Carnegie Mellon

Machine-Level Programming |: Basics

15-213/18-213: Introduction to Computer Systems
5th Lecture, Jan. 31, 2012

Instructors:
Todd C. Mowry & Anthony Rowe

Today: Machine Programming |I: Basics

History of Intel processors and architectures
C, assembly, machine code
Assembly Basics: Registers, operands, move

N
N
N
m Intro to x86-64

Carnegie Mellon

Intel x86 Processors

m Totally dominate laptop/desktop/server market

m Evolutionary design
= Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on

m Complex instruction set computer (CISC)
" Many different instructions with many different formats
= But, only small subset encountered with Linux programs

" Hard to match performance of Reduced Instruction Set Computers
(RISC)

= But, Intel has done just that!

= |In terms of speed. Less so for low power.

Carnegie Mellon

Intel x86 Evolution: Milestones

Name Date Transistors MHz

m 8086 1978 29K 5-10
® First 16-bit processor. Basis for IBM PC & DOS
= 1MB address space

m 386 1985 275K 16-33
® First 32 bit processor , referred to as 1A32
= Added “flat addressing”
= Capable of running Unix
= 32-bit Linux/gcc uses no instructions introduced in later models

m Pentium4F 2004 125M 2800-3800
= First 64-bit processor, referred to as x86-64
m Corei?7 2008 731M 2667-3333

® Qur shark machines

Intel x86 Processors: Overview

X86-16 8086
286
X86-32/1A32 386
486
Pentium
MMX Pentium MMX
SSE Pentium Illl
SSE2 Pentium 4
SSE3 Pentium 4E
X86-64 / EM64t Pentium 4F
Core 2 Duo
SSE4 Corei7

IA: often redefined as latest Intel architecture

Carnegie Mellon

Intel x86 Processors, contd.
m Machine Evolution

‘Integrated Memory Controller;3:Ch DDR3:

= 386 1985 0.3M

= Pentium 1993 3.1M

" Pentium/MMX 1997 4.5M Core 0 Core 1 Core2 Core3
= PentiumPro 1995 6.5M

= Pentium Il 1999 8.2M

" Pentium 4 2001 42M 0]

= Core 2 Duo 2006 291M L Shared L3 Cache

= Corei7/ 2008 731M

m Added Features
" |nstructions to support multimedia operations
= Parallel operations on 1, 2, and 4-byte data, both integer & FP
" |nstructions to enable more efficient conditional operations

m Linux/GCC Evolution
= Two major steps: 1) support 32-bit 386. 2) support 64-bit x86-64

Carnegie Mellon

x86 Clones: Advanced Micro Devices (AMD)

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4
= Developed x86-64, their own extension to 64 bits

Carnegie Mellon

Intel’s 64-Bit
m Intel Attempted Radical Shift from IA32 to 1A64

= Totally different architecture (Itanium)
= Executes IA32 code only as legacy
= Performance disappointing

m AMD Stepped in with Evolutionary Solution
= x86-64 (now called “AMD64”)

m Intel Felt Obligated to Focus on I1A64
®" Hard to admit mistake or that AMD is better

m 2004: Intel Announces EM64T extension to I1A32

= Extended Memory 64-bit Technology
= Almost identical to x86-64!

m All but low-end x86 processors support x86-64
= But, lots of code still runs in 32-bit mode

Our Coverage

m IA32

" The traditional x86
= shark> gcc —-m32 hello.c

m Xx86-64

" The emerging standard
= shark> gcc hello.c
= shark> gcc —m64 hello.c

m Presentation
= Book presents IA32 in Sections 3.1—3.12
= Covers x86-64 in 3.13

= We will cover both simultaneously
= Some labs will be based on x86-64, others on IA32

Today: Machine Programming |I: Basics

History of Intel processors and architectures
C, assembly, machine code
Assembly Basics: Registers, operands, move

N
N
N
m Intro to x86-64

10

Carnegie Mellon

Definitions

m Architecture: (also ISA: instruction set architecture) The
parts of a processor design that one needs to understand
to write assembly code.

= Examples: instruction set specification, registers.

m Microarchitecture: Implementation of the architecture.

= Examples: cache sizes and core frequency.

m Example ISAs (Intel): x86, IA

11

Carnegie Mellon

Assembly Programmer’s View

CPU
Registers
PC
Condition
Codes

Programmer-Visible State

" PC: Program counter

= Address of next instruction

Memory
Addresses
>
Data Code
< > Data
p Instructions Stack
" Memory

= Called “EIP” (IA32) or “RIP” (x86-64)

= Register file

= Heavily used program data

= Condition codes

= Store status information about
most recent arithmetic operation

= Used for conditional branching

= Byte addressable array

» Code and user data

= Stack to support procedures

12

Turning C into Object Code

= Codeinfiles pl.c p2.c

= Compile with command: gcc —01 pl.c p2.c -0 p
= Use basic optimizations (-01)
= Put resulting binary in file p

text C program (pl.c p2.c)

Compiler (gcc -S)

text Asm program (pl.s p2.s)

Assembler (gcc or as)

binary Object program (p1.0 p2.0) Static libraries
(-a)

Linker (gcc or 1d)

binary Executable program (p)

13

Compiling Into Assembly

Carnegie Mellon

C Code Generated IA32 Assembly
int sum(int x, Int y) sum:
{ pushl %ebp

iInt t = X+y;
return t;

}

Some compilers use
instruction “leave”

Obtain with command

movl %esp,%ebp
movl 12(%ebp) ,%eax
addl 8(%ebp) ,%eax
popl %ebp

/ ret

/

/usr/local/bin/gcc 01 -S code.c

Produces file code.s

14

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, or 4 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes

m No aggregate types such as arrays or structures

= Just contiguously allocated bytes in memory

15

Carnegie Mellon

Assembly Characteristics: Operations

m Perform arithmetic function on register or memory data

m Transfer data between memory and register
" |Load data from memory into register
= Store register data into memory

m Transfer control
= Unconditional jumps to/from procedures
= Conditional branches

16

Carnegie Mellon

Object Code

Code for sum

m Assembler

0x401040 <sum>:

0x55
0x89
Oxe5
0x8b
0x45
0Ox0c
0x03
0x45
0x08
Ox5d
0xc3

" Translates .S into .0
= Binary encoding of each instruction
= Nearly-complete image of executable code

= Missing linkages between code in different
files

m Linker

®= Resolves references between files

* Total of 11 bytes " Combines with static run-time libraries

* Each instruction - E.g., code formal loc, printf

1, 2, or 3 bytes

e Starts at address = Some libraries are dynamically linked

0x401040 = Linking occurs when program begins
execution

17

Carnegie Mellon

Machine Instruction Example

_ m C Code
Int t = xX+y; = Add two signed integers
m Assembly
= Add 2 4-byte integers
addl 8(%ebp) ,%eax

= “Long” words in GCC parlance

Similar to expression: = Same instruction whether signed

X +=y or unsigned

More precisely: = Operands:

Int eax; X: Register %eax

int *ebp; y: Memory M[%ebp+8]
eax += ebp[2] t: Register Y%eax

—Return function value in %eax
0x80483ca: 03 45 08 m Object Code
= 3-byte instruction
= Stored at address Ox80483ca

18

Disassembling Object Code

Disassembled

080483c4 <sum>:

80483c4: 55 push %ebp

80483c5: 89 e5 mov %esp ,%ebp
80483c7: 8b 45 Oc mov Oxc(%ebp) , %eax
80483ca: 03 45 08 add Ox8 (%ebp) , %eax
80483cd: 5d pop %ebp

80483ce: c3 ret

m Disassembler
objdump -d p
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
" Produces approximate rendition of assembly code
® Can be run on either a.out (complete executable) or . 0 file

19

Carnegie Mellon

Alternate Disassembly
Disassembled

Object
0x401040:
0x55 Dump of assembler code for function sum:
0x89 0x080483c4 <sum+0>: push %ebp
oxe5 0x080483c5 <sum+1>: mov %esp,%ebp
0x8b 0x080483c7 <sum+3>: mov Oxc (%ebp) ,%eax
0x45 0x080483ca <sum+6>: add Ox8 (%ebp) , %eax
0x0cC 0x080483cd <sum+9>: pop %ebp
0x03 0x080483ce <sum+10>: ret
0x45
0x08
0x5d m Within gdb Debugger
Oxc3 gdb p

disassemble sum

= Disassemble procedure
x/11xb sum

= Examine the 11 bytes starting at sum

20

Carnegie Mellon

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD . EXE: file format peil-1386

No symbols 1n "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp
30001001: 8b ec mov %esp ,%ebp
30001003: 6a ff push $OXFFFFFFFT

30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc9l

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source

21

Today: Machine Programming |I: Basics

History of Intel processors and architectures
C, assembly, machine code
Assembly Basics: Registers, operands, move

N
N
N
m Intro to x86-64

22

Carnegie Mellon

Integer Registers (I1A32) Origin

(mostly obsolete)

—

%eax %ax %ah %al accumulate
° %ecx %ex | %ch %l counter
o
= %edx %dx [%dh %d data
Q.
=2 <
§ %hebx %bx | %bh Y base
gJo B = source
%esi %si oure
%edi %di destination
) .
stack
0 0
EEip hsp pointer
base
0 0
4ebp Hop pointer
\)
Y

16-bit virtual registers
(backwards compatibility) 23

Carnegie Mellon

Moving Data: IA32 Yheax

. 0
m Moving Data hecX
mov | Source, Dest: %edx

0
m Operand Types hebx
" mmediate: Constant integer data hesi
= Example: $0x400, $-533 Yedi
= Like C constant, but prefixed with “$ %esp

= Encoded with 1, 2, or 4 bytes

%ebp

= Register: One of 8 integer registers
= Example: %eax, %edx
= But%esp and %ebp reserved for special use
= Others have special uses for particular instructions

" Memory: 4 consecutive bytes of memory at address given by register
= Simplest example: (%eax)

= Various other “address modes”

24

Carnegie Mellon

moVv 1l Operand Combinations

Source Dest Src,Dest C Analog
4 Reg movl $0x4,%eax temp = 0x4;
Imm
Mem movl $-147,(%eax) *p = -147;

0 0 _ _
movl < Reg Reg movl %eax,%edx temp2 = templ;
Mem movl %eax, (%edx) *p = temp;

N Mem Reg movl (%eax),%edx temp = *p;

Cannot do memory-memory transfer with a single instruction

25

Carnegie Mellon

Simple Memory Addressing Modes

m Normal (R) Mem[Reg[R]]
= Register R specifies memory address

movl (%ecx) ,%eax

m Displacement D(R) Mem[Reg[R]+D]
= Register R specifies start of memory region
" Constant displacement D specifies offset

movl 8(%ebp) ,%edx

26

Using Simple Addressing Modes

swap:
_ _ _ pushl %ebp A
void swap(int *xp, int *yp) movl %esp,Y%ebp . Set
{ int t0 = *xp: pushl %ebx J Up
int tl = *yp;
*xp = t1; movl 8(%8bp), %edx
*yp = 10: movl 12(%ebp), %ecx
1 movl (%edx), %ebx
movl (%ecx), %eax " Body
movl %eax, (%edx)
movl %ebx, (%ecx) Y

popl %ebx
popl %ebp Finish
ret

27

Using Simple Addressing Modes

swap:

void swap(int *xp, int *yp)
{

Int t0 = *xp;

int tl = *yp; A

*xp = t1; mov 8(%ebp), %edx

*yp = 10; movl 12(%ebp), %ecx

0 0

1 movl (%edx), %ebx > Body

movl (%ecx), %eax
movl %eax, (%edx)
movl %ebx, (%ecx) y

28

Understanding Swap

void swap(int *xp, int *yp) : Stack

{ : i
int t0 = *xp; Offset) (m memory)
int tl = *yp;
*yp = t0; 8 Xp

} 4 Rtn adr

O |Old %ebpl—— %ebp
-4 |Old %ebx—— %esp

Register Value

%edx Xp

%ecx yp

thebx 0 movl 8(%ebp), %edx # edx = xp

O movl 12(%ebp), %ecx # ecx = yp

heax tl movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp = t0

29

Carnegie Mellon

Address
Understanding Swap 123 | ox124
456 0x120
Ox1llc
heax 0x118
Yhedx Offset Ox114
%ecx yp 12 10x120 | ox110
%ebx XP 8 [0x124 | ox10c
4 | Rtn adr 0x108
Y%esi 0
- %ebp — 0x104
fed ~4 0x100
X
%esp
movl 8(%ebp), %edx # edx = xp
%ebp| 0x104 movl 12(%ebp), %ecx # ecx = yp
movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp = t0

30

Carnegie Mellon

Understanding Swap
Y%eax
%edx| 0x124 Offset
%ecx yp 12
8
%ebx xP
4
Y%esi
%ebp — 0
Y%edi —4
%esp
movl 8(%ebp), %edx #
%ebp| 0x104 movl 12(%ebp), %ecx #
movl (%edx), %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address
123 Ox124
456 0x120
Ox1llc
Ox118
Ox114
0x120 0x110
0x124 Ox10cC
Rtn adr 0x108
0x104
0x100
edx = Xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
**p = tl
*yp = t0

31

Carnegie Mellon

Understanding Swap
Y%eax
%edx| 0x124 Offset
hecx| 0x120 yp 12
8
%ebx xP
4
Y%esi
%ebp — 0
Y%edi —4
%esp
movl 8(%ebp), %edx #
%ebp| 0x104 movl 12(%ebp), %ecx #
movl (%edx), %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address
123 0Ox124
456 0x120
Ox1llc
Ox118
0Ox114
0x120 0x110
0x124 Ox10cC
Rtn adr 0x108
0x104
0x100
edx = Xxp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
**p = tl
*yp = t0

32

Carnegie Mellon

Understanding Swap
Y%eax
%edx| 0x124 Offset
hecx| 0x120 yp 12
8
webx| 123 xP
4
Y%esi
%ebp — 0
Y%edi —4
%esp
movl 8(%ebp), %edx #
%ebp| 0x104 movl 12(%ebp), %ecx #
movl (%edx), %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address
123 Ox124
456 0x120
Ox1llc
Ox118
Ox114
0x120 0x110
0x124 Ox10cC
Rtn adr 0x108
0x104
0x100
edx = Xxp
ecx = yp
ebx = *xp (t0O)
eax = *yp (tl)
**p = tl
*yp = t0

33

Carnegie Mellon

Address
Understanding Swap 123 | Ox124
456 0x120
Ox1llc
Y%eax 456 0x118
%edx| O0x124 Offset Ox114
%ecx| 0x120 yp 12 10x120 | ox110
8
webx| 123 xP Ox124 | ox10c
4 | Rtn adr 0x108
Y%esi 0
- %ebp — 0x104
Y%edi —4
0x100
%esp
movl 8(%ebp), %edx # edx = xp
%ebp| 0x104 movl 12(%ebp), %ecx # ecx = yp
movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp = t0

34

Carnegie Mellon

Address
Understanding Swap 456 | ox124
456 0x120
Ox1llc
Y%eax 456 0x118
%edx| O0x124 Offset Ox114
%ecx| 0x120 yp 12 10x120 | ox110
8
webx| 123 *P Ox124 | oxioc
4 | Rtn adr 0x108
Y%esi 0
- %ebp — 0x104
Y%edi —4
0x100
%esp
movl 8(%ebp), %edx # edx = xp
%ebp| 0x104 movl 12(%ebp), %ecx # ecx = yp
movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp = t0

35

Carnegie Mellon

Address
Understanding Swap 456 | Ox124
123 0x120
Ox1llc
Y%eax 456 0x118
%edx| O0x124 Offset Ox114
%ecx| 0x120 yp 12 10x120 | ox110
8
webx| 123 xP Ox124 | ox10c
4 | Rtn adr 0x108
Y%esi 0
- %ebp — 0x104
Y%edi —4
0x100
%esp
movl 8(%ebp), %edx # edx = xp
%ebp| 0x104 movl 12(%ebp), %ecx # ecx = yp
movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp = t0

36

Carnegie Mellon

Complete Memory Addressing Modes

m Most General Form
D(Rb,Rij,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 8 integer registers
= Ri: Index register: Any, except for %esp
= Unlikely you’d use %ebp, either
=S Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

37

Today: Machine Programming |I: Basics

History of Intel processors and architectures
C, assembly, machine code
Assembly Basics: Registers, operands, move

H
H
H
m Intro to x86-64

38

Carnegie Mellon

Data Representations: I1A32 + x86-64

m Sizes of C Objects (in Bytes)

= CData Type Generic 32-bit Intel IA32 x86-64
= unsigned 4 4 4
= int 4 4 4
= longint 4 4 8
= char 1 1 1
= short 2 2 2
= float 4 4 4
= double 8 8 8
= long double 8 10/12 16
= char * 4 4 8

39

x86-64 Integer Registers

%rax %eax %r8 %r8d

%rbx Y%ebx %ro %r9d

%IrcX %ecx %ril0 %r10d
%rdx Y%edx %ril %rlld
%rsi hesi %ri2 %r12d
%rdi %edi %ri13 %r13d
%rsp Y%esp %ri4g %rl4d
%rbp %ebp %ril15 %r15d

= Extend existing registers. Add 8 new ones.

= Make %ebp/%rbp general purpose

Carnegie Mellon

40

Carnegie Mellon

Instructions

m Long word | (4 Bytes) <> Quad word g (8 Bytes)

m New instructions:
= movl = movq
= addl = addq
= sall —» salq
" etc.

m 32-bit instructions that generate 32-bit results

= Set higher order bits of destination register to 0
= Example: addl

41

Carnegie Mellon

32-bit code for swap
swap:
- — — pushl %ebp h
\£0|d swap(int *xp, iInt *yp) movl Yesp,%ebp | Set
int t0 = *xp; pushl %ebx J Up
int t1l = *yp;
*xp = t1; movl 8(%ebp), %edx
*yp = tO0; movl 12(%ebp), %ecx
+ movl (%edx), %ebx \
movl (%ecx), %eax Body
movl %eax, (%edx)
movl %ebx, (%ecx)

popl %ebx
popl %ebp Finish
ret

42

Carnegie Mellon

64-bit code for swap
swap:

void swap(int *xp, Int *yp) fj—:
¢ int t0 = *xp; movl (%rdr), %edx

int tl1 = *yp; movl (%rsi), %eax

*Xp = tl; movl %eax, (%rdi) - Body

*yp = t0; movl %edx, (%rsi)
}

ret } Finish

m Operands passed in registers (why useful?)
" First (Xp) in %rdi, second (yp) in %rsi
" 64-bit pointers

m No stack operations required

m 32-bit data
= Data held in registers %eax and %edx
= movl operation .

Carnegie Mellon

64-bit code for long int swap

swap 1I:
void swap(long *xp, long *yp) f;—:
: long t0 = *xp; movq (%rdi), %rdx ~
long t1l = *yp; mov(q (%rsi), %rax
*xp = ti; movq %rax, (%rdi) - Body
*yp = t0; movq %rdx, (%rsi))
}
ret } Finish
m 64-bit data

= Data held in registers %rax and %rdx
" mov(q operation

o,

q” stands for quad-word

44

Carnegie Mellon

Machine Programming |: Summary

m History of Intel processors and architectures
= Evolutionary design leads to many quirks and artifacts
m C, assembly, machine code

= Compiler must transform statements, expressions, procedures into
low-level instruction sequences

m Assembly Basics: Registers, operands, move

" The x86 move instructions cover wide range of data movement
forms

m Intro to x86-64

= A major departure from the style of code seen in I1A32

45

