Floating Point

15-213: Introduction to Computer Systems
4th Lecture, Jan 26, 2012

Instructors:
Todd C. Mowry & Anthony Rowe

Today: Floating Point

Background: Fractional binary numbers

IEEE floating point standard: Definition

Example and properties

Rounding, addition, multiplication

Floating point in C

Summary

Fractional binary numbers

• What is 1011.101₂?

Fractional Binary Numbers

2i
2i-1
4
2
---1
bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j
1/2
1/4
1/8

Representation

Bits to right of "binary point" represent fractional powers of 2

Represents rational number:

Carnegie Mel

Fractional Binary Numbers: Examples

Value	Representation		
5 3/4	101.112		
2 7/8	10.1112		
63/64	0.1111112		

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

■ Use notation 1.0 – ε

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Representable Numbers

■ Limitation #1

- Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
- Value Representation
- 1/3 0.0101010101[01]...₂
- 1/5 0.001100110011[0011]...₂
- **1/10** 0.0001100110011[0011]...2

■ Limitation #2

- Just one setting of decimal point within the w bits
 - Limited range of numbers (very small values? very large?)

Off

IEEE Floating Point

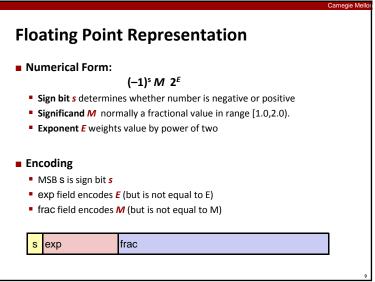
■ IEEE Standard 754

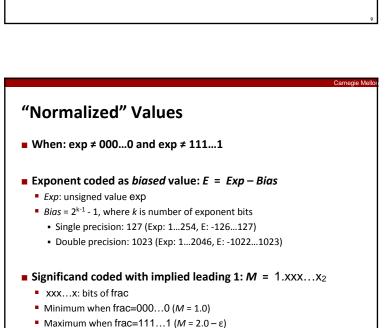
- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

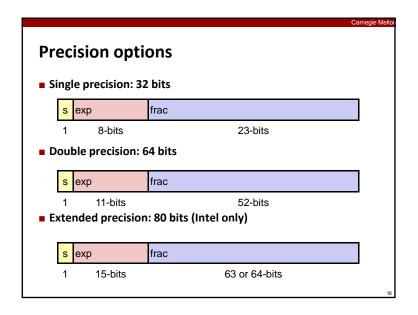
- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

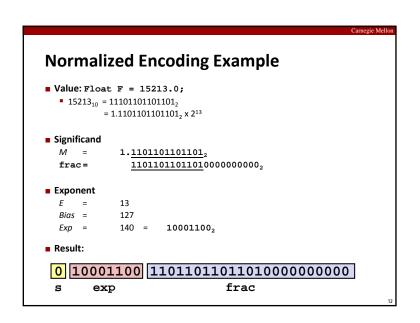
Carnegie Me





■ Get extra leading bit for "free"





Denormalized Values

■ Condition: exp = 000...0

■ Exponent value: E = -Bias + 1 (instead of E = 0 - Bias)

■ Significand coded with implied leading 0: M = 0.xxx...x2

*xxx...x: bits of frac

Cases

exp = 000...0, frac = 000...0

Represents zero value

• Note distinct values: +0 and -0 (why?)

• exp = 000...0, frac ≠ 000...0

• Numbers closest to 0.0

Equispaced

Special Values

■ Condition: exp = 111...1

■ Case: exp = 111...1, frac = 000...0

■ Represents value ∞ (infinity)

Operation that overflows

Both positive and negative

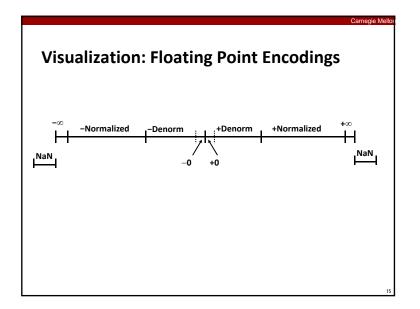
■ E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

Case: $\exp = 111...1$, $\operatorname{frac} \neq 000...0$

Not-a-Number (NaN)

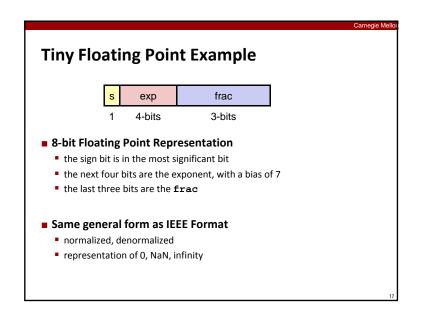
• Represents case when no numeric value can be determined

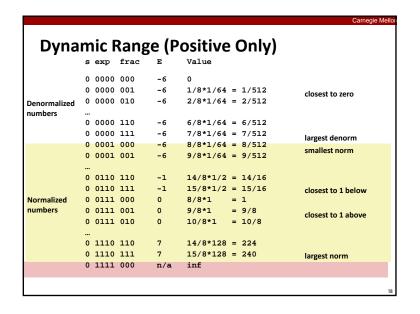
• E.g., sqrt(-1), $\infty - \infty$, $\infty \times 0$

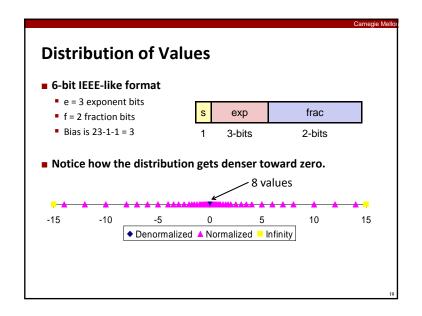


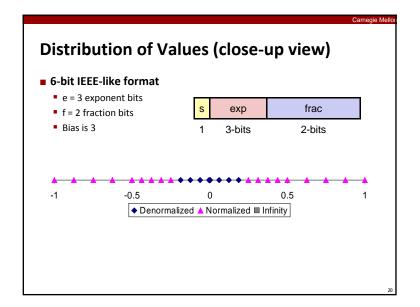
Today: Floating Point

Background: Fractional binary numbers
IEEE floating point standard: Definition
Example and properties
Rounding, addition, multiplication
Floating point in C
Summary









Special Properties of Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider −0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

x +f y = Round(x + y)

x ×f y = Round(x × y)

Basic idea

First compute exact result

Make it fit into desired precision
Possibly overflow if exponent too large
Possibly round to fit into frac

Rounding ■ Rounding Modes (illustrate with \$ rounding) \$1.40 \$1.60 \$1.50 \$2.50 -\$1.50 ■ Towards zero \$1 \$1 \$1 \$2 -\$1 Round down (-∞) \$1 \$1 \$1 \$2 -\$2 Round up (+∞) \$2 \$2 \$3 -\$1 Nearest Even (default) \$1 -\$2

Rounded Value

Carnegie M

Closer Look at Round-To-Even

■ Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

■ Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half way—round down)

Rounding Binary Numbers

■ Binary Fractional Numbers

Binary

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Value

• Round to nearest 1/4 (2 bits right of binary point)

	,				
2 3/32	10.00011_2	10.00_2	(<1/2—down)	2	
2 3/16	10.00110_2	10.012	(>1/2—up)	2 1/4	
2 7/8	10.11100_2	11.00_{2}	(1/2—up)	3	
2 5/8	10.10100_2	10.10_{2}	(1/2—down)	2 1/2	

Action

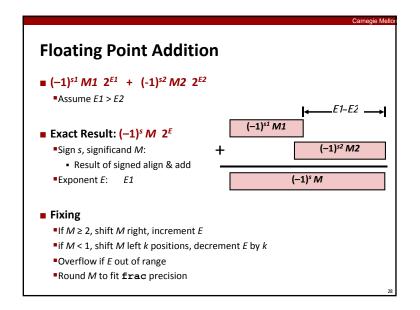
Rounded

FP Multiplication

• (-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}
• Exact Result: (-1)^s M 2^E
• Sign s: s1 ^ s2
• Significand M: M1 x M2
• Exponent E: E1 + E2

• Fixing
• If M ≥ 2, shift M right, increment E
• If E out of range, overflow
• Round M to fit £rac precision

• Implementation
• Biggest chore is multiplying significands



Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

C Guarantees Two Levels

•float single precision double double precision

Conversions/Casting

Casting between int, float, and double changes bit representation

- double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int → float
 - Will round according to rounding mode

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

int x = ...;

double d = ...:

- x == (int)(float) x
- x == (int)(double) x
- f == (float)(double) f
- d == (float) d float f = ...;

 - f == -(-f);
 - 2/3 == 2/3.0
- d < 0.0 ((d*2) < 0.0)Assume neither d nor f is NaN
 - d > f \Rightarrow -f > -d
 - d * d >= 0.0
 - (d+f)-d == f

8