Carnegie Mellon

Bits, Bytes, and Integers

15-213: Introduction to Computer Systems
2" and 3" Lectures, Jan 19 and Jan 24, 2012

Instructors:
Todd C. Mowry & Anthony Rowe

Binary Representations

m Base 2 Number Representation
" Represent 15213,,as11101101101101,
® Represent 1.20,,as 1.0011001100110011[0011]...,
= Represent 1.5213 X 10* as 1.1101101101101, X 2*3
m Electronic Implementation
® Easy to store with bistable elements
= Reliably transmitted on noisy and inaccurate wires

0

3.3V
2.8V

0.5v
0.0v

Today: Bits, Bytes, and Integers

m Representing information as bits
| |

Carnegie Mellon

Encoding Byte Values
6"&
m Byte = 8 bits ‘?\°+ ozo\é\(&
® Binary 00000000 to 11111111, 070 10000
" Decimal: 010 to 25510 11]0001
] 2 [2 [0010
® Hexadecimal 0016 to FFie 3 [3 [0011
. . 4 [4 | 0100
Base 16 number representation =5 10101
= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’ 6 [6 [0110
+ Write FALD37B1s in C as 2L
— OxFA1D37B 9 |9 [1001
A [10] 1010
— 0xfald37b B [11 [1011
C [12] 1100
D [13] 1101
E |14 [1110
F [15] 1111
.

Carnegie Mellon

Data Representations

C Data Type Typical 32-bit Intel 1A32 x86-64
1 1

char 1

short 2 2 2
int 4 4 4
long 4 4 8
long long 8 8 8
float 4 4 4
double 8 8 8
long double 8 1012 10/16
pointer 4 4 8

Boolean Algebra
m Developed by George Boole in 19th Century

= Algebraic representation of logic
= Encode “True” as 1 and “False” as O

And Or
= A&B =1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&0 1 1]o 1
Q[0 O 00 1
1/]0 1 111 1
Not Exclusive-Or (Xor)
= ~“A =1 when A=0 = ANB = 1 when either A=1 or B=1, but not both
~l S0 1
0|1 00 1
1]0 1|1 0

Today: Bits, Bytes, and Integers

Bit-level manipulations

General Boolean Algebras

m Operate on Bit Vectors
= QOperations applied bitwise

01101001 01101001 01101001
& 01010101] 01010101 ~ 01010101 ~ 01010101

01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

Carnegie Mellon

Example: Representing & Manipulating Sets
m Representation
= Width w bit vector represents subsets of {0, ..., w—1}

= gj=1ifj €A

= 01101001 {0,3,5,6}
= 76543210

= 01010101 {0,2,4,6}

= 76543210
m Operations
" & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}
= ~ Complement 10101010 {1,3,5,7}

Contrast: Logic Operations in C

m Contrast to Logical Operators
= && ||,!
= View 0 as “False”
= Anything nonzero as “True”
= Always return O or 1
= Early termination

m Examples (char data type)
= 10x41 > 0x00
= 10x00 > 0x01
= 110x41 > 0x01

= 0x69 && 0x55 > 0x01
= 0x69 || 0x55 > 0x01
" p&&*p (avoids null pointer access)

Bit-Level Operations in C

m Operations &, |, ~, " Availablein C
= Apply to any “integral” data type
= long, int, short, char, unsigned
® View arguments as bit vectors
= Arguments applied bit-wise

m Examples (Char data type)
= ~0x41 -> OXBE
= ~010000012 > 10111110,
= ~0x00 -> OxFF
= ~000000002 > 11111111,
= 0x69 & 0x55 > 0x41
» 011010012 & 010101012 > 010000012
= 0x69 | 0x55 > 0x7D
» 011010012 | 01010101, = 01111101,

Contrast: Logic Operations in C
m Contrast to Logical Operators

= &&,||,!
= View 0 as “False”

= Anything nonzero as “True” [‘Watch out for && vs. & (and || vs. |)...

one of the more common oopsies in
C programming

= Always return O or 1
= Early termination

m Examples (char data type)
= 10x41 > Ox00
= 10x00 > 0x01
= 110x41 > 0x01

= 0x69 && 0x55 > 0x01
= 0x69 || 0x55 > 0x01
"= p&&*p (avoids null pointer access)

Carnegie Mellon Carnegie Mellon

Shift Operations Today: Bits, Bytes, and Integers
m Left Shift: X <<y Argument x| 01100010
= Shift bit-vector X left y positions << 3 00010000 u
— Throw away extra bits on left Log. >> 2 | 00011000 = Integers
= Fill with 0’s on right . ion: unsizned and sizned
A . Arith. >> 2 | 00011000 Representation: unsigned and signe:
m Right Shift: x >>y .
= Shift bit-vector X right y positions .
= Throw away extra bits on right Argument x| 10100010 .
= Logical shift << 3 00010000 .
= Fill with 0’s on left Log.>> 2 | 00101000 -
= Arithmetic shift -
) o) Arith. >> 2 | 11101000 =
= Replicate most significant bit on left
m Undefined Behavior
= Shift amount < 0 or = word size
13 14
: Encoding Example (Cont.
Encoding Integers g ple ()
N , X = 15213: 00111011 01101101
Unsigned) Two’s Complement , y = -15213: 11000100 10010011
W W
= . i = —_ . w-1 L. i
B2U(X) = gx, 2 B2T(X) o 2" gx, 2 Weiht 53 ETIIE
1 1 1 1 1
short int x = 15213; 2| 0 0 1 2|
short int y = -15213; Sign 4 1 4 0 0]
Bit 8| 1 8 0 0
m Cshort2 bytes long 16 0 0 1 16
Decimal Hex Binary 32 1 32 0 9
X 15213| 3B 6D| 00111011 01101101 64 1 64 0 g
y 15213| C4 93| 11000100 10010011 128 0 0 1 128
. 256 1 256 0 0
m Sign Bit 512 1 512 0 q
® For 2’s complement, most significant bit indicates sign 1024 0 o 1 1024
0f ti 2048| 1 2048 0 0|
ornonnegative 4096 1 409§ 0 0
= 1for negative 8192 1 8192, 0 0f
16384 0 0 1 16384
-32768] 0 0 1 -32768
15 Sum 15213 -15213 1

Carnegie Mellon

Numeric Ranges
" Un5|gnec.I Values m Two’s Complement Values
* UMin =0 * TMin = 2w
000..0 100...0
[] = w_
UMax 2v-1 = TMax = 2%i-1
111.1 011..1
m Other Values
" Minus 1
111..1
Values for W =16
Decimal Hex Binary
UMax 65535 FF FF[11111111 11111111
TMax 32767| 7F FF| 01111111 11111111
TMin -32768| 80 00| 10000000 00000000
-1 -1| FF FF| 1111122211 11111111
0 0| 00 00| 00000000 00000000
17

Carnegie Mellon

Unsigned & Signed Numeric Values

X B2U(X) | B2T(X) m Equivalence
0000 0 0 = Same encodings for nonnegative
0001 1 1 values
0010 2 2 = Uniqueness
0011 3 3
0100 2 2 = Every bit pattern represents
0101 5 5 unique integer value
0110 6 6 ® Each representable integer has
0111 7 7 unique bit encoding
1000 8 -8 m = Can Invert Mappings
1001 9 —7 . U2B(0) = B2U ()
1010 10 -6 X = X
1011 11 5 = Bit pattern for unsigned
1100 12 -4 integer
1101 13 -3 = T2B(x) = B2T(x)
1110 14 -2 = Bit pattern for two’s comp
1111 15 -1 integer

19

Carnegie Mellon

Values for Different Word Sizes

w
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

m Observations
= |TMin| = TMax+1
= Asymmetric range ® Declares constants, e.g.,
" UMax = 2*TMax+1 = ULONG_MAX
" LONG_MAX
= LONG_MIN
= Values platform specific

m CProgramming
= #include <limits.h>

Carnegie Mellon

Today: Bits, Bytes, and Integers

]
]
m Integers
.
= Conversion, casting
.
.
.
]

Carnegie Mellon Carnegie Mellon

Mapping Signed <> Unsigned
Mapping Between Signed & Unsigned : : :
Bits Signed Unsigned
0000 0 0
Two’s Complement 0 Unsigned 0001 1 1
0010 2 2
X T28B ,' X B2U ux 0011 3 3
0100 4 4
Maintain Same Bit Pattern 0101 5 T2U]— 5
0110 6 —12u] 6
Unsigned 02T Two’s Complement 0111 7 7
ux [U2B]——[B2T X 1000 8 8
=Ix == 1001 7 9
1010 -6 10
Maintain Same Bit Pattern 1011 -5 11
1100 -4 12
. . , 1101 -3 13
m Mappings between unsigned and two’s complement numbers: 1110 = 7
keep bit representations and reinterpret 1111 1 15
21 22
Mapping Signed <> Unsigned . . .
Relation between Signed & Unsigned
Bits Signed Unsigned
0000 0 0 .
0001 1 1 Two’s Complement = Unsigned
0010 2 2
x ——[128B }—[B2U]—+—— ux
0011 3 = 3 [Ta8] X
0100 4 <+—> 4
0101 5 5 Maintain Same Bit Pattern
0110 6 6
0111 7 7 wl 0
UX R eee TH[F[H]
1000 -8 8
1001 =7 9 X LI+ eee T+[+]+]
1010 -6 10 T
1011 5 < +/-16 11
1100 -4 12 Large negative weight
1101 -3 13
becomes
1110 -2 14 . ioh
1111 = T Large positive weight
2 24

Carnegie Mellon

Conversion Visualized

m 2’s Comp. —> Unsigned
= Ordering Inversion UMax

" Negative — Big Positive UMax—1

TMax +1 | Unsigned

[TMax TMax Range
2’s Complement 0 0
Range A -
-2
L TMin

25

Casting Surprises

m Expression Evaluation

® |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned
® Including comparison operations <, >, ==, <=, >=
= Examples for W=32: TMIN =-2,147,483,648, TMAX =2,147,483,647

m Constant, Constant, Relation Evaluation
0 ou == unsigned
-1 0 < signed
-1 ou > unsigned
2147483647 -2147483647-1 > signed
2147483647V -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

27

Carnegie Mellon

Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers

= Unsigned if have “U” as suffix
0U, 4294967259U

m Casting
= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

= Implicit casting also occurs via assignments and procedure calls
tx = ux;
uy = ty;

Carnegie Mellon

Summary
Casting Signed ¢ Unsigned: Basic Rules
m Bit pattern is maintained

m But reinterpreted
m Can have unexpected effects: adding or subtracting 2%

m Expression containing signed and unsigned int
= intiscast tounsigned!!

Carnegie Mellon

Today: Bits, Bytes, and Integers

]
m Integers
-
L]
= Expanding, truncating
-
-
]

Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

X 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011

m Converting from smaller to larger integer data type
m C automatically performs sign extension

Carnegie Mellon

Sign Extension
m Task:

" Given w-bit signed integer x

= Convert it to w+k-bit integer with same value
= Rule:

= Make k copies of sign bit:

®XTE Xydse Xue1s Xyt Xya s Xo

[|
k copies of MSB w
X I T eee TTT]
X' I TTTTTT eee TTT1]
k w “
Carnegie Mellon
Summary:

Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added
® Signed: sign extension
® Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
® Result reinterpreted
= Unsigned: mod operation
" Signed: similar to mod
® For small numbers yields expected behavour

Carnegie Mellon

Today: Bits, Bytes, and Integers

[
m Integers
.
.
.
= Addition, negation, multiplication, shifting
]
[

Visualizing (Mathematical) Integer Addition

m Integer Addition Add,(u, v)

® 4-bit integers u, v Integer Addition

= Compute true sum
Add,(u, v)

® Values increase linearly
withuand v

® Forms planar surface

Carnegie Mellon

Unsigned Addition

Operands: w bits U [ITTT1T eee JTT]]
+Vv [IIT eee TTT]

True Sum: w+1 bits U+v T — T

Discard Carry: wbits ~ UAdd,(U,V) [TTT eee TTT]

m Standard Addition Function
- Ignores carry output
m Implements Modular Arithmetic
s = UAdd,(u,v) = u+v mod2¥

Carnegie Mellon

Visualizing Unsigned Addition

= Wraps Around Overflow
\

= Iftrue sum > 2%

UAdd,(u, v)

= At most once

True Sum
2w+1
Overflow

zw XI

0
Modular Sum

Carnegie Mellon

Two’s Complement Addition

Operands: w bits u LLIT eee TTT1]

+ v LIIT eee TTT1]
True Sum: w+1 bits uU+v OO — T
Discard Carry: w bits TAdd,(u,v) [T TT eee TJTT1]

m TAdd and UAdd have Identical Bit-Level Behavior
= Signed vs. unsigned addition in C:
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) Vv);
t=u+v
" Willgive s == t

Carnegie Mellon

Visualizing 2’s Complement Addition

NegOver

m Values
= 4-bit two’s comp. TAdd,(u, v)
® Range from -8 to +7
= Wraps Around
= |fsum > 2w
= Becomes negative
= At most once
= |fsum < —2w1
= Becomes positive
= At most once)
u 6 PosOver

Carnegie Mellon

TAdd Overflow

m Functionality True Sum
= True sum requires w+1 0111.1 -1 7
bits 0" TAdd Result
= Drop off MSB 0100..0 w1 4 011..1
" Treat remaining bits as
2’s comp. integer 0000..0 0+ 000...0
10111 _w-1q 4 100..0
1000..0 _pw L NegOver

Carnegie Mellon

Multiplication

m Goal: Computing Product of w-bit numbers x, y
® Either signed or unsigned
m But, exact results can be bigger than w bits
= Unsigned: up to 2w bits
= Resultrange:0<x*y<(2w—1)2 = 22w—2w+l 4+ 1
" Two’s complement min (negative): Up to 2w-1 bits
= Resultrange: x *y > (—2w-1)*(2w-1-1) = —22w-24 w1
= Two’s complement max (positive): Up to 2w bits, but only for (TMin,,)?
= Resultrange: x * y < (-2w1)2 = 2272
m So, maintaining exact results...
= would need to keep expanding word size with each product computed
= jsdone in software, if needed
= e.g., by “arbitrary precision” arithmetic packages

40

10

Carnegie Mellon

Unsigned Multiplication in C

u LILIT eee TTT]

Operands: w bits
* v [LIT eee TTT1
True Product: 2*w bits U- VT TT eee TTTTTTT eee TTT]
UMult,(u,v) ITTT _—<ee TTT1

Discard w bits: w bits

m Standard Multiplication Function
" |gnores high order w bits

m Implements Modular Arithmetic
UMult,(u,v)= u -v mod?2¥

Carnegie Mellon

Power-of-2 Multiply with Shift

m Operation
= Uy << kgivesu * 2k

Carnegie Mellon

Signed Multiplication in C

u LLI1 X 111

Operands: w bits
* oy LTI XX HEN
True Product: 2*w bits U - V[| | | X LTI ITT1 eee 111
TMult,(u,v) [OTTT _eee TTT17

Discard w bits: w bits

m Standard Multiplication Function
= Ignores high order w bits

= Some of which are different for signed
vs. unsigned multiplication

" Lower bits are the same

Carnegie Mellon

Unsigned Power-of-2 Divide with Shift

m Quotient of Unsigned by Power of 2
= u >> kgives Lu /7 2¢]
= Uses logical shift

® Most machines shift and add faster than multiply
= Compiler generates this code automatically

® Both signed and unsigned k
u L[CITIT1 see [TT11
Operands: w bits
* 2k [0 e TOTITOT e TOTO]
True Product: w+k bits [T _see T TTI0[= T00]
Discard k bits: w bits UMult,(u, 29 [Teee TTTT0O[e J0]0]
TMult,(u, 2¥)
m Examples
"u<<3 = u*8
" y<<5-u=<<3 == u=>24

k
U LI T ee [TTeeTT] BinaryPoint

Operands:

P | ok [0 = Tool = Toldl

/
Division: u/2k [OI e« TOTOT T T oo TIFT e TT71]
Result: [u/2x] [TOIOTTT e 17
Division Computed Hex Binary

X 15213 15213| 3B 6D| 00111011 01101101

X >> 1 7606.5 7606] 1D B6| 00011101 10110110

X >> 4 950.8125 950| 03 B6| 00000011 10110110

X >> 8 [59.4257813 59| 00 3B| 00000000 00111011

11

Carnegie Mellon

Signed Power-of-2 Divide with Shift

m Quotient of Signed by Power of 2
= x >> kagives Lx / 2¢]
= Uses arithmetic shift
= Rounds wrong direction whenu < 0

X L[l ee]TTee] BinaryPoint

Operands:

| 2k [0l eee TOTITOT eee JOIO]

7
Division: x/2k [T TTTTT e T/ T e 17
Result: RoundDown(x / 2K) [T eee TT T 1T s T[]
Division Computed Hex Binary

y -15213 -15213 C4 93[11000100 10010011
y >> 1 -7606.5 -7607 E2 49| 11100010 01001001
y >> 4 -950.8125 -951 FC 49| 11111100 01001001
y >> 8 [-59.4257813 -60 FF C4] 11111111 11000100

Carnegie Mellon

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

k
Dividend: X LT e TTT e TT1
+2k_1 [0 eee [O[Of2] o J1]1]

[LL] oo T T oo JT1]

H_J
Incremented by 1 Binary Point
Divisor: | 2k [0 e TOT1IOT e« JOJO
[x/2¢] e EEm = =T

a_l

Incremented by 1

Biasing adds 1 to final result

Carnegie Mellon

Correct Power-of-2 Divide

m Quotient of Negative Number by Power of 2
= Want [x /7 2¢] (Round Toward 0)
= Computeas | (x+2¢-1)/ 2t
= InC: (X + (1<<k)-1) >> k
= Biases dividend toward 0

Case 1: No rounding k
Dividend: u [T e TTOT «- T0I0]
+2k—1 [0 e TOTOTIT e TIT1
[T TTil e Ti1] BinaryPoint
Divisor: | 2k [0 e TO[110[«- [0I0]
[u/2¢ | D mmE e T

Biasing has no effect

Carnegie Mellon

Today: Bits, Bytes, and Integers

]
]
m Integers
.
.
.
.
= Summary
]

48

12

Carnegie Mellon

Arithmetic: Basic Rules

m Addition:

= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

® Unsigned: addition mod 2%
= Mathematical addition + possible subtraction of 2%
= Signed: modified addition mod 2% (result in proper range)

= Mathematical addition + possible addition or subtraction of 2%

= Multiplication:

= Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level
® Unsigned: multiplication mod 2%

= Signed: modified multiplication mod 2% (result in proper range)

Carnegie Mellon

Today: Bits, Bytes, and Integers

n
n
m Integers

m Representations in memory, pointers, strings

Carnegie Mellon

Why Should | Use Unsigned?

m Don’t Use Just Because Number Nonnegative
® Easy to make mistakes
unsigned 1i;
for (i = cnt-2; i1 >= 0; i--)
a[i] += a[i+1];
= Can be very subtle
#define DELTA sizeof(int)
int i;
for (

= CNT; i-DELTA >= 0; i-= DELTA)
m Do Use When Performing Modular Arithmetic
= Multiprecision arithmetic
m Do Use When Using Bits to Represent Sets
= |ogical right shift, no sign extension

Carnegie Mellon

Byte-Oriented Memory Organization

m Programs refer to data by address
= Conceptually, envision it as a very large array of bytes
= In reality, it’s not, but can think of it that way
® An address is like an index into that array
= and, a pointer variable stores an address

m Note: system provides private address spaces to each “process”
® Think of a process as a program being executed
= So, a program can clobber its own data, but not that of others

13

Carnegie Mellon Carnegie Mellon

Machine Words Word-Oriented Memory Organization
32-bit 64-bit tes Addr
m Any given computer has a “Word Size” m Addresses Specify Byte Words Words Y :
= Nominal size of integer-valued data Locations 0000
Add
= and of addresses = Address of first byte in word = ' 0001
= Addresses of successive words differ 9000 Addr 888:2%
= Most current machines use 32 bits (4 bytes) as word size by 4 (32-bit) or 8 (64-bit) o 0004
= Limits addresses to 4GB (232 bytes) Addr 0005
= Becoming too small for memory-intensive applications 0004 0006
— leading to emergence of computers with 64-bit word size 0007
0008
Addr 0009
® Machines still support multiple data formats 5068 » 0010
= Fractions or multiples of word size ar 0011
= Always integral number of bytes 2008 0012
Addr 0013
0012 0014
0015
53 54
For other data representations too ... Byte Ordering
: ; m So, how are the bytes within a multi-byte word ordered in
C Data Type Typical 32-bit Intel 1A32 x86-64
memory?
char ! ! ! m Conventions
short 2 2 2 = Big Endian: Sun, PPC Mac, Internet
int 4 4 4 = Least significant byte has highest address
long 4 4 8 = Little Endian: x86
= Least significant byte has lowest address
long long 8 8 8
float 4 4 4
double 8 8 8
long double 8 1012 10/16
pointer 4 4 8
55 56

Carnegie Mellon

Carnegie Mellon
Decimal: 15213
Byte Ordering Example Representing Integers |sinary: 0011 1011 0110 1101
Hex: 3 B 6 D
= Example .
intA=15213; ; _ .
® Variable x has 4-byte value of 0x01234567 Iong int C =15213;
= Address given by &x is 0x100 2 ESEr SR 1A32 X86-64 Sun
6D 00
3B 00 6D 6D 00
00 3B 3B 3B 00
Big Endian 0x100 0x101 0x102 0x103 00 D 00 00 3B
[| | o1] 23] 45] 67 | | | 00 00 6D
) . 00
Little Endian 0x100 0x101 0x102 O0x103 int B=-15213; 00
67 45 23 01
l I l l I l l I l 1A32, x86-64 Sun 00
00
93 FF
ca FF |
FF o] | >~
=3 93 Two’s complement representation
57 58
Examining Data Representations show_bytes Execution Example
m Code to Print Byte Representation of Data int a = 15213;
= Casting pointer to unsigned char * allows treatment as a byte array printf(’int a = 15213;\n");

show_bytes((pointer) &a, sizeof(int));
typedef unsigned char *pointer;

void show_bytes(pointer start, int len){

int i; P .
for (i = 0; i < len; i++) Result (Linux):
printf(%p\t0x%.2x\n" ,start+i, start[i]); = = -
printf("\n"); int a = 15213;
b Ox11ffffcb8 0x6d

Ox11fFfFFfcb9 0x3b
Ox11ffffcba 0x00
Ox11ffffcbb 0x00

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

Carnegie Mellon Carnegie Mellon

Representing Pointers Representing Strings

‘ char S[6] = ""18243";

:EE Ep::_;g?ls; m Stringsin C
= Represented by array of characters
Sun IA32 x86-64 = Each character encoded in ASCII format Linux/Alpha Sun
EF D4 0C = Standard 7-bit encoding of character set 31 31
FF F8 89 = Character “0” has code 0x30 38 38
FB FF EC — Digit i has code 0x30+i 32 32
2C BF FF = String should be null-terminated 34 34
FF = Final character =0 33 33
7F m Compatibility 00 00
00 = Byte ordering not an issue
00

Different compilers & machines assign different locations to objects

Carnegie Mellon

Integer C Puzzles
* x<0 = ((x2)<0)
e ux>=0
e X&7== = (x<<30)<0
e ux>-1
° x>y = X<-y
e X*x>=0
Initialization * x>0&&y>0 = X+y>0

S e x>=0 = x<=0

int x = foo();
* x<=0 = x>=0

inty = bar(); .« (x)>>31==-

unsigned ux = x; e ux>>3==ux/8

unsigned uy = y; s X>>3==x/8
¢ X&(x-1)!1=0

63

