size of small prefetch buffer:
— DDR (2 bits), DDR2 (4 bits), DDR4 (8 bits)
= By 2010, standard for most server and desktop systems
= Intel Core i7 supports only DDR3 SDRAM

Carnegie Mellon

Nonvolatile Memories

m DRAM and SRAM are volatile memories

Lose information if powered off.

m Nonvolatile memories retain value even if powered off

Read-only memory (ROM): programmed during production
Programmable ROM (PROM): can be programmed once
Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)
Electrically eraseable PROM (EEPROM): electronic erase capability
Flash memory: EEPROMs with partial (sector) erase capability

= Wears out after about 100,000 erasings.

m Uses for Nonvolatile Memories

Firmware programs stored in a ROM (BIOS, controllers for disks,
network cards, graphics accelerators, security subsystems,...)

Solid state disks (replace rotating disks in thumb drives, smart
phones, mp3 players, tablets, laptops,...)

Disk caches

10

Traditional Bus Structure Connecting

CPU and Memory

m A bus is a collection of parallel wires that carry address,
data, and control signals.

m Buses are typically shared by multiple devices.

CPU chip

Register file

ALU

[y

System bus Memory bus

it — - l
Bus interf /0 Main
us interface bridge memory

11

Memory Read Transaction (1)

m CPU places address A on the memory bus.

Register file

Obeax

1r

: ALU

Bus interface

Load operation: movl A, %eax

/O bridge

Main memory

AN
N

| /IA—I\

N =

Carnegie Mellon

0

A

12

Memory Read Transaction (2)

m Main memory reads A from the memory bus, retrieves
word x, and places it on the bus.

Register file

ALU
%eax <1,:|

I1r

Bus interface

Load operation: movl A, %eax

/0 bridge

Main memory

X

A N

N

| N

N

Carnegie Mellon

0

A

13

Carnegie Mellon

Memory Read Transaction (3)

m CPU read word x from the bus and copies it into register
%eax.

Register file

é,; ALU

X
i E Main memory
/0 bridge 0
Bus interface <:> <:::> " A

Load operation: movl A, %eax

%eax

14

Memory Write Transaction (1)

Carnegie Mellon

m CPU places address A on bus. Main memory reads it and
waits for the corresponding data word to arrive.

%eax

Register file

I1r

==

[ALU

Bus interface

Store operation: movl %eax, A

/0 bridge

AN
N

| /IA—I\

N—

Main memory
0

A

15

Carnegie Mellon

Memory Write Transaction (2)

m CPU places data word y on the bus.

Register file

: ALU

y
i i Main memory
/0 bridge 0
4 N | LY N
Bus interface |\l—l/| ’\l—l/ A

Store operation: movl %eax, A

%eax

16

Memory Write Transaction (3)

Carnegie Mellon

m Main memory reads data word y from the bus and stores
it at address A.

register file

—

Obeax

y

=

ALU

I1r

bus interface

Store operation: movl %eax, A

/O bridge

main memory

K— =

0

A

17

Carnegie Mellon

What’s Inside A Disk Drive?

Arm Platters

Actuator

Electronics
(including a
processor

SCS and memory!)

connector

Image courtesy of Seagate Technology

18

Carnegie Mellon

Disk Geometry

m Disks consist of platters, each with two surfaces.
m Each surface consists of concentric rings called tracks.
m Each track consists of sectors separated by gaps.

Tracks
Surface

Track k Gaps

\ / /'\//
. A\)
N\ /

~

|]

Sectors

19

Carnegie Mellon

Disk Geometry (Muliple-Platter View)

m Aligned tracks form a cylinder.
Cylinder k

—
Surface 0
L J > Platter 0
Surface 1 :

Surface 2

Platter 1
Surface 3

Surface 4

Surface 5 Platter 2

SﬁrToﬁe

il

20

Disk Capacity

m Capacity: maximum number of bits that can be stored.
= Vendors express capacity in units of gigabytes (GB), where
1 GB = 10° Bytes (Lawsuit pending! Claims deceptive advertising).
m Capacity is determined by these technology factors:

= Recording density (bits/in): number of bits that can be squeezed
into a 1 inch segment of a track.

" Track density (tracks/in): number of tracks that can be squeezed
into a 1 inch radial segment.

= Areal density (bits/in2): product of recording and track density.
m Modern disks partition tracks into disjoint subsets called

recording zones

= Each track in a zone has the same number of sectors, determined
by the circumference of innermost track.

" Each zone has a different number of sectors/track

21

Computing Disk Capacity

Capacity = (# bytes/sector) x (avg. # sectors/track) x
(# tracks/surface) x (# surfaces/platter) x
(# platters/disk)
Example:
= 512 bytes/sector
= 300 sectors/track (on average)
= 20,000 tracks/surface
= 2 surfaces/platter
= 5 platters/disk

Capacity =512 x 300 x 20000 x 2 x 5
= 30,720,000,000
=30.72 GB

22

Carnegie Mellon

Disk Operation (Single-Platter View)

The disk surface
spins at a fixed
rotational rate

The read/write head

Is attached to the end

of the arm and flies over
the disk surface on

a thin cushion of air.

By moving radially, the arm can
position the read/write head over
any track.

23

Carnegie Mellon

Disk Operation (Multi-Platter View)

Read/write heads
move in unison
—— from cylinder to cylinder

Arm

.
i

Spindle

24

Carnegie Mellon

Disk Structure - top view of single platter

/% H H % \ \ } ' Tracks divided into sectors

Surface organized into tracks

25

Carnegie Mellon

Disk Access

I
N

Head in position above a track

26

Carnegie Mellon

Disk Access

I
N

Rotation iIs counter-clockwise

27

Carnegie Mellon

Disk Access — Read

7
£

About to read blue sector

28

Carnegie Mellon

Disk Access — Read

i
£

After BLUE read

After reading blue sector

29

Carnegie Mellon

Disk Access — Read

A
N

After BLUE read

Red request scheduled next

30

Carnegie Mellon

Disk Access — Seek

After BLUE read Seek for RED

Seek to red’s track

31

Carnegie Mellon

Disk Access — Rotational Latency

86

After BLUE read Seek for RED Rotational latency

Wait for red sector to rotate around

32

Carnegie Mellon

Disk Access — Read

After BLUE read Seek for RED Rotational latency After RED read

Complete read of red

33

Carnegie Mellon

Disk Access — Service Time Components

After BLUE read Seek for RED Rotational latency After RED read

I R

Data transfer Seek Rotational Data transfer
latency

34

Carnegie Mellon

Disk Access Time

m Average time to access some target sector approximated by :
" Taccess = Tavg seek + Tavg rotation + Tavg transfer
m Seek time (Tavg seek)
= Time to position heads over cylinder containing target sector.
= Typical Tavg seekis 3—9 ms
m Rotational latency (Tavg rotation)
" Time waiting for first bit of target sector to pass under r/w head.
= Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min
= Typical Tavg rotation = 7200 RPMs
m Transfer time (Tavg transfer)
= Time to read the bits in the target sector.
= Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

35

Carnegie Mellon

Disk Access Time Example

m Given:
= Rotational rate = 7,200 RPM
= Average seek time =9 ms.
= Avg # sectors/track = 400.

m Derived:

" Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.
= Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms
" Taccess =9 ms+4 ms+0.02ms

m Important points:

= Access time dominated by seek time and rotational latency.

= First bit in a sector is the most expensive, the rest are free.

= SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
= Disk is about 40,000 times slower than SRAM,
= 2,500 times slower then DRAM.

36

Carnegie Mellon

Logical Disk Blocks

m Modern disks present a simpler abstract view of the
complex sector geometry:

" The set of available sectors is modeled as a sequence of b-sized
logical blocks (0, 1, 2, ...)

m Mapping between logical blocks and actual (physical)
sectors
" Maintained by hardware/firmware device called disk controller.
= Converts requests for logical blocks into (surface,track,sector)
triples.

m Allows controller to set aside spare cylinders for each
zone.

= Accounts for the difference in “formatted capacity” and “maximum
capacity”.

37

/O Bus

CPU chip

: ALU

Register file

1r

Bus interface

...

System bus Memory bus

/0 <:::> Main
bridge memaory

ﬁ

Carnegie Mellon

!

USB
controller

Mouse Keyboard

<

Graphics
adapter

l

Monitor

/0 bus \ ‘

HHAF>

Disk
controller

A

Expansion slots for
other devices such
as network adapters.

38

Carnegie Mellon

Reading a Disk Sector (1)

CPUCHID e - . ..
Register fil CPU initiates a disk read by writing a
:> command, logical block number, and
<:| ALY destination memory address to a port
ﬁ (address) associated with disk controller.

[[

UsB Graphics Disk
controller adapter controller
moLse keleoard Moniltor I
-

39

Carnegie Mellon

Reading a Disk Sector (2)

CPUCIID .

Register file Disk controller reads the sector and

i> performs a direct memory access
<:| AU (DMA) transfer into main memory.

1r

Bus interf < E > % N\ Main
us interface : |\l—l/ memory

USB Graphics Di: k
controller adapter cont oller
Mouse Keyboard Monitor -

40

Carnegie Mellon

Reading a Disk Sector (3)

CPUch|p e —— When the DMA transfer completes,

Reg'Sterf"e:> the disk controller notifies the CPU
<:| ALU | with an interrupt (i.e., asserts a

special “interrupt” pin on the CPU)

Bus interf E Main
us interface : memory

USB Graphics Disk
controller adapter controller

T l

Mouse Keyboard Monitor *
41

Carnegie Mellon

Solid State Disks (SSDs)

I/O bus
Requests to read and
ite logical disk block
Solid State Disk (SSD) N VU
Flash
| translation layer
Flash memory 1
' | Block 0 Block B-1
PageO | Pagel | ---| Page P-1j| ... PageO [Pagel | ---| Page P-1

Pages: 512KB to 4KB, Blocks: 32 to 128 pages
Data read/written in units of pages.
Page can be written only after its block has been erased

A block wears out after 100,000 repeated writes.

42

Carnegie Mellon

SSD Performance Characteristics

Sequential read tput 250 MB/s Sequential write tput 170 MB/s
Random read tput 140 MB/s Random write tput 14 MB/s
Rand read access 30 us Random write access 300 us

m Why are random writes so slow?
= Erasing a block is slow (around 1 ms)
= Write to a page triggers a copy of all useful pages in the block
= Find an used block (new block) and erase it
= Write the page into the new block
= Copy other pages from old block to the new block

43

Carnegie Mellon

SSD Tradeoffs vs Rotating Disks

m Advantages
= No moving parts = faster, less power, more rugged

m Disadvantages
= Have the potential to wear out
= Mitigated by “wear leveling logic” in flash translation layer

= E.g. Intel X25 guarantees 1 petabyte (10% bytes) of random
writes before they wear out

" |n 2010, about 100 times more expensive per byte

m Applications
= MP3 players, smart phones, laptops
= Beginning to appear in desktops and servers

44

Carnegie Mellon

Storage Trends

SRAM
Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980
$/MB 19,200 2,900 320 256 100 75 60 320
access (ns) 300 150 35 15 3 2 1.5 200
DRAM
Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980
$/MB 8,000 880 100 30 1 0.1 0.06 130,000
access (ns) 375 200 100 70 60 50 40 9
typical size (MB) 0.064 0.256 4 16 64 2,000 8,000 125,000
Disk
Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980
$/MB 500 100 8 0.30 0.01 0.005 0.0003 1,600,000
access (ms) 87 75 28 10 8 4 3 29
typical size (MB) 1 10 160 1,000 20,000 160,000 1,500,0001,500,000

Carnegie Mellon

CPU Clock Rates Inflection point in computer history

when designers hit the “Power Wall”

1980 1990 1995 2000 2003§ 2005 2010 2010:1980
CPU 8080 38 Pentium Pl | P-4 | Core2 Coreil
Clock
rate (MHz) 1 20 150 600 3300} 2000 2500 2500
Cycle
time (ns) 1000 50 6 16 103 | 050 04 2500
Cores 1 1 1 1 i1 2 4 4
Effective |
cycle 1000 50 6 16 103 ! 025 01 10,000
time (ns) | i

46

Carnegie Mellon

The CPU-Memory Gap
The gap widens between DRAM, disk, and CPU speeds.

100,000,000.0
Disk
10,000,000.0 . . .

1,000,000.0
SSD
100,000.0 A
10,000.0 ——Disk seek time

—A—Flash SSD access time
——-DRAM access time

& 1,000.0 O —8— SRAM access time
100.0 w i;;;;:.:vygigrgiycle time
10.0
1.0 \D\\a\\‘\‘\'

0.0

T T

1980 1985 1990 1995 2000 2003 2005 2010
Year 47

Carnegie Mellon

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental
property of computer programs known as locality

48

Carnegie Mellon

Today

|
m Locality of reference
|

49

Carnegie Mellon

Locality

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

m Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

¢/

m Spatial locality:

= |tems with nearby addresses tend
to be referenced close together in time

50

Carnegie Mellon

Locality Example

sum = O;

for (1 = 0; 1 <
sum += afi];

return sum;

n; I++)

m Data references

= Reference array elements in succession . .
(stride-1 reference pattern). Spatial locality

= Reference variable sum each iteration. Temporal locality

m Instruction references
= Reference instructions in sequence. Spatial locality
" Cycle through loop repeatedly. Temporal locality

51

Carnegie Mellon

Qualitative Estimates of Locality

m Claim: Being able to look at code and get a qualitative
sense of its locality is a key skill for a professional
programmer.

m Question: Does this function have good locality with
respect to array a?

Int sum _array_ rows(int a[M][N])
{

int 1, jJ, sum = O;

for (i = 0; i < M; i++)
for = 0; J < N; j++)
sum += a[i]lil;

return sum;

52

Carnegie Mellon

Locality Example

m Question: Does this function have good locality with
respect to array a?

int sum _array _cols(int a[M][N])
{

int 1, jJ, sum = 0;

for g = 0; J < N; jJ++)
for (1 = 0; 1 < M; 1++)
sum += a[i]llil;

return sum;

53

Carnegie Mellon

Locality Example

m Question: Can you permute the loops so that the function
scans the 3-d array a with a stride-1 reference pattern

(and thus has good spatial locality)?

int sum _array 3d(int a[M]JIN]IND)
{

int 1, jJ, k, sum = O;

for (1 = 0; 1 < M; 1++)
for (J = 0; J < N; J++)
for (k = 0; k < N; k++)
sum += a[k][i1[1];

return sum;

54

Carnegie Mellon

Memory Hierarchies

m Some fundamental and enduring properties of hardware
and software:

= Fast storage technologies cost more per byte, have less capacity,
and require more power (heat!).

" The gap between CPU and main memory speed is widening.
= Well-written programs tend to exhibit good locality.

m These fundamental properties complement each other
beautifully.

m They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

55

Carnegie Mellon

Today

|
|
m Caching in the memory hierarchy

56

Carnegie Mellon

An Example Memory Hierarchy

A
LO: . .
. CPU registers hold words retrieved
egisters from L1 cache
L1: L1 cache
Smaller (SRAM) L1 cache holds cache lines retrieved
! from L2 cache
faster,
; L2:
costlier L2 cache
per byte (SRAM) L2 cache holds cache lines
retrieved from main memory
L3:
Main memory
L;';\rger, (DRAM) Main memory holds disk blocks
s}:)wer, retrieved from local disks
cheaper
per byte L4: Local secondary storage Local disks hold files
(local disks) retrieved from disks on
remote network servers
Remote secondary storage
L5: _ .
(tapes, distributed file systems, Web servers)

57

Carnegie Mellon

Caches

m Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.

m Fundamental idea of a memory hierarchy:
" For each k, the faster, smaller device at level k serves as a cache for the
larger, slower device at level k+1.
m Why do memory hierarchies work?

= Because of locality, programs tend to access the data at level k more
often than they access the data at level k+1.

" Thus, the storage at level k+1 can be slower, and thus larger and
cheaper per bit.

m Big ldea: The memory hierarchy creates a large pool of
storage that costs as much as the cheap storage near the
bottom, but that serves data to programs at the rate of the
fast storage near the top.

58

Cache

Memory

General Cache Concepts

Carnegie Mellon

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

4 9 10 3
Data is copied in block-sized
10 transfer units
0 1 2 3
4 5 6 7
9 10 11
12 13 14 15

59

Carnegie Mellon

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Block b is in cache:
Cache 8 9 14 3 Hit!

Memory 0 1 2 3
4 5 6 7
9 10 11
12 13 14 15
0 0000000000000 O0COOS

60

Carnegie Mellon

General Cache Concepts: Miss

Cache

Memory

Request: 12
8 12 14 3
12 Request: 12
0 1 2 3
4 5 6 7
9 10 11
12 13 14 15

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

e Replacement policy:
determines which block
gets evicted (victim)

61

Carnegie Mellon

General Caching Concepts:
Types of Cache Misses

m Cold (compulsory) miss
= Cold misses occur because the cache is empty.

m Conflict miss

= Most caches limit blocks at level k+1 to a small subset (sometimes a
singleton) of the block positions at level k.

= E.g. Blocki at level k+1 must be placed in block (i mod 4) at level k.

= Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.

= E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
m Capacity miss

= QOccurs when the set of active cache blocks (working set) is larger than
the cache.

62

Carnegie Mellon

Examples of Caching in the Hierarchy

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By
Registers 4-8 bytes words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 | Hardware

L1 cache 64-bytes block On-Chip L1 1 | Hardware

L2 cache 64-bytes block On/Off-Chip L2 10 | Hardware
Virtual Memory 4-KB page Main memory 100 | Hardware + OS
Buffer cache Parts of files Main memory 100 | OS

Disk cache Disk sectors Disk controller 100,000 | Disk firmware
Network buffer Parts of files Local disk 10,000,000 | AFS/NFS client
cache

Browser cache Web pages Local disk 10,000,000 | Web browser
Web cache Web pages Remote server disks 1,000,000,000 | Web proxy

server

63

Carnegie Mellon

Summary

m The speed gap between CPU, memory and mass storage
continues to widen.

m Well-written programs exhibit a property called locality.

m Memory hierarchies based on caching close the gap by
exploiting locality.

64

