
Andrew login ID:

Full Name:

15-213, Fall 2007

Midterm Exam
October 17, 2007, 1:00pm-2:20pm

Instructions:

• Make sure that your exam is not missing any sheets, then write your full name and Andrew login ID on the
front.

• Write your answers in the space provided below the problem. If you make a mess, clearly indicate your final
answer.

• The exam has a maximum score of 100 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy points
quickly and then go back to the harder problems.

• This exam is OPEN BOOK. You may use any books or notes you like. Calculators are allowed, but no other
electronic devices. Good luck!

Do not write below this line
——————————-

Problem Possible Points Your Score

1 16

2 18

3 16

4 12

5 12

6 16

7 10

Total 100

Page 1 of 8

Problem 1. (16 points):
Assume we are running code on an IA32 machine, which has a 32-bit word size and uses two’s complement arith-
metic for signed integers. Consider the following definitions:

int x = foo();
unsigned ux = x;

Fill in the empty boxes in the table below. For each of the C expressions in the first column, either:

• State that it is true of all possible values returned by foo(), or

• Give an example where it is not true.

Puzzle True / Counterexample

x > 0 ⇒ (x*2) > 0 False (TMax)

((˜(ux>>31)) & ux) != ux

x >= 0 ⇒ ((x ˆ (x>>31))) <= 0

((-(!x)) & x) == 0

x < 0 ⇒ ((˜x)+1) > 0

x > 0 ⇒ (x+ux) > 0U

x < 0 ⇒ (x-1) < 0

x >= 0 ⇒ -(((˜x) >> 1) + 1) > 0

((˜(x>>31))+1) == (x<0)

Page 2 of 8

Problem 2. (18 points):
Consider the following 9-bit floating point representation based on the IEEE floating point format:

• The most-significant bit is the sign bit.

• The next four bits are the exponent. The exponent bias is 7.

• The least-significant four bits are the significand.

The rules are like those in the IEEE standard (normalized, denormalized, representation of 0, infinity, and NAN).

Please fill in the empty boxes in the table below. For the Value field, you can write the value either as a fraction (e.g.
3
4 or 41

2) or as an integer times a power of 2 (e.g. 3× 2−2 or 9× 2−1).

Number Value sign bit exponent significand

zero 0.0 0 0000 0000

closest negative to zero

largest positive

n/a −5.0

n/a −2−4 + 2−6

n/a (1 9
16) · 2−2

n/a (1 5
16) · 21 + (1 3

16) · 2−2

Page 3 of 8

Problem 3. (16 points):
Consider the following C function’s x86-64 assembly code:

On entry:
%rdi = 1st argument to the procedure
%esi = 2nd argument to the procedure

<foo>:
<foo+0>: cmpl $0x1,(%rdi)
<foo+4>: je <foo+20>
<foo+10>: movl $0x0,%eax
<foo+15>: jmp <foo+73>
<foo+20>: movl $0x1,%ebx
<foo+25>: cmp %esi,%ebx
<foo+27>: jge <foo+68>
<foo+33>: movslq %ebx,%rdx
<foo+36>: mov 0xfffffffffffffffc(%rdi,%rdx,4),%ecx
<foo+40>: add %ecx,%ecx
<foo+42>: cmp %ecx,(%rdi,%rdx,4)
<foo+45>: je <foo+61>
<foo+51>: movl $0x0,%eax
<foo+56>: jmp <foo+73>
<foo+61>: inc %ebx
<foo+63>: jmp <foo+25>
<foo+68>: movl $0x1,%eax
<foo+73>: retq

Please fill in the corresponding C code:

int foo(int *array, int n) {
int i;

if (_________________) {
return ______;

}

for (i = ______; i ________; ________) {
if (_______________________) {

return ______;
}

}

return ______;
}

Page 4 of 8

Problem 4. (12 points):
Consider the C code below, where H and J are constants declared with #define.

int array1[H][J];
int array2[J][H];

int copy_array(int x, int y) {
array2[y][x] = array1[x][y];

return 1;
}

Suppose the above C code generates the x86-64 assembly code shown below. (Note that “line A” and “line B”
are not part of the code, but are comments that will be used later to refer back to specific lines.)

On entry:
%edi = x
%esi = y
#
copy_array:

movslq %edi,%rcx
movslq %esi,%rdx
mov %rcx,%rbp
shl $0x3,%rbp
sub %rcx,%rbp # line A
add %rdx,%rbp
movslq %edi,%rcx
movslq %esi,%rdx
mov %rdx,%rax
add %rax,%rax
add %rdx,%rax # line B
lea (%rax,%rcx,1),%rsi
mov array1(,%rbp,4),%eax
mov %eax,array2(,%rsi,4)
mov $0x1,%eax
retq

Give the valid C language expression that best describes the contents of the following registers. A valid C language
expression is one that can be parsed by a C compiler (e.g., 811, x+1, y*3+x, etc.).

• %rbp immediately after the instruction at line A has executed:

• %rax immediately after the instruction at line B has executed:

• The constant value H:

• The constant value J:

Page 5 of 8

Problem 5. (12 points):
Consider the following C declarations:

typedef struct {
int x;
int y;
int sensor_id;

} Sensor;

typedef struct {
int sensor_id;
double data;

} Data;

typedef struct {
Sensor *sensor;
char status;

} Sensor_Status;

Sensor sensor;
Data data;
Sensor_Status status_array[10];

Assume x86-64 alignment constraints. For each of the three data structures listed in the table below, please indicate
the total amount of space (in bytes) that is allocated and wasted:

Data Structure Total Allocated Space (in bytes) Total Wasted Space (in bytes)

sensor

data

status array

Page 6 of 8

Problem 6. (16 points):
Consider a computer with an 8-bit address space and an associative 64-byte data cache, with a LRU replacement
policy. Assume that the cache is 2-way set associative and has 8-byte cache lines. The boxes below represent the
bit-format of an address. In each box, indicate which field that bit represents (it is possible that a field does not
exist). Here are the fields:

CO: The byte offset within the cache line

CI: The cache (set) index

CT: The cache tag

7 6 5 4 3 2 1 0

The table below on the left shows a trace of load addresses accessed in the data cache. Below on the right is a
list of possible final states of the cache, showing the hex value of the tag for each cache line in each set. Which
is the correct final cache state? How many of the loads were hits? Assume that initially all cache lines are invalid
(represented by X), and that sets are filled from left to right.

Load No. Hex Address Binary Address
1 1a 0001 1010
2 55 0101 0101
3 e6 1110 0110
4 53 0101 0011
5 77 0111 0111
6 28 0010 1000
7 94 1001 0100
8 a6 1010 0110
9 75 0111 0101

10 c7 1100 0111
11 56 0101 0110

(a)
Set 3 Set 2 Set 1 Set 0
0 X 4 2 1 X 6 5

(b)
Set 3 Set 2 Set 1 Set 0
0 X 2 3 1 X 6 5

(c)
Set 3 Set 2 Set 1 Set 0
0 X 2 4 1 X 6 5

(d)
Set 3 Set 2 Set 1 Set 0
0 X 2 3 1 X 7 6

(e)
Set 3 Set 2 Set 1 Set 0
0 X 4 2 1 X 7 6

(f)
Set 3 Set 2 Set 1 Set 0
X 0 5 2 1 3 7 6

(g)
Set 3 Set 2 Set 1 Set 0
0 2 4 2 1 3 5 6

Correct final state: Number of hits:

Page 7 of 8

Problem 7. (10 points):
Consider the C code below:

int forker(int x) {
int pid;

printf("A");
if (x > 0) {

pid = fork();
printf("B");
if (pid == 0) {

printf("C");
} else {

waitpid(pid, NULL, 0);
printf("D");

}
}
printf("E");
exit(4);

}

Consider each of the following outputs and circle the ones that could be produced by the code above (after all
processes are terminated).

AAEE

ABCDE

ABCBEDE

ABCBDEE

ABCEBDE

Page 8 of 8

