Carnegie Mellon Carnegie Mellon

Today

. . Struct
Machine-Level Programming V: " otrichires
= Alignment

Advanced Topics = Unions

m Memory Layout
15-213 / 18-213: Introduction to Computer Systems m Buffer Overflow
9t Lecture, Feb. 14, 2012 ®* Vulnerability
" Protection

Instructors:

Todd C. Mowry & Anthony Rowe

Structures & Alignment Alignment Principles
naligned D .
® Unaligned Data St”rJ]Ct s1{ m Aligned Data
= = char c;
|C| i[o] | if1] | v | int i[2]; " Primitive data type requires K bytes
p p+l p+5 p+9 p+17 double v; = Address must be multiple of K
¥ ps = Required on some machines; advised on I1A32
- Aligned Data = treated differently by IA32 Linux, x86-64 Linux, and Windows!
= Primitive data type requires K bytes = Motivation for Aligning Data
= Address must be multiple of K = Memory accessed by (aligned) chunks of 4 or 8 bytes (system
dependent)
— — = Inefficient to load or store datum that spans quad word
| ¢ | | i[o] | ifi] | | v | boundaries
p+0 p+4 p+8 p+16 p+24 = Virtual memory very tricky when datum spans 2 pages
| . m Compiler
Multiple of 4 Multiple of 8
= |nserts gaps in structure to ensure correct alighment of fields
Multiple of 8 Multiple of 8
3 4

Carnegie Mellon

Specific Cases of Alignment (1A32)

m 1byte: char, ...
® no restrictions on address

m 2 bytes: short, ...
= |owest 1 bit of address must be 02

m 4bytes: int, Float, char *,..

= |owest 2 bits of address must be 002

8 bytes: double, ...

= Windows (and most other OS’s & instruction sets):
= lowest 3 bits of address must be 0002

= Linux:

= lowest 2 bits of address must be 002

= i.e., treated the same as a 4-byte primitive data type
12 bytes: long double

= Windows, Linux:

= lowest 2 bits of address must be 002
= i.e., treated the same as a 4-byte primitive data type

Carnegie Mellon

Satisfying Alignment with Structures

m Within structure:

struct S1 {

= Must satisfy each element’s alignment requirement char c;
m Overall structure placement e e
® Each structure has alignment requirement K T *p; ’

= K= Largest alignment of any element
® |Initial address & structure length must be multiples of K
m Example (under Windows or x86-64):
= K=8, due todouble element

Lc] [iro1 [i | I v |
p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

Carnegie Mellon

Specific Cases of Alignment (x86-64)

m 1byte: char, ..
® no restrictions on address
m 2 bytes: short, ...
" |owest 1 bit of address must be 02
m 4 bytes: int, float, ...
= Jowest 2 bits of address must be 002
m 8 bytes: double, char *,..
= Windows & Linux:
= lowest 3 bits of address must be 0002
m 16 bytes: long double
" Linux:
= lowest 3 bits of address must be 0002
= j.e., treated the same as a 8-byte primitive data type

Carnegie Mellon

Different Alignment Conventions

truct S1 {

m x86-64 or IA32 Windows: t_:har_Eé]
int i ;
K =8, due to doubl e element double v-

I i T BT]
p+0 pt+4 p+8 p+16 p+24
= 1A32 Linux

= K=4;double treated like a 4-byte data type

L] [i [it | v
p+0 p+4 p+8 p+12 p+20

Carnegie Mellon

Meeting Overall Alignment Requirement

m For largest alignment requirement K struct S2 {
double v;
int i[2];
char c;

} *p;

m Overall structure must be multiple of K

v | i | i [cf
p+0 p+8 p+16 p+24

Carnegie Mellon

Accessing Array Elements struct S3 {
short i;
float v;
m Compute array offset 12i Short_j 5
= sizeof(S3), including alignment spacers } a[10];

m Element j is at offset 8 within structure
m Assembler gives offset a+8
= Resolved during linking
oL [--- [am l..2.2-

a+0 a+12 a+12i

ICE 2 bytes NN I 2 byes |

a+12i a+12i+8

short get_j(int idx) T v = T

leal (%eax,%eax,2),%eax # 3*idx
movswl a+8(,%eax,4) ,%eax

return afidx].j;

}

Arrays of Structures

m Overall structure length
multiple of K

m Satisfy alignment requirement
for every element

| a[o] | a[1] | a[2] | -~
a+0 a+24 a+48 a+72
v | i1 | im1 <
a+24 a+32 a+40 a+48

Carnegie Mellon
Saving Space

m Put large data types first

struct S4 { struct S5 {
char c; int i;
int i; char c;
char d; char d;

} *p; } *p:

m Effect (K=4)

I (21 26|

Today

= Unions
m Memory Layout

m Buffer Overflow
= Vulnerability
® Protection

Carnegie Mellon

Using Union to Access Bit Patterns

typedef union { u
float f;
unsigned u;

} bit_float_t; 0 4

float bit2float(unsigned u) unsigned float2bit(float)

bit_float_t arg; bit_float_t arg;
arg.u = u; arg.f = f;
return arg.f; return arg.u;

} ¥

Same as (Float) u? Same as (unsigned) f?

Carnegie Mellon

Union Allocation

m Allocate according to largest element
m Can only use one field at a time

union Ul {
char c;
int i[2]; ?l
double v; ifo] | [

} *up;

struct S1 { up+0 up+4 up+8
char c;
int i[2];
double v;
} *sp;

[c] B v
sp+0 sp+4 sp+8 sp+16 sp+24

Carnegie Mellon

Byte Ordering Revisited

mldea
= Short/long/quad words stored in memory as 2/4/8 consecutive bytes
= Which is most (least) significant?
® Can cause problems when exchanging binary data between machines
m Big Endian
® Most significant byte has lowest address
= Sparc
u Little Endian
= Least significant byte has lowest address
" Intel x86

Carnegie Mellon

Byte Ordering Example

union {
unsigned char c[8];
unsigned short s[4];
unsigned int i[2];
unsigned long I[1];
} dw;

32-bit [¢[01 [c[11 [c[21 [c[3] | c[4] | c[51 | c[6] [c[7]

s[0]

s[1]

s[2]

s[3]

if

0]

if

1]

I

0]

64-bit | c[01 | c[1]

c[2] | c[3]

c[4] | c[5]

c[6] | c[7]

s[0]

s[1]

s[2]

s[3]

i[

0]

i[

1]

1101

Byte Ordering on IA32

Byte Ordering Example (Cont).
int j;
for G =0; j < 8; j++)

dw.c[j] = OxfO + j;

printf(*’*Characters 0-7 ==

[0x%x , Ox%X , Ox%X , OX%X , OX%X , OX%X , OX%X , Ox%x]\n**,
dw.c[0], dw.c[1], dw.c[2], dw.c[3],
dw.c[4], dw.c[5], dw.c[6], dw.c[71);

printf(*'Shorts 0-3 == [Ox%Xx,0x%x ,0x%x,0x%x]\n"",
dw.s[0], dw.s[1], dw.s[2], dw.s[3]);

printf(""Ints 0-1 == [Ox%x,0x%x]J\n",
dw.i[0], dw.i[1]);

printf('Long 0 == [Ox%Ix]\n",
dw. 1[01);

Byte Ordering on Sun

Big Endian

L

Tl

2

3

T4

5

6

7

c[o]

c[1]

c[21

c[3]

c[4]

c[5]

c[6]

c[71

s[0]

s[1]

s[2]

s[3]

i[o]

if1]

Little Endian
0o Tl T2 3 T4 5 T6 7
c[0] | c[1] | c[2] | c[3] | c[4] | c[5] | c[6] | c[7]
s[0] s[1] s[2] s[3]

i[0] if1]
1[0]

LSB MSB LSB MsB
Print

Output:

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xF5,0xF6,0xF7]

Shorts 0-3 == [0xFf1f0,0xf3f2,0xF5F4,0xF7f6]
Ints 0-1 == [OxF3f2f1f0,0xF7f6F5F4]
Long 0 == [OxF3f2f1f0]

1[0]

MsB LSB MSB LsB
_—
Print

Output on Sun:
Characters 0-7 == [0xf0,0xf1,0xf2,0x¥3,0xf4,0xF5,0xF6,0xF7]

Shorts 0-3 == [OxFOF1,0xF2f3,0xFAF5,0xF6F7]
Ints 0-1 == [OxFOFLF2F3,0xFAF5F6F7]
Long 0 == [OxFOFL1f2f3]

Carnegie Mellon

Byte Ordering on x86-64

Little Endian

0 fl 2 3 4 5 6 7
c[0] | c[1] | c[2] | c[3] | c[4] | c[5] | c[6] | c[7]
s[0] s[1] s[2] s[3]
i[0] if1]

10]

LSB

Print

Output on x86-64:

Characters 0-7 == [0xf0,0xf1,0xf2,0x¥3,0xf4,0x¥F5,0xF6,0xF7]

Shorts 0-3 == [0xF1f0,0xF3F2,0xF5F4,0xF7F6]
Ints 0-1 == [OxF3F2F1F0,0xF7F6F5F4]
Long 0 == [OxF7F6F5F4F3F2F1F0]

Today

m Structures

= Alignment

Unions

Memory Layout

Buffer Overflow
= Vulnerability
® Protection

Summary

m ArraysinC
® Contiguous allocation of memory
= Aligned to satisfy every element’s alighment requirement
= Pointer to first element
= No bounds checking
m Structures
= Allocate bytes in order declared
® Pad in middle and at end to satisfy alignment
= Unions
= OQverlay declarations
® Way to circumvent type system

Carnegie Mellon

not drawn to scale
IA32 Linux Memory Layout FF
Stack
8MB

m Stack 1

= Runtime stack (8MB limit)

= E.g., local variables
m Heap

® Dynamically allocated storage

= When call malloc(), calloc(), new()
m Data

= Statically allocated data

= E.g., arrays & strings declared in code
m Text t

= Executable machine instructions Heap

Data
= Read-only
Upper 2 hex digits 08 Text
= 8 bits of address 00
24

Carnegie Mellon Carnegie Mellon

not drawn to scale not drawn to scale
Memory Allocation Example & IA32 Example Addresses FF
Stack Stack
= l address range ~232 1
char big_array[1<<24]; /* 16 MB */
char huge_array[1<<28]; /* 256 MB */
_ $esp OxfFffbcdo
int beyond; p3 0x65586008
char *pl, *p2, *p3, *p4; pl 0x55585008
_ p4 0x1904a110
int useless() { return O0; } p2 0x1904a008
) i &p2 0x18049760
int mainQ) &beyond 0x08049744
{ big_array 0x18049780 80 t
pl = malloc(l <<28); /* 256 MB */ huge_array 0x08049760
p2 = malloc(1l << 8); /* 256 B */ mainZ) 0x080483c6
p3 = malloc(1l <<28); /* 256 MB */ 4 uselessQ) 0x08049744 Heap
p4 = malloc(l << 8); /* 256 B */ 5 final mallocQ) 0x006be166
/* Some print statements ... */ £ap
} Data Data
- Text malloc() is dynamically linked Text
Where does everything go? 88 address determined at runtime gg
25 26
not drawn to scale
x86-64 Example Addresses oooo7r — Today
acl
address range ~2°7
g l m Structures
= Alignment
$rsp OXx00007FFFFFF8d1T8)
p3 0x00002aaabaadd010 = Unions
pl 0x00002aaaaaadc010 = Memory Layout
p4 0x0000000011501120
p2 0x0000000011501010 m Buffer Overflow
&p2 0x0000000010500a60 = Vulnerability
&beyond 0x0000000000500a44 .
- " Protection
big_array 0x0000000010500a80 000030 t
huge_array 0x0000000000500a50
main() 0x0000000000400510
uselessQ) 0x0000000000400500 Heap
final malloc() 0x000000386ae6a170
Data
malloc() isdynamically linked Text
address determined at runtime 000000

Internet Worm and IM War

m November, 1988
® |nternet Worm attacks thousands of Internet hosts.
" How did it happen?

Internet Worm and IM War (cont.)

m August 1999
= Mpysteriously, Messenger clients can no longer access AIM servers.
® Microsoft and AOL begin the IM war:
= AOL changes server to disallow Messenger clients
= Microsoft makes changes to clients to defeat AOL changes.
= At least 13 such skirmishes.
" How did it happen?

m The Internet Worm and AOL/Microsoft War were both based
on stack buffer overflow exploits!
= many library functions do not check argument sizes.
= allows target buffers to overflow.

Carnegie Mellon

Internet Worm and IM War

= November, 1988
® Internet Worm attacks thousands of Internet hosts.
® How did it happen?
= July, 1999
= Microsoft launches MSN Messenger (instant messaging system).

= Messenger clients can access popular AOL Instant Messaging Service
(AIM) servers

30

Carnegie Mellon

String Library Code

= Implementation of Unix function gets()

/* Get string from stdin */
char *gets(char *dest)
{
int ¢ = getchar();
char *p = dest;
while (c = EOF && c I= "\n") {
*p++ = C;
c = getchar();
3
*p = "\0";
return dest;
}

= No way to specify limit on number of characters to read
m Similar problems with other library functions

= strcpy, strcat: Copy strings of arbitrary length
= scanf, fscanT, sscanT, when given %s conversion specification

32

Carnegie Mellon Carnegie Mellon

- — echo:
/ _CE‘ChOhL'"e / 80485c5: 55 push %ebp
el CENSO 80485c6: 89 e5 mov %esp ,%ebp
char buf[4]; /* Way too smalll */ 80485¢c8: 53 push %ebx
gets(buf); 80485c9: 83 ec 14 sub $0x14,%esp
puts(buf); 80485cc: 8d 5d f8 lea OxFFFFFFF8(%ebp) ,%ebx
80485cf: 89 1c 24 mov %ebx , (%besp)
= 80485d2: e8 9e ff ff ff call 8048575 <gets>
VOIdeiﬁ:)ES?ChO() { 80485d7: 89 1c 24 mov %ebx , (%esp)
3 ’ 80485da: €8 05 fe ff ff call 80483e4 <puts@plt>
- 80485df: 83 c4 14 add $0x14,%esp
unix>./bufdemo - b %eb
Type a string:1234567 8048592: S pop 0/°e Y
1234567 80485e3: 5d pop %ebp
80485e4: c3 ret
unix>./bufdemo
Type a string:12345678 call echo:
Segmentation Fault ol
80485eb: e8 d5 ff ff ff call 80485c5 <echo>
unix>./bufdemo 80485f0: c9 leave
Type a string:123456789ABC 80485F1: c3 ret
Segmentation Fault -
33 34
unix> gdb bufdemo
(gdb) bfeak echo
Buffer Overflow Stack Buffer Overflow e o s G
Breakpoir}t 1, 0x80485c9 in echo O
Before call to gets StaCk Example é?dﬂ’oﬂﬁ'}ﬁdé?g%bp
(gdb) print /x *(unsigned *)$ebp
Stack Frame $2 = OxFFFFd688
formain égdg)ogg&;sg *((unsigned *)$ebp + 1)
/* Echo Line */
void echo(Q) Before call to gets Before call to gets
Return Address { Stack Frame Stack Frame | OXTFFFfd688
Saved %ebp |« %ebp char buf[4]; /* Way too small! */ formain for main
Saved %ebx gets(gu?;
uts(buf);
63 12 [L
Stack F Return Address 08|04 85| f0
e echo: Saved %ebp TF | 77 d6 | 88 | OxFFFFd678
pushl %ebp # Save %ebp on stack Saved %ebx Saved %ebx
movl ‘%esp, %ebp
pushl %ebx # Save %ebx [SHE2NELNION buf XXlXXIXXlXX buf
Teal “8(iebp> Webx # Conpute. buf a5 Hobp-g stack Frame stack Frame
- s X u u l =
movl %ebx, (%esp) # Push buf on stack oy ze e oy ze e
call gets # Call gets 80485eb: e8 d5 FF FF FF call 80485c5 <echo>
S 80485f0: c9 leave

Carnegie Mellon

Buffer Overflow Example #1

Before call to gets Input 1234567
Stack Frame OxFFFdess Stack Frame OxFFffdess
formain formain

08|04 |85 f0 08|04 |85 f0

ff| £f|d6 | 88 |OxFFffd678 ff| £f| d6 | 88 |OxFFffd678
Saved %ebx 00|37|36|35

XX | xx | xx | xx| buf 34|33]|32|31]| buf

Stack Frame Stack Frame

for echo for echo

Overflow buf, and corrupt %ebx,
but no problem

Carnegie Mellon

Buffer Overflow Example #3

Before call to gets Input 123456789ABC
Stack Frame OxFFFFd6ss Stack Frame OxFFFd6ss
formain formain

08|04 (85| f0 08|04 |85|00

ff| ff|d6 | 88 |oxFFFFd678 43|42 | 41|39 |oxFFFfd678
Saved %ebx 38|37|36|35

XX | xx | xx | xx| buf 34]33[32|31] buf

Stack Frame Stack Frame

for echo for echo

Return address corrupted

80485eb: e8 d5 ff ff ff call 80485c5 <echo>
80485f0: c9 leave # Desired return point

Carnegie Mellon

Buffer Overflow Example #2

Before call to gets Input 12345678
Stack Frame OxFFFfdess Stack Frame OxFFFfdess
formain formain

08|04 [85]|f0 08|04 |85 f0

ff| £F|d6 | 88 |OXFFFfd678 ff| £F|d6 | 00 |OXFFFfd678
Saved %ebx 38|37|36|35

xx | xx [xx | xx | buf 34]33]32[31] buf

Stack Frame Stack Frame

for echo for echo

Base pointer corrupted

80485eb: e8 d5 ff ff ff call 80485c5 <echo>
80485f0: c9 leave # Set %ebp to corrupted value
80485f1: c3 ret

Carnegie Mellon

Malicious Use of Buffer Overflow
Stack after call to gets()

\
void foo(){ foo stack frame
barQ; return >
- address
¥ A B <
int barQ { data written pad
char buf[64]; by gets()
ets(buf);
C:l_) (i, exploit > bar stack frame
return ...; B code
}
J

Input string contains byte representation of executable code
Overwrite return address A with address of buffer B
When bar () executes ret, will jump to exploit code

10

Exploits Based on Buffer Overflows

m Buffer overflow bugs allow remote machines to execute
arbitrary code on victim machines

m Internet worm
= Early versions of the finger server (fingerd) used gets() to read the
argument sent by the client:
= finger droh@cs.cmu.edu
® Worm attacked fingerd server by sending phony argument:
= finger “exploit-code padding new-return-
address”

= exploit code: executed a root shell on the victim machine with a
direct TCP connection to the attacker.

Carnegie Mellon

Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT)

From: Phil Bucking <philbucking@yahoo.com>

Subject: AOL exploiting buffer overrun bug in their own software!
To: rms@pharlap.com

Mr. Smith,

I am writing you because 1 have discovered something that I think you
might find interesting because you are an Internet security expert with
experience in this area. | have also tried to contact AOL but received
no response.

1 am a developer who has been working on a revolutionary new instant
messaging client that should be released later this year.

It appears that the AIM client has a buffer overrun bug. By itself
this might not be the end of the world, as MS surely has had its share.
But AOL is now *exploiting their own buffer overrun bug* to help in

its efforts to block MS Instant Messenger.

Since you have significant credibility with the press | hope that you
can use this information to help inform people that behind AOL"s
friendly exterior they are nefariously compromising peoples” security.

Sincerely, . .
Phil Bucking) It was later determined that this
Founder, Bucking Consulting email originated from within
philbucking@yahoo.com .

Microsoft!

Carnegie Mellon

Exploits Based on Buffer Overflows

m Buffer overflow bugs allow remote machines to execute
arbitrary code on victim machines

= IMWar
= AOL exploited existing buffer overflow bug in AIM clients
= exploit code: returned 4-byte signature (the bytes at some location in
the AIM client) to server.
= When Microsoft changed code to match signature, AOL changed
signature location.

Carnegie Mellon

Avoiding Overflow Vulnerability

/* Echo Line */

void echo()

{
char buf[4]; /* Way too small! */
fgets(buf, 4, stdin);
puts(buf);

3

m Use library routines that limit string lengths
= fgetsinstead of gets
= strncpy instead of strcpy
= Don’t use scanT with %s conversion specification
= Use Fgets to read the string
= Oruse %NS where n is a suitable integer

11

Carnegie Mellon Carnegie Mellon

System-Level Protections Stack Canaries

= Randomized stack offsets
® At start of program, allocate random amount
of space on stack

= Makes it difficult for hacker to predict
beginning of inserted code

unix> gdb bufdemo m Idea
(@l loreEs cene = Place special value (“canary”) on stack just beyond buffer
(gdb) run

(gdb) print /x $ebp
$1 = OxFFffc638

= Check for corruption before exiting function

m GCC Implementation
= —fstack-protector

db) run
o = —fstack-protector-all

(gdb) print /x $ebp

m Nonexecutable code segments $2 = OxFFffbbos

® |n traditional x86, can mark region of memory
as either “read-only” or “writeable”

unix>./bufdemo-protected

(gdb) run u ufdeno-pro
(gdb) print /x $ebp 1)2/22 a string:

$3 = Oxffffc6a8

= Can execute anything readable

unix>./bufdemo-protected

= X86-64 added explicit “execute” permission Type a string:12345

Carnegie Mellon

*** stack smashing detected ***

Carnegie Mellon

Protected Buffer Disassembly echo: Setting Up Canary
804864d: 55 push %ebp
804864e: 89 e5 mov %esp,%ebp Before call to gets /* Echo Line */
8048650: 53 push %ebx Stack Frame ‘{’O'd echoQ
8048651: 83 ec 14 sub $0x14,%esp e e . .
8048654: 65 al 14 00 00 00 mov %gs:Ox14,%eax L e R A L
804865a: 89 45 T8 mov Y%eax , OXFFFFFFF8 (%ebp) puts(buf);
804865d: 31 cO Xor heax ,%eax Return Address 1S
804865f: 8d 5d f4 lea OXFFFFFFF4(%ebp) , %ebx Saved %ebp _|— tebp
8048662: 89 1c 24 mov %ebx , (%esp) Saved ebx
8048665: e8 77 ff ff ff call 80485el <gets>
804866a: 89 1c 24 mov %ebx , (%esp) (CamEY
804866d: e8 ca fd ff ff call 804843c <puts@plt> [31[[2]|[11{[0] buf
8048672: 8b 45 f8 mov OXFFFFFFF8(%ebp) , %eax Stack Frame
8048675: 65 33 05 14 00 00 00 xor %gs :0x14 ,%eax o @i echo:
804867c: 74 05 je 8048683 <echo+0x36> - .-
804867e: €8 a9 fd ff ff call 804842c <FAIL> movl %gs:20, %eax # Get canary
8048683: 83 c4 14 add $0x14,%esp oS fheaxiind(tebp) BN IRt ongStack
8048686- 5b pop %ebx xorl %eax, Y%eax # Erase canary
8048687: 5d pop %ebp
8048688: c3 ret

47 48

12

Carnegie Mellon

Checking Canary

Before call to gets /* Echo Line */
void echo()

Stack Frame

formain char buf[4]; /* Way too smalll */
gets(buf);
puts(buf);
Return Address 3

Saved %ebp | %ebp
Saved %ebx
Canary

C31I021{r21jro1| but

Stack Frame

for echo el
mov 1 -8(%ebp), %eax # Retrieve from stack
xorl %gs:20, %eax # Compare with Canary
Jje .L24 # Same: skip ahead
call __stack_chk_fail # ERROR
.L24:

Worms and Viruses

= Worm: A program that
= Can run by itself
® Can propagate a fully working version of itself to other computers

m Virus: Code that
® Add itself to other programs
® Cannot run independently

m Both are (usually) designed to spread among computers
and to wreak havoc

Carnegie Mellon

Canary Example

Before call to gets Input 1234
Stack Frame Stack Frame
formain formain
Return Address Return Address
Saved %ebp f——%ebp Saved%ebp [~ %ebp
Saved %ebx Saved %ebx
03|e3|7d|00 03|e3|7d]|00
[B121{[17[0]| buf 34[33[32(31|buf
Stack Frame Stack Frame
for echo for echo

(gdb) break echo
ggggg gzgpi 3 Benign corruption!

(gdb) print /x *((unsigned *) $ebp - 2) (?Ilows programmers to make
$1 = 0x3e37d00 silent off-by-one errors)

Today

m Structures
= Alignment
= Unions
= Memory Layout
m Buffer Overflow

= Vulnerability
" Protection

13

