Carnegie Mellon Carnegie Mellon

Today: Machine Programming I: Basics
m History of Intel processors and architectures
Machine-Level Programming I: Basics m C, assembly, machine code
m Assembly Basics: Registers, operands, move
15-213/18-213: Introduction to Computer Systems m Intro to x86-64
5th Lecture, Jan. 31, 2012
Instructors:
Todd C. Mowry & Anthony Rowe
1 2
Intel x86 Processors Intel x86 Evolution: Milestones
m Totally dominate laptop/desktop/server market Name Date Transistors MHz
= 8086 1978 29K 5-10
m Evolutionary design = First 16-bit processor. Basis for IBM PC & DOS
= Backwards compatible up until 8086, introduced in 1978 = 1MB address space
= Added more features as time goes on = 386 1985 275K 16-33
® First 32 bit processor , referred to as IA32
m Complex instruction set computer (CISC) ® Added “flat addressing”
® Many different instructions with many different formats ® Capable of running Unix
= But, only small subset encountered with Linux programs = 32-bit Linux/gcc uses no instructions introduced in later models
= Hard to match performance of Reduced Instruction Set Computers m Pentium 4F 2004 125M 2800-3800
(RISC) ® First 64-bit processor, referred to as x86-64
® But, Intel has done just that! m Core i7 2008 731M 2667-3333
= Interms of speed. Less so for low power. .
® Our shark machines
3 4

Carnegie Mellon

Intel x86 Processors: Overview
X86-16 8086
286
X86-32/1A32 386
486
Pentium
MMX Pentium MMX
SSE Pentium Il
SSE2 Pentium 4
SSE3 Pentium 4E
X86-64 / EM64t Pentium 4F
Core 2 Duo
SSE4 Corei7
IA: often redefined as latest Intel architecture
5

Carnegie Mellon

x86 Clones: Advanced Micro Devices (AMD)

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4
= Developed x86-64, their own extension to 64 bits

Carnegie Mellon

Intel x86 Processors, contd.
m Machine Evolution

= 386 1985 0.3M

= Pentium 1993 3.1M :
® Pentium/MMX 1997 45M SRR Gy e tn Te T4 R
® PentiumPro 1995 6.5M :
= Pentium IlI 1999 8.2M

= Pentium 4 2001 42M

n

Core 2 Duo 2006 291M Shared L3 Cache
= Corei?7 2008 731M -
m Added Features
® |nstructions to support multimedia operations
= Parallel operations on 1, 2, and 4-byte data, both integer & FP
® |nstructions to enable more efficient conditional operations
m Linux/GCC Evolution
= Two major steps: 1) support 32-bit 386. 2) support 64-bit x86-64

Carnegie Mellon

Intel’s 64-Bit

m Intel Attempted Radical Shift from IA32 to 1A64
= Totally different architecture (Itanium)
= Executes IA32 code only as legacy
= Performance disappointing
m AMD Stepped in with Evolutionary Solution
= x86-64 (now called “AMD64")
Intel Felt Obligated to Focus on I1A64
® Hard to admit mistake or that AMD is better
m 2004: Intel Announces EM64T extension to 1A32
= Extended Memory 64-bit Technology
= Almost identical to x86-64!

m All but low-end x86 processors support x86-64

= But, lots of code still runs in 32-bit mode

Our Coverage

m |1A32

® The traditional x86

= shark> gcc —-m32 hello.c
= x86-64

® The emerging standard

= shark> gcc hello.c

= shark> gcc —m64 hello.c

m Presentation
® Book presents IA32 in Sections 3.1—3.12
= Covers x86-64in 3.13
= We will cover both simultaneously
= Some labs will be based on x86-64, others on IA32

Definitions

m Architecture: (also ISA: instruction set architecture) The
parts of a processor design that one needs to understand
to write assembly code.

= Examples: instruction set specification, registers.
m Microarchitecture: Implementation of the architecture.
= Examples: cache sizes and core frequency.

m Example ISAs (Intel): x86, IA

Carnegie Mellon

Today: Machine Programming I: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move
m Intro to x86-64

Carnegie Mellon

Assembly Programmer’s View

CPU Memor
. Addresses y
Registers Dota et
— N > Data
Condition | Instructions Stack
Codes «

Programmer-Visible State
= PC: Program counter * Memory
= Address of next instruction * Byte addressable array
« Called “EIP” (IA32) or “RIP” (x86-64)
* Register file = Stack to support procedures

= Code and user data

= Heavily used program data
= Condition codes

= Store status information about
most recent arithmetic operation
= Used for conditional branching

Turning C into Object Code

® Codeinfiles pl.c p2.c

= Compile with command: gcc —01 pl.c p2.c -0 p
= Use basic optimizations (-01)
= Put resulting binary in file p

text | C program (pl.c p2.c) |

Compiler (gcc -S)

text | Asm program (p1.s p2.s) |

Assembler (gcc or as)

binary | Object program (p1.0 p2.0) | Static libraries
(-a)

Linker (gcc or 1d)

binary | Executable program (p)

Carnegie Mellon

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, or 4 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes

m No aggregate types such as arrays or structures

® Just contiguously allocated bytes in memory

Compiling Into Assembly

C Code Generated IA32 Assembly
int sum(int x, int y) sum:
{ pushl %ebp
int t = x+y; movl %esp,%ebp
return t; movl 12(%ebp) ,%eax
} addl 8(%ebp) ,%eax
popl %ebp
/ret

Some compilers use
instruction “leave”

Obtain with command
/usr/local/bin/gcc —01 -S code.c

Produces file code.s

Assembly Characteristics: Operations

m Perform arithmetic function on register or memory data

m Transfer data between memory and register
® |load data from memory into register
= Store register data into memory

m Transfer control
= Unconditional jumps to/from procedures
= Conditional branches

Object Code

Code for sum
m Assembler

0x401040 <sum>: .
" Translates -Sinto .0

0x55
0x89 = Binary encoding of each instruction
8ng = Nearly-complete image of executable code
X
0x45 . Missing linkages between code in different
ox0c files
8X2§ m Linker
X
= Resolves references between files
0x08 ¢ Total of 11 bytes
Ox5d v = Combines with static run-time libraries

Oxc3 * Eachinstruction « E.g., code formal loc, printf
1,2, or 3 bytes 8 P

. I . .
« Starts at address Some libraries are dynamically linked

0x401040 = Linking occurs when program begins
execution

Disassembling Object Code

Disassembled

080483c4 <sum>:

80483c4: 55 push %ebp
80483c5: 89 e5 mov %esp ,%ebp

80483c7: 8b 45 Oc mov Oxc(%ebp) , %eax
80483ca: 03 45 08 add 0x8(%ebp) , %eax
80483cd: 5d pop %ebp

80483ce: c3 ret

m Disassembler
objdump -d p
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
® Produces approximate rendition of assembly code
= Can be run on either a.out (complete executable) or .0 file

Carnegie Mellon

Machine Instruction Example
m C Code
= Add two signed integers
m Assembly
= Add 2 4-byte integers
| = “Long” words in GCC parlance

|int t = xty;

| addl 8(%ebp) ,%eax

Similar to expression: = Same instruction whether signed

X +=y or unsigned
More precisely: ® Operands:
int eax; X: Register %heax
int *ebp; y: Memory M[%ebp+8]
eax += ebp[2] t: Register Y%eax
—Return function value in %eax
0x80483ca: 03 45 08 | = Object Code

® 3-byte instruction
= Stored at address 0x80483ca

Carnegie Mellon

Alternate Disassembly
Disassembled

Object
0x401040: -
0x55 Dump of assembler code for function sum:
0x89 0x080483c4 <sum+0>: push %ebp
oxe5 0x080483c5 <sum+1>: mov %esp , %ebp
0x8b 0x080483c7 <sum+3>: mov Oxc(%ebp) , %eax
0x45 0x080483ca <sum+6>: add 0x8(%ebp) , %eax
0x0c 0x080483cd <sum+9>: pop %ebp
0x03 0x080483ce <sum+10>: ret
0x45
0x08
0x5d m Within gdb Debugger
0xc3 gdb p

disassemble sum

= Disassemble procedure
x/11xb sum
= Examine the 11 bytes starting at sum

Carnegie Mellon

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD . EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp
30001001: 8b ec mov %esp ,%ebp
30001003: 6a ff push $OXFFFFFFFT

30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc91l

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source

Carnegie Mellon

Integer Registers (I1A32) Origin
(mostly obsolete)
| %eax Y%ax | %ah | %al | accumulate

° | %ecx %ex [theh | %l [counter

@

o 1

£ | Y%edx wx [%dh | %dl | data

(=3 1

- = -

§ | |%ebx wbx [wbh | %bl | bese

H |

[

) ~ N 1 our
[tesi it |
|thedi vl | | e

| stack
| %esp %sp | | pointer
| base
| ebp #bp | | pointer
\ v)
16-bit virtual registers
(backwards compatibility) »

Today: Machine Programming I: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move
m Intro to x86-64

Carnegie Mellon

Moving Data: IA32 [%eax |
m Moving Data [%ecx |
mov 1 Source, Dest: | Y%edx I

0
m Operand Types | hebx |
= Immediate: Constant integer data | %esi I
» Example: $0x400, $-533 [%edi |
= Like C constant, but prefixed with “$~ | %esp |

= Encoded with 1, 2, or 4 bytes

[%ebp |

= Register: One of 8 integer registers
= Example: %eax, %edx
= But%esp and %ebp reserved for special use
= Others have special uses for particular instructions

" Memory: 4 consecutive bytes of memory at address given by register
= Simplest example: (%eax)
= Various other “address modes”

Carnegie Mellon

mov | Operand Combinations

Source Dest Src,Dest C Analog

e Reg movl $0x4,%eax temp = 0x4;
Imm
Mem movl $-147,(%eax) *p = -147;

movl < Reg Reg movl %eax,%edx temp2 = templ;

Mem movl %eax, (%edx) *p = temp;

\Aﬂen1 Reg movl (%eax),%edx temp = *p;

Cannot do memory-memory transfer with a single instruction

Using Simple Addressing Modes

swap:

5 = - pushl %ebp
void swap(int *xp, int *yp) movl %esp,%ebp Set
€ int 10 = *xp; pushl %ebx Up

int tl = *yp;

:«;p = tl: P movl 8(%ebp), %edx

*yp = t0; movl 12(%ebp), %ecx

0 0

3 movl (%edx), %ebx Body

movl (%ecx), %eax
movl %eax, (%edx)
movl %ebx, (%ecx)

popl %ebx
popl %ebp Finish

ret

Carnegie Mellon

Simple Memory Addressing Modes

= Normal (R) Mem[Reg[R]]
= Register R specifies memory address

movl (%ecx) ,%eax

Mem[Reg[R]+D]
= Register R specifies start of memory region

m Displacement D(R)

= Constant displacement D specifies offset

movl 8(%ebp) ,%edx

Using Simple Addressing Modes

swap:

- = — pushl %ebp
void swap(int *xp, int *yp) movl %esp,%ebp Set
¢ int t0 = *xp; pushl %ebx Up

int tl1 = ;

:«Qp = tl_*yp movl 8(%ebp), %edx

*yp = t0; movl 12(%ebp), %ecx

0 0

¥ movl (%edx), %ebx Body

movl (%ecx), %eax
movl %eax, (%edx)
movl %ebx, (%ecx)

popl %ebx
popl ‘%ebp Finish

ret

Carnegie Mellon Carnegie Mellon

Address
Understanding Swap Understanding Swap 123 | ox124
456 0x120
void swap(int *xp, int *yp) ° stack Ox1llc
L] --
{ int t0 = * ° (in memory) eax 0x118
n = 7Xp; Offset Offset
int tl = *yp; - 0x114
*yp = t0;
¥ g ebx| | B e
Rtn adr Rtn adr
= 0x108
0
0 |old %ebpf— %ebp 0 —0
= %ebp 0x104
Regter——Vals -4 |old %ebx— %esp Yedi - -4 0x100
%esp
%edx xp movl 8(%ebp), %edx # edx = xp
0
Y%ebx t0 : B movl (%edx), %ebx # ebx = *xp (t0)
9 movl 12(%ebp), %ecx # ecx = yp movl (%ecx), %eax # eax = *yp (tl)
eax tl movl (%edx), %ebx # ebx = *xp (t0) ; oyp
0 0 * -
B movl %eax, (%edx) # *xp = t1
movl (%ecx), %eax # eax = *yp (tl1) movl Y%ebx. (hecx) # *yp = 10
movl %eax, (%edx) # *xp = tl ’
movl %ebx, (%ecx) # *yp = t0
29 30
. Address . Address
Understanding Swap 123 | ox124 Understanding Swap 123 | ox124
456 0x120 456 0x120
Ox1lc Ox1llc
[%ecx| | yp 12 gxizi 0x110 0x120 yp 12 gxizz 0x110
-%ebx- * 4 R:'n adr gxigz ebx - * 4 R:'n adr gxigz
0 X 0 X
ool s feai | .
- 0x100 - 0x100
%esp %esp
-- movl 8(%ebp), %edx # edx = xp -- movl 8(%ebp), %edx # edx = xp
%ebp[0x104 movl 12(%ebp), %ecx # ecx = yp %ebp| 0x104 movl 12(%ebp), %ecx # ecx = yp
movl (%edx), %ebx # ebx = *xp (t0) movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (tl1) movl (%ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = t1 movl %eax, (%edx) # *xp = tl1
movl %ebx, (%ecx) # *yp = t0 movl %ebx, (%ecx) # *yp = 10

Carnegie Mellon

Understanding Swap

Y%eax

%edx| O0x124

%ecx| 0x120

0

S
®
(%)
O

Offset

yp 12
Xp 8
4

%ebp — 0
-4

mov 1

0x104 movl

%ebp

movl

mov 1
mov 1

mov 1

8(%ebp), %edx #
12(%ebp), %ecx #
(edx), %ebx #
(%ecx), %eax #
Y%eax, (%edx) #
%ebx, (%ecx) #

Address
123 0x124
456 0x120
Oxllc
0x118
0x114
0x120 0x110
0x124 0x10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl1)
*xXp = tl
*yp = t0

Carnegie Mellon

Understanding Swap

%eax 456

%edx| O0x124

%ecx| 0x120

=

@

n
!

%edi

%esp

Offset

yp 12
Xp 8
4
%ebp — Y
-4

movl

0x104 movl

%ebp

8(%ebp), %edx
12(%ebp), %ecx

movl

movl
movl

(%edx) , %ebx
(%ecx), %eax
%eax, (Chedx)

Understanding Swap

Y%eax 456

%edx| O0x124

%ecx| 0x120

=
0]
(%]

Y%edi

X
@
(%)
©

%ebp| 0x104

mov 1
mov 1
mov 1
mov 1
movl
mov 1

Offset

yp 12
Xp 8
4

%ebp — 0
-4

8(%ebp), %edx #
12(%ebp), %ecx #
(%edx), %ebx #
(%ecx), Y%eax #
%eax, (%edx) #
%ebx, (%ecx) #

Address
456 0x124
456 0x120
Oxllc
0x118
0x114
0x120 0x110
0x124 0x10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

movl %ebx, (%ecx)

H* W HHHH

Address
123 0x124
456 0x120
Ox1llc
0x118
0x114
0x120 0x110
0x124 0x10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xXp = tl
*yp = t0

Carnegie Mellon

Understanding Swap

%eax 456

Hﬁi’lllllll

e movl 8(%ebp), %edx

%ebp movl 12(%ebp), %ecx
movl (%edx), %ebx
movl (%ecx), %eax
movl %eax, (%edx)
movl %ebx, (%ecx)

Offset
123 xp i
hesi| | —
§

#
#
#
#
#
#

Address
456 0x124
123 0x120
Ox1llc
0x118
0x114
0x120 0x110
0x124 0x10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

Carnegie Mellon

Complete Memory Addressing Modes

m Most General Form
D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 8 integer registers
® Ri: Index register: Any, except for %esp
= Unlikely you’d use %ebp, either
=S Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem|[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem|[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

Carnegie Mellon

Data Representations: IA32 + x86-64

m Sizes of C Objects (in Bytes)

= CData Type Generic 32-bit Intel IA32 Xx86-64
= unsigned 4 4 4
- int 4 4 4
= longint 4 4 8
= char 1 1 1
= short 2 2 2
= float 4 4 4
= double 8 8 8
= long double 8 10/12 16
= char * 4 4 8

Carnegie Mellon

Today: Machine Programming I: Basics

History of Intel processors and architectures
C, assembly, machine code
Assembly Basics: Registers, operands, move

| |
| |
| |
= Intro to x86-64

Carnegie Mellon

x86-64 Integer Registers

|%rbp %ebp | |%r15 risd

%rax eax		% rs red
%rbx ebx		% ro %rod
%rcx %ecx		%r10 %ri0d
%rdx ‘%edx		%r11 %riid
%rsi ‘%esi		%r12 wri2d
%rd i hedi		%r13 wr13d
%rsp [esp		%r14 [wriad

|

= Extend existing registers. Add 8 new ones.
= Make %ebp/%rbp general purpose

10

Instructions

m Long word | (4 Bytes) <> Quad word g (8 Bytes)

m New instructions:
= movl = movq
= addl - addq
= sall - salq
= etc.

m 32-bit instructions that generate 32-bit results
= Set higher order bits of destination register to 0
= Example: addl

Carnegie Mellon

64-bit code for swap
swap:
void swap(int *xp, int *yp) fjept
int t0 = *xp; movl (%rdi), %edx
int tl1 = *yp; movl (%rsi), %eax
*xp = tl; movl %eax, (%rdi) Body
*yp = t0; movl %edx, (%rsi)
3
ret } Finish

m Operands passed in registers (why useful?)
= First (xp) in %rdi, second (yp) in %rsi
" 64-bit pointers
m No stack operations required
m 32-bit data
= Data held in registers %eax and %edx
= movl operation

Carnegie Mellon

32-bit code for swap
swap:
- — — pushl %ebp
\{/0|d swap(int *xp, int *yp) movl %esp,%ebp Set
int t0 = *xp; pushl %ebx Up
int t1 = *yp;
*xp = tl; movl 8(%ebp), %edx
*yp = t0; movl 12(%ebp), %ecx
3 movl (%edx), %ebx
movl (%ecx), %eax Body
movl %eax, (%edx)
movl %ebx, (%ecx)
popl %ebx
popl %ebp Finish
ret

Carnegie Mellon

64-bit code for long int swap

swap_1I:
void swap(long *xp, long *yp) } f;:,t
{) (0 = e movq (wrdi), %rdx
long t1 = *yp; movq (%rsi), %rax
*xp = t1; movq wrax, (wrdi) - Body
*yp = t0; mov(q %rdx, (%rsi)
¥
ret } Finish
m 64-bit data

= Data held in registers %rax and %rdx
" mov(operation

“ n
.

q” stands for quad-word

Carnegie Mellon

Machine Programming I: Summary

m History of Intel processors and architectures
® Evolutionary design leads to many quirks and artifacts
m C, assembly, machine code

® Compiler must transform statements, expressions, procedures into
low-level instruction sequences

m Assembly Basics: Registers, operands, move

® The x86 move instructions cover wide range of data movement
forms

m Intro to x86-64

= A major departure from the style of code seen in IA32

12

