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Structures & Alignment Alignment Principles
naligned D .
® Unaligned Data St”rJ]Ct s1{ m Aligned Data
= = char c;
|C| i[o] | if1] | v | int i[2]; " Primitive data type requires K bytes
p p+l p+5 p+9 p+17 double v; = Address must be multiple of K
¥ ps = Required on some machines; advised on I1A32
- Aligned Data = treated differently by IA32 Linux, x86-64 Linux, and Windows!
= Primitive data type requires K bytes = Motivation for Aligning Data
= Address must be multiple of K = Memory accessed by (aligned) chunks of 4 or 8 bytes (system
dependent)
— — = Inefficient to load or store datum that spans quad word
| ¢ | | i[o] | ifi] | | v | boundaries
p+0 p+4 p+8 p+16 p+24 = Virtual memory very tricky when datum spans 2 pages
| . m Compiler
Multiple of 4 Multiple of 8
= |nserts gaps in structure to ensure correct alighment of fields
Multiple of 8 Multiple of 8
3 4




Carnegie Mellon

Specific Cases of Alignment (1A32)

m 1byte: char, ...
® no restrictions on address

m 2 bytes: short, ...
= |owest 1 bit of address must be 02

m 4bytes: int, Float, char *,..

= |owest 2 bits of address must be 002

8 bytes: double, ...

= Windows (and most other OS’s & instruction sets):
= lowest 3 bits of address must be 0002

= Linux:

= lowest 2 bits of address must be 002

= i.e., treated the same as a 4-byte primitive data type
12 bytes: long double

= Windows, Linux:

= lowest 2 bits of address must be 002
= i.e., treated the same as a 4-byte primitive data type
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Satisfying Alignment with Structures

m Within structure:

struct S1 {

= Must satisfy each element’s alignment requirement char c;
m Overall structure placement e e
® Each structure has alignment requirement K T *p; ’

= K= Largest alignment of any element
® |Initial address & structure length must be multiples of K
m Example (under Windows or x86-64):
= K=8, due todouble element

Lc] [ iro1 [ i | I v |
p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8
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Specific Cases of Alignment (x86-64)

m 1byte: char, ..
® no restrictions on address
m 2 bytes: short, ...
" |owest 1 bit of address must be 02
m 4 bytes: int, float, ...
= Jowest 2 bits of address must be 002
m 8 bytes: double, char *,..
= Windows & Linux:
= lowest 3 bits of address must be 0002
m 16 bytes: long double
" Linux:
= lowest 3 bits of address must be 0002
= j.e., treated the same as a 8-byte primitive data type
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Different Alignment Conventions

truct S1 {

m x86-64 or IA32 Windows: t_:har_Eé]
int i ;
K =8, due to doubl e element double v-

I i T BT ]
p+0 pt+4 p+8 p+16 p+24
= 1A32 Linux

= K=4;double treated like a 4-byte data type

L] [ i [ it | v
p+0 p+4 p+8 p+12 p+20
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Meeting Overall Alignment Requirement

m For largest alignment requirement K struct S2 {
double v;
int i[2];
char c;

} *p;

m Overall structure must be multiple of K

v | i | i [cf
p+0 p+8 p+16 p+24
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Accessing Array Elements struct S3 {
short i;
float v;
m Compute array offset 12i Short_j 5
= sizeof(S3), including alignment spacers } a[10];

m Element j is at offset 8 within structure
m Assembler gives offset a+8
= Resolved during linking
oL [ --- [am l..2.2-

a+0 a+12 a+12i

ICE 2 bytes NN I 2 byes |

a+12i a+12i+8

short get_j(int idx) T v = T

leal (%eax,%eax,2),%eax # 3*idx
movswl a+8(,%eax,4) ,%eax

return afidx].j;

}

Arrays of Structures

m Overall structure length
multiple of K

m Satisfy alignment requirement
for every element

| a[o] | a[1] | a[2] | -~
a+0 a+24 a+48 a+72
v | i1 | im1 <
a+24 a+32 a+40 a+48
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Saving Space

m Put large data types first

struct S4 { struct S5 {
char c; int i;
int i; char c;
char d; char d;

} *p; } *p:

m Effect (K=4)

I (21 26|




Today

= Unions
m Memory Layout

m Buffer Overflow
= Vulnerability
® Protection
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Using Union to Access Bit Patterns

typedef union { u
float f;
unsigned u;

} bit_float_t; 0 4

float bit2float(unsigned u) unsigned float2bit(float )

bit_float_t arg; bit_float_t arg;
arg.u = u; arg.f = f;
return arg.f; return arg.u;

} ¥

Same as (Float) u? Same as (unsigned) f?
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Union Allocation

m Allocate according to largest element
m Can only use one field at a time

union Ul {
char c;
int i[2]; ?l
double v; ifo] | [

} *up;

struct S1 { up+0 up+4 up+8
char c;
int i[2];
double v;
} *sp;

[c] B v
sp+0 sp+4 sp+8 sp+16 sp+24
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Byte Ordering Revisited

mldea
= Short/long/quad words stored in memory as 2/4/8 consecutive bytes
= Which is most (least) significant?
® Can cause problems when exchanging binary data between machines
m Big Endian
® Most significant byte has lowest address
= Sparc
u Little Endian
= Least significant byte has lowest address
" Intel x86
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Byte Ordering Example

union {
unsigned char c[8];
unsigned short s[4];
unsigned int i[2];
unsigned long I[1];
} dw;

32-bit [ ¢[01 [ c[11 [ c[21 [ c[3] | c[4] | c[51 | c[6] [ c[7]

s[0]

s[1]

s[2]

s[3]

if

0]

if

1]

I

0]

64-bit | c[01 | c[1]

c[2] | c[3]

c[4] | c[5]

c[6] | c[7]

s[0]

s[1]

s[2]

s[3]

i[

0]

i[

1]

1101

Byte Ordering on IA32

Byte Ordering Example (Cont).
int j;
for G =0; j < 8; j++)

dw.c[j] = OxfO + j;

printf(*’*Characters 0-7 ==

[0x%x , Ox%X , Ox%X , OX%X , OX%X , OX%X , OX%X , Ox%x]\n**,
dw.c[0], dw.c[1], dw.c[2], dw.c[3],
dw.c[4], dw.c[5], dw.c[6], dw.c[71);

printf(*'Shorts 0-3 == [Ox%Xx,0x%x ,0x%x,0x%x]\n"",
dw.s[0], dw.s[1], dw.s[2], dw.s[3]);

printf(""Ints 0-1 == [Ox%x,0x%x]J\n",
dw.i[0], dw.i[1]);

printf('Long 0 == [Ox%Ix]\n",
dw. 1[01);

Byte Ordering on Sun

Big Endian

L

Tl

2

3

T4

5

6

7

c[o]

c[1]

c[21

c[3]

c[4]

c[5]

c[6]

c[71

s[0]

s[1]

s[2]

s[3]

i[o]

if1]

Little Endian
0o Tl T2 3 T4 5 T6 7
c[0] | c[1] | c[2] | c[3] | c[4] | c[5] | c[6] | c[7]
s[0] s[1] s[2] s[3]

i[0] if1]
1[0]

LSB MSB LSB MsB
Print

Output:

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xF5,0xF6,0xF7]

Shorts 0-3 == [0xFf1f0,0xf3f2,0xF5F4,0xF7f6]
Ints 0-1 == [OxF3f2f1f0,0xF7f6F5F4]
Long 0 == [OxF3f2f1f0]

1[0]

MsB LSB MSB LsB
_—
Print

Output on Sun:
Characters 0-7 == [0xf0,0xf1,0xf2,0x¥3,0xf4,0xF5,0xF6,0xF7]

Shorts 0-3 == [OxFOF1,0xF2f3,0xFAF5,0xF6F7]
Ints 0-1 == [OxFOFLF2F3,0xFAF5F6F7]
Long 0 == [OxFOFL1f2f3]
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Byte Ordering on x86-64

Little Endian

0 fl 2 3 4 5 6 7
c[0] | c[1] | c[2] | c[3] | c[4] | c[5] | c[6] | c[7]
s[0] s[1] s[2] s[3]
i[0] if1]

10]

LSB

Print

Output on x86-64:

Characters 0-7 == [0xf0,0xf1,0xf2,0x¥3,0xf4,0x¥F5,0xF6,0xF7]

Shorts 0-3 == [0xF1f0,0xF3F2,0xF5F4,0xF7F6]
Ints 0-1 == [OxF3F2F1F0,0xF7F6F5F4]
Long 0 == [OxF7F6F5F4F3F2F1F0]

Today

m Structures

= Alignment

Unions

Memory Layout

Buffer Overflow
= Vulnerability
® Protection

Summary

m ArraysinC
® Contiguous allocation of memory
= Aligned to satisfy every element’s alighment requirement
= Pointer to first element
= No bounds checking
m Structures
= Allocate bytes in order declared
® Pad in middle and at end to satisfy alignment
= Unions
= OQverlay declarations
® Way to circumvent type system
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not drawn to scale
IA32 Linux Memory Layout FF
Stack
8MB

m Stack 1

= Runtime stack (8MB limit)

= E.g., local variables
m Heap

® Dynamically allocated storage

= When call malloc(), calloc(), new()
m Data

= Statically allocated data

= E.g., arrays & strings declared in code
m Text t

= Executable machine instructions Heap

Data
= Read-only
Upper 2 hex digits 08 Text
= 8 bits of address 00
24




Carnegie Mellon Carnegie Mellon

not drawn to scale not drawn to scale
Memory Allocation Example & IA32 Example Addresses FF
Stack Stack
= l address range ~232 1
char big_array[1<<24]; /* 16 MB */
char huge_array[1<<28]; /* 256 MB */
_ $esp OxfFffbcdo
int beyond; p3 0x65586008
char *pl, *p2, *p3, *p4; pl 0x55585008
_ p4 0x1904a110
int useless() { return O0; } p2 0x1904a008
) i &p2 0x18049760
int mainQ) &beyond 0x08049744
{ big_array 0x18049780 80 t
pl = malloc(l <<28); /* 256 MB */ huge_array 0x08049760
p2 = malloc(1l << 8); /* 256 B */ mainZ) 0x080483c6
p3 = malloc(1l <<28); /* 256 MB */ 4 uselessQ) 0x08049744 Heap
p4 = malloc(l << 8); /* 256 B */ 5 final mallocQ) 0x006be166
/* Some print statements ... */ £ap
} Data Data
- Text malloc() is dynamically linked Text
Where does everything go? 88 address determined at runtime gg
25 26
not drawn to scale
x86-64 Example Addresses  oooo7r — Today
acl
address range ~2°7
g l m Structures
= Alignment
$rsp OXx00007FFFFFF8d1T8 )
p3 0x00002aaabaadd010 = Unions
pl 0x00002aaaaaadc010 = Memory Layout
p4 0x0000000011501120
p2 0x0000000011501010 m Buffer Overflow
&p2 0x0000000010500a60 = Vulnerability
&beyond 0x0000000000500a44 .
- " Protection
big_array 0x0000000010500a80 000030 t
huge_array 0x0000000000500a50
main() 0x0000000000400510
uselessQ) 0x0000000000400500 Heap
final malloc() 0x000000386ae6a170
Data
malloc() isdynamically linked Text
address determined at runtime 000000




Internet Worm and IM War

m November, 1988
® |nternet Worm attacks thousands of Internet hosts.
" How did it happen?

Internet Worm and IM War (cont.)

m August 1999
= Mpysteriously, Messenger clients can no longer access AIM servers.
® Microsoft and AOL begin the IM war:
= AOL changes server to disallow Messenger clients
= Microsoft makes changes to clients to defeat AOL changes.
= At least 13 such skirmishes.
" How did it happen?

m The Internet Worm and AOL/Microsoft War were both based
on stack buffer overflow exploits!
= many library functions do not check argument sizes.
= allows target buffers to overflow.
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Internet Worm and IM War

= November, 1988
® Internet Worm attacks thousands of Internet hosts.
® How did it happen?
= July, 1999
= Microsoft launches MSN Messenger (instant messaging system).

= Messenger clients can access popular AOL Instant Messaging Service
(AIM) servers

30
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String Library Code

= Implementation of Unix function gets()

/* Get string from stdin */
char *gets(char *dest)
{
int ¢ = getchar();
char *p = dest;
while (c = EOF && c I= "\n") {
*p++ = C;
c = getchar();
3
*p = "\0";
return dest;
}

= No way to specify limit on number of characters to read
m Similar problems with other library functions

= strcpy, strcat: Copy strings of arbitrary length
= scanf, fscanT, sscanT, when given %s conversion specification

32
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- — echo:
/ _CE‘ChOhL'"e / 80485c5: 55 push  %ebp
el CENSO 80485c6: 89 e5 mov %esp ,%ebp
char buf[4]; /* Way too smalll */ 80485¢c8: 53 push  %ebx
gets(buf); 80485c9: 83 ec 14 sub $0x14,%esp
puts(buf); 80485cc: 8d 5d f8 lea OxFFFFFFF8(%ebp) ,%ebx
80485cf: 89 1c 24 mov %ebx , (%besp)
= 80485d2: e8 9e ff ff ff call 8048575 <gets>
VOIdeiﬁ:)ES?ChO() { 80485d7: 89 1c 24 mov %ebx , (%esp)
3 ’ 80485da: €8 05 fe ff ff call 80483e4 <puts@plt>
- 80485df: 83 c4 14 add $0x14,%esp
unix>./bufdemo - b %eb
Type a string:1234567 8048592: S pop 0/°e Y
1234567 80485e3: 5d pop %ebp
80485e4: c3 ret
unix>./bufdemo
Type a string:12345678 call echo:
Segmentation Fault ol
80485eb: e8 d5 ff ff ff call 80485c5 <echo>
unix>./bufdemo 80485f0: c9 leave
Type a string:123456789ABC 80485F1: c3 ret
Segmentation Fault -
33 34
unix> gdb bufdemo
(gdb) bfeak echo
Buffer Overflow Stack Buffer Overflow e o s G
Breakpoir}t 1, 0x80485c9 in echo O
Before call to gets StaCk Example é?dﬂ’oﬂﬁ'}ﬁdé?g%bp
(gdb) print /x *(unsigned *)$ebp
Stack Frame $2 = OxFFFFd688
formain égdg)ogg&;sg *((unsigned *)$ebp + 1)
/* Echo Line */
void echo(Q) Before call to gets Before call to gets
Return Address { Stack Frame Stack Frame | OXTFFFfd688
Saved %ebp |« %ebp char buf[4]; /* Way too small! */ formain for main
Saved %ebx gets(gu?;
uts(buf);
63 12 [ L
Stack F Return Address 08|04 85| f0
e echo: Saved %ebp TF | 77 d6 | 88 | OxFFFFd678
pushl %ebp # Save %ebp on stack Saved %ebx Saved %ebx
movl ‘%esp, %ebp
pushl %ebx # Save %ebx [SHE2NELNION buf XXlXXIXXlXX buf
Teal “8(iebp> Webx  # Conpute. buf a5 Hobp-g stack Frame stack Frame
- s X u u l =
movl %ebx, (%esp) # Push buf on stack oy ze e oy ze e
call gets # Call gets 80485eb: e8 d5 FF FF FF call  80485c5 <echo>
S 80485f0: c9 leave
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Buffer Overflow Example #1

Before call to gets Input 1234567
Stack Frame OxFFFdess Stack Frame OxFFffdess
formain formain

08|04 |85 f0 08|04 |85 f0

ff| £f|d6 | 88 |OxFFffd678 ff| £f| d6 | 88 |OxFFffd678
Saved %ebx 00|37|36|35

XX | xx | xx | xx| buf 34|33]|32|31]| buf

Stack Frame Stack Frame

for echo for echo

Overflow buf, and corrupt %ebx,
but no problem
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Buffer Overflow Example #3

Before call to gets Input 123456789ABC
Stack Frame OxFFFFd6ss Stack Frame OxFFFd6ss
formain formain

08|04 (85| f0 08|04 |85|00

ff| ff|d6 | 88 |oxFFFFd678 43|42 | 41|39 |oxFFFfd678
Saved %ebx 38|37|36|35

XX | xx | xx | xx| buf 34]33[32|31] buf

Stack Frame Stack Frame

for echo for echo

Return address corrupted

80485eb: e8 d5 ff ff ff call 80485c5 <echo>
80485f0: c9 leave # Desired return point
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Buffer Overflow Example #2

Before call to gets Input 12345678
Stack Frame OxFFFfdess Stack Frame OxFFFfdess
formain formain

08|04 [85]|f0 08|04 |85 f0

ff| £F|d6 | 88 |OXFFFfd678 ff| £F|d6 | 00 |OXFFFfd678
Saved %ebx 38|37|36|35

xx | xx [ xx | xx | buf 34]33]32[31] buf

Stack Frame Stack Frame

for echo for echo

Base pointer corrupted

80485eb: e8 d5 ff ff ff call 80485c5 <echo>
80485f0: c9 leave # Set %ebp to corrupted value
80485f1: c3 ret
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Malicious Use of Buffer Overflow
Stack after call to gets()

\
void foo(){ foo stack frame
barQ; return >
- address
¥ A B <
int barQ { data written pad
char buf[64]; by gets()
ets(buf);
C:l_ ) (i, exploit > bar stack frame
return ...; B code
}
J

Input string contains byte representation of executable code
Overwrite return address A with address of buffer B
When bar () executes ret, will jump to exploit code

10



Exploits Based on Buffer Overflows

m Buffer overflow bugs allow remote machines to execute
arbitrary code on victim machines

m Internet worm
= Early versions of the finger server (fingerd) used gets() to read the
argument sent by the client:
= finger droh@cs.cmu.edu
® Worm attacked fingerd server by sending phony argument:
= finger “exploit-code padding new-return-
address”

= exploit code: executed a root shell on the victim machine with a
direct TCP connection to the attacker.

Carnegie Mellon

Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT)

From: Phil Bucking <philbucking@yahoo.com>

Subject: AOL exploiting buffer overrun bug in their own software!
To: rms@pharlap.com

Mr. Smith,

I am writing you because 1 have discovered something that I think you
might find interesting because you are an Internet security expert with
experience in this area. | have also tried to contact AOL but received
no response.

1 am a developer who has been working on a revolutionary new instant
messaging client that should be released later this year.

It appears that the AIM client has a buffer overrun bug. By itself
this might not be the end of the world, as MS surely has had its share.
But AOL is now *exploiting their own buffer overrun bug* to help in

its efforts to block MS Instant Messenger.

Since you have significant credibility with the press | hope that you
can use this information to help inform people that behind AOL"s
friendly exterior they are nefariously compromising peoples” security.

Sincerely, . .
Phil Bucking ) It was later determined that this
Founder, Bucking Consulting email originated from within
philbucking@yahoo.com .

Microsoft!
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Exploits Based on Buffer Overflows

m Buffer overflow bugs allow remote machines to execute
arbitrary code on victim machines

= IMWar
= AOL exploited existing buffer overflow bug in AIM clients
= exploit code: returned 4-byte signature (the bytes at some location in
the AIM client) to server.
= When Microsoft changed code to match signature, AOL changed
signature location.
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Avoiding Overflow Vulnerability

/* Echo Line */

void echo()

{
char buf[4]; /* Way too small! */
fgets(buf, 4, stdin);
puts(buf);

3

m Use library routines that limit string lengths
= fgetsinstead of gets
= strncpy instead of strcpy
= Don’t use scanT with %s conversion specification
= Use Fgets to read the string
= Oruse %NS where n is a suitable integer

11
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System-Level Protections Stack Canaries

= Randomized stack offsets
® At start of program, allocate random amount
of space on stack

= Makes it difficult for hacker to predict
beginning of inserted code

unix> gdb bufdemo m Idea
(@l loreEs cene = Place special value (“canary”) on stack just beyond buffer
(gdb) run

(gdb) print /x $ebp
$1 = OxFFffc638

= Check for corruption before exiting function

m GCC Implementation
= —fstack-protector

db) run
o = —fstack-protector-all

(gdb) print /x $ebp

m Nonexecutable code segments $2 = OxFFffbbos

® |n traditional x86, can mark region of memory
as either “read-only” or “writeable”

unix>./bufdemo-protected

(gdb) run u ufdeno-pro
(gdb) print /x $ebp 1)2/22 a string:

$3 = Oxffffc6a8

= Can execute anything readable

unix>./bufdemo-protected

= X86-64 added explicit “execute” permission Type a string:12345

Carnegie Mellon

*** stack smashing detected ***
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Protected Buffer Disassembly  echo: Setting Up Canary
804864d: 55 push %ebp
804864e: 89 e5 mov %esp,%ebp Before call to gets /* Echo Line */
8048650: 53 push  %ebx Stack Frame ‘{’O'd echoQ
8048651: 83 ec 14 sub  $0x14,%esp e e . .
8048654: 65 al 14 00 00 00 mov  %gs:Ox14,%eax L e R A L
804865a: 89 45 T8 mov Y%eax , OXFFFFFFF8 (%ebp) puts(buf);
804865d: 31 cO Xor heax ,%eax Return Address 1S
804865f: 8d 5d f4 lea OXFFFFFFF4(%ebp) , %ebx Saved %ebp _|— tebp
8048662: 89 1c 24 mov %ebx , (%esp) Saved ebx
8048665: e8 77 ff ff ff call 80485el <gets>
804866a: 89 1c 24 mov %ebx , (%esp) (CamEY
804866d: e8 ca fd ff ff call  804843c <puts@plt> [31[[2]|[11{[0] buf
8048672: 8b 45 f8 mov OXFFFFFFF8(%ebp) , %eax Stack Frame
8048675: 65 33 05 14 00 00 00 xor %gs :0x14 ,%eax o @i echo:
804867c: 74 05 je 8048683 <echo+0x36> - .-
804867e: €8 a9 fd ff ff call 804842c <FAIL> movl %gs:20, %eax # Get canary
8048683: 83 c4 14 add  $0x14,%esp oS fheaxiind(tebp) BN IRt ongStack
8048686- 5b pop %ebx xorl %eax, Y%eax # Erase canary
8048687: 5d pop %ebp
8048688: c3 ret

47 48

12
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Checking Canary

Before call to gets /* Echo Line */
void echo()

Stack Frame

formain char buf[4]; /* Way too smalll */
gets(buf);
puts(buf);
Return Address 3

Saved %ebp | %ebp
Saved %ebx
Canary

C31I021{r21jro1| but

Stack Frame

for echo el
mov 1 -8(%ebp), %eax # Retrieve from stack
xorl %gs:20, %eax # Compare with Canary
Jje .L24 # Same: skip ahead
call __stack_chk_fail # ERROR
.L24:

Worms and Viruses

= Worm: A program that
= Can run by itself
® Can propagate a fully working version of itself to other computers

m Virus: Code that
® Add itself to other programs
® Cannot run independently

m Both are (usually) designed to spread among computers
and to wreak havoc
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Canary Example

Before call to gets Input 1234
Stack Frame Stack Frame
formain formain
Return Address Return Address
Saved %ebp  f——%ebp Saved%ebp [~ %ebp
Saved %ebx Saved %ebx
03|e3|7d|00 03|e3|7d]|00
[B121{[17[0]| buf 34[33[32(31|buf
Stack Frame Stack Frame
for echo for echo

(gdb) break echo
ggggg gzgpi 3 Benign corruption!

(gdb) print /x *((unsigned *) $ebp - 2) (?Ilows programmers to make
$1 = 0x3e37d00 silent off-by-one errors)

Today

m Structures
= Alignment
= Unions
= Memory Layout
m Buffer Overflow

= Vulnerability
" Protection
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