Carnegie Mellon

Floating Point

15-213: Introduction to Computer Systems
4th Lecture, Jan 26, 2012

Instructors:
Todd C. Mowry & Anthony Rowe

Fractional binary numbers

= What is 1011.101,?

Today: Floating Point

m Background: Fractional binary numbers
m IEEE floating point standard: Definition
m Example and properties

= Rounding, addition, multiplication

m Floating pointin C

= Summary

Carnegie Mello

Fractional Binary Numbers

2i

201

- [

b2 ‘ b1 ‘ bo b-1‘b-z‘b-3
w— |
1/8

m Representation 27
= Bits to right of “binary point” represent fractional powers of 2

i
3 ot
—3

b ‘

bi-1

‘bi

= Represents rational number:

1/26/2012

Carnegie Mellor

Fractional Binary Numbers: Examples

m Value Representation
53/4 101.11»
2718 10.1112
63/64 0.1111112

m Observations
= Divide by 2 by shifting right (unsigned)
= Multiply by 2 by shifting left
® Numbers of form 0.111111...; are just below 1.0
»1/2+1/4+1/8+..+1/2'+.. = 1.0
= Use notation 1.0—¢

Today: Floating Point

u
m |IEEE floating point standard: Definition

Representable Numbers

m Limitation #1
= Can only exactly represent numbers of the form x/2*
= Other rational numbers have repeating bit representations

" Value Representation
= 1/3 0.0101010101[01]...2
= 1/5 0.001100110011[0011]...2
= 1/10 0.0001100110011[0011]...2

m Limitation #2
= Just one setting of decimal point within the w bits
= Limited range of numbers (very small values? very large?)

IEEE Floating Point

m IEEE Standard 754
= Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
= Supported by all major CPUs

m Driven by numerical concerns
= Nice standards for rounding, overflow, underflow
® Hard to make fast in hardware

= Numerical analysts predominated over hardware designers in defining
standard

1/26/2012

Floating Point Representation

= Numerical Form:
(-1 M 2¢
= Sign bit s determines whether number is negative or positive
= Significand M normally a fractional value in range [1.0,2.0).
" Exponent E weights value by power of two

m Encoding
= MSB s is sign bit s
= exp field encodes E (but is not equal to E)
= frac field encodes M (but is not equal to M)

| S |exp frac

“Normalized” Values

m When: exp # 000...0 and exp # 111...1

m Exponent coded as biased value: E = Exp — Bias
® Exp: unsigned value exp
= Bigs = 21 -1, where k is number of exponent bits
= Single precision: 127 (Exp: 1...254, E: -126...127)
= Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

m Significand coded with implied leading 1: M = 1.xXX...X2
= XXX...X: bits of frac
= Minimum when frac=000...0 (M = 1.0)
= Maximum when frac=111...1 (M =2.0-¢)
" Get extra leading bit for “free”

Precision options

m Single precision: 32 bits

| S |exp |frac |

1 8-bits 23-bits

m Double precision: 64 bits

| S |exp |frac |

1 11-bits 52-bits
m Extended precision: 80 bits (Intel only)

| S |exp |frac |
63 or 64-bits

1 15-bits

Carnegie Mellon

Normalized Encoding Example

m Value: Float F = 15213.0;
= 15213,, =11101101101101,
=1.1101101101101, x 2*3

m Significand
M = 1.1101101101101,
frac= 11011011011010000000000,
m Exponent
E = 13
Bias = 127
Exp = 140 = 10001100,
m Result:
[0][10001100][11011011011010000000000 |
s exp frac

1/26/2012

Denormalized Values

m Condition: exp = 000...0

m Exponent value: E = -Bias + 1 (instead of E = 0 — Bias)

m Significand coded with implied leading 0: M = 0.xxx...x2
= xxX..X: bits of frac

m Cases
= exp =000...0, frac = 000...0
= Represents zero value
= Note distinct values: +0 and —0 (why?)
= exp =000...0, frac # 000...0
= Numbers closest to 0.0
= Equispaced

Carnegie Mellor

Visualization: Floating Point Encodings

=0 . . +00

L1 -Normalized (“Denorm ., .+Denorm | +Normalized L]

LI I /l\ I 1

NaN NaN
-0 +0

—

Special Values

m Condition: exp=111...1

m Case:exp=111...1, frac=000...0

= Represents value o0 (infinity)

= QOperation that overflows

® Both positive and negative

= E.g., 1.0/0.0=-1.0/-0.0 = +o0, 1.0/-0.0 = -0

m Case: exp=111...1, frac # 000...0
= Not-a-Number (NaN)
= Represents case when no numeric value can be determined
" E.g., sqrt(—1), oo — o0, 00 x 0

Today: Floating Point

|
|
m Example and properties
|
u

1/26/2012

Carnegie Mellor

Tiny Floating Point Example

| S | exp | frac |

1 4-bits 3-bits

m 8-bit Floating Point Representation
® the sign bit is in the most significant bit
® the next four bits are the exponent, with a bias of 7
= the last three bits are the frac

m Same general form as IEEE Format
® normalized, denormalized
® representation of 0, NaN, infinity

Distribution of Values

m 6-bit IEEE-like format
= e =3 exponent bits
= f =2 fraction bits

® Biasis 23-1-1=3 1 3-hits 2-bits

| s | exp | frac

m Notice how the distribution gets denser toward zero.

/Svalues

-15 -10 -5 0 5 10 15
Denormalized A Normalized Infinity

Carnegie Mellot

Dynamic Range (Positive Only)
s exp frac E Value
0 0000 000 -6 (0]
0 0000 001 -6 1/8*1/64 = 1/512 closest to zero
Denormalized O 0000 010 -6 2/8*1/64 = 2/512
numbers
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512 largest denorm
0 0001 000 -6 8/8*1/64 = 8/512 smallest norm
0 0001 001 -6 9/8*1/64 = 9/512
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16 A A bl
Normalized 0 0111 000 0 8/8*1 =1
numbers 0 0111 001 0 9/8*1 = 9/8
closest to 1 above
0 0111 010 0 10/8*1 = 10/8
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240 largest norm
0 1111 000 n/a inf
18

Distribution of Values (close-up view)

m 6-bit IEEE-like format

= e =3 exponent bits
= f =2 fraction bits | S | 24 | frac |
" Biasis 3 1 3-bits 2-bits

A A A A A A A A 0606000600hiiii 4 A4 A A
-1 -0.5 0 0.5 1
¢ Denormalized A Normalized M Infinity

1/26/2012

Special Properties of Encoding

m FP Zero Same as Integer Zero
= All bits=0

m Can (Almost) Use Unsigned Integer Comparison
® Must first compare sign bits
® Must consider -0 =0
= NaNs problematic
= Will be greater than any other values
= What should comparison yield?
= Otherwise OK
= Denorm vs. normalized
= Normalized vs. infinity

Carnegie Mellor

Floating Point Operations: Basic Idea

mX +f Yy = Round(X + y)
mX xf Y = Round(x x y)
m Basicidea

® First compute exact result

= Make it fit into desired precision
= Possibly overflow if exponent too large
= Possibly round to fit into Frac

Carnegie Mellot

Today: Floating Point

Rounding, addition, multiplication

Rounding

= Rounding Modes (illustrate with $ rounding)

[$1.40 S$1.60 S$1.50 $2.50 -$1.50
= Towards zero S1 S1 S1 $2 -$1
= Round down (-o0) S1 S1 S1 S2 -$2
= Round up (+©) S2 S2 S2 S3 -$1
= Nearest Even (default) $1 $2 $2 $2 -$2

1/26/2012

1/26/2012

Carnegie Mellor Carnegie Mellot

Closer Look at Round-To-Even Rounding Binary Numbers

m Default Rounding Mode

T o m Binary Fractional Numbers
" Hard to get any other kind without dropping into assembly * “Even” when least significant bit is 0
ven” when least significant bit is
= All others are statistically biased
Y = “Half way” when bits to right of rounding position = 100...2

= Sum of set of positive numbers will consistently be over- or under-

estimated
m Examples
m Applying to Other Decimal Places / Bit Positions " Roundto nearest 1/4 (2 bits right of binary F’oi”t)
® When exactly halfway between two possible values Value Binary Rounded Action Rounded Value
= Round so that least significant digit is even 23/32 10.00011 10.00. (<1/2—down) 2
® E.g., round to nearest hundredth 23/16 10.00110; 10.01, (>1/2—up) 21/4
1.2349999 123 (Less than half way) 27/8 10.11100; 11.00, (1/2—up) 3
1.2350001 124 (Greater than half way) 25/8 10.10100: 10.10: (1/2—down) 21/2
1.2350000 1.24 (Half way—round up)
1.2450000 1.24 (Half way—round down)
25 26
FP Multiplication Floating Point Addition
u (-1F1 M1 281 x (<1)2 M2 22 u (-1 M1 28+ (1) M2 282
m Exact Result: (-1)° M 2 "Assume E1 > £2 ELE
= Signs: s1ns2 I ” /

— 1
= Significand M: M1x M2 = Exact Result: (—1)° M 2¢ (1) m1
" Exponent £: E1+E2 =Sign s, significand M: + (-1)2 M2

= Result of signed align & add

m Fixing =ExponentE: E1 | (-1)m |
= |f M 2 2, shift M right, increment E
= If E out of range, overflow m Fixing
® Round M to fit Frac precision =|f M > 2, shift M right, increment E
=if M < 1, shift M left k positions, decrement E by k
= Implementation =Overflow if £ out of range

= Biggest chore is multiplying significands *Round M to fit Frac precision

Carnegie Mellor

Today: Floating Point

Floating point in C

Summary

m IEEE Floating Point has clear mathematical properties
m Represents numbers of form M x 2F
m One can reason about operations independent of
implementation
= As if computed with perfect precision and then rounded
m Not the same as real arithmetic
= Violates associativity/distributivity

= Makes life difficult for compilers & serious numerical applications
programmers

Floating Point in C

m C Guarantees Two Levels
=float single precision
=double double precision

m Conversions/Casting
=Casting between int, Float, and double changes bit representation
= double/fFloat - int
= Truncates fractional part
= Like rounding toward zero
= Not defined when out of range or NaN: Generally sets to TMin
= int > double
= Exact conversion, as long as int has < 53 bit word size
= int-> float

= Will round according to rounding mode

Floating Point Puzzles

m For each of the following C expressions, either:
= Argue that it is true for all argument values

= Explain why not true
e x == (int)(float) x

e x == (int)(double) x
e f== (float)(double) f

intx=...;
floatf=...; + d==(float) d
doubled = ...; o f==-(-f);
e 2/3==2/3.0
Assume neither « d<0.0 = ((d*2)<0.0)
d nor Fis NaN . d>f o f>-d
e d*d>=0.0

. (d+)-d ==

1/26/2012

