15-213

“The course that gives CMU its Zip!”

Debugging
April 6, 2004

Topics
m Defensive programming
= Know your bugs
m Debugging Tricks
m Overview of available tools

class23.ppt

Assertions

Explicitly state what you expect to be true in your
program: invariants, argument ranges, etc.

Assert -macro (1ISO9899, ANSI C):
Generates no tests if “NODEBUG" is defined

| #include <assert.h>

#define MAX_ARRAY_SIZE 10
void foo(double af], double bf], int n)
{int i;
double *a_ptr =a, *b_ptr =b;
assert(n > 1 && n <= MAX_ARRAY_SIZE);
for (i=n; i) {
I*.%

a_ptr++;
[¥
b_ptr++;

assert(a_ptr == &(a[n]) && b_ptr == &(b[n]));

-3- 15-213, S'04

Page 1

Defensive Programming
5-20 Bugs per 1000 lines of code (Infoworld, Oct. 200 3)

Programmers must anticipate bugs, even if your code is bug -free.

How?

m Check for errors at all possible opportunities: det

eases finding the root cause.

= Maintain a clean, modular structure with documented
goto’s, global variables, long-jumps, clever/obscure
considered hafmfet-gangerous.
Anticipate common errors: buffer overrun, off-by-on e,...
Consider corner cases: 0/1 loops, empty lists, ...
Provide debugging support in your program: debuggin
data structure checkers (like the Heap-checker from
print-function for complicated structures, test-cas
Add redundancy
Maintain test cases for regression testing: use ver
systems (CVS, RCS, BitKeeper, Subversion, ...)
Use all the help you can get: heed compiler warning s, use debuggers,
verifyers, IDE's, code generators, high-level tools
-2- 15-213, S'04

ecting bugs early

interfaces:
macros , etc.

g messages,
the malloc -lab),
e generators, ...

sion control

Debug Messages

Use of cpp -macros and conditional compilation:

#ifdef DEBUG
extern int debug_level;
#define DEBUG_PRINT(level, format, args...) \
{if((level) < debug_level) {\
fprintf(stderr, "BEBUG_PRINT line=%d in file='%s"\ n"\
LINE, __FILE_);\
fprintf(stderr, format , ## args);}\

#else
#define DEBUG_PRINT(level, format, args...)
#endif

foo(int a, int b) {
DEBUG_PRINT(0, "foo(a=%d, b=%d) started\n", a, b);
}

-4- 15-213, S'04

Add Redundancy

Engineering tradeoff between robustness and
performance.

Extreme case Google:
m Data structures have software maintained checksums
m Distributed system (> 10,000 machines): need fail-s top
characteristic, handle failures at higher level

Simple Cases:

m Count item and compare to pointer difference (seea ssertion
example)
m Compute simple, inexpensive invariants (for example : the
sum of allocated and free memory objects in the hea p ought
to equal the heap size)
-5- 15-213, S'04

Debugging History

In 1945 G. Hopper found the first “bug” in IBM's
Harvard Mark | , an electro -mechanical computer:

Photo # NH 96566-KN First Computer "Bug”. 1945

{13me sor g oz
L0 ke

900 W <o 907 ¥y
1w g meene EASHEY) en) 7iriaco 57

e ®
At | 7e (Sine e
5 Rel ana]| F
| §mknﬂmﬁihf :
P JJ'\:L;:‘(::’VL«L o hu.l t“..1 {N»,L

pee| el Lienc

-7- 15-213, S'04

Page 2

Integrated Development Environment

Program -editor (with syntax support), version control
system, compiler, debugger, build -system, profiler,
graphical user interface, and integration = IDE

= Microsoft Visual-*
m IBM'’s Eclipse project
m Kdevelop (open source)

m Pro: convenience

m Con: often platform dependent
= No silver bullet

—-6- 15-213, S’04

Early Debugging

Use of front pannel switches & lights:

Other tools included: [IBM] svsiem 880

m Core dumps

m Print statements

= Hardware monitors
m Speakers

-8- 15-213, S'04

Know your Bugs

Common bugs in C -programs
= Pointer bugs
= Dynamic memory allocation / deallocation bugs
m Memory leaks (missing free() calls)
m Buffer overflow bugs
= Arrays out of bound errors (off-by-one)
m Exception handling
m Variable scope problems (see linking lecture)
m Race conditions in multi-threaded codes

Other bugs not considered in this class:
m Specification errors
= Performance bugs

m Program logic errors (bad algorithms, data structur es, etc.)
—9— 15-213, S'04

GDB (GNU DeBugger)

Basic functionality:
m Can run programs in an observable environment

m Uses ptrace -interface to insert breakpoint, single step,
inspect & change registers and variables

= Does not require compilation with “-g”, but works m uch
better if it has the symbol tables available

= Maintains source line numbers and can inspect sourc e files
m Ability to attach to a running process
m Ability to watch memory locations
m Conditional breakpoints
m Some graphical user interfaces exist (DDD, KDbg, ...)
-11- 15-213, S04

Page 3

Encounter with a Bug

Program produces unexpected result and/or crashes
m |s this behavior reproducible?
m Does it depend on input data?
= Does it change with compilation options? (-g vs. —-O 2)

First goal: narrow the possible code range that cou Id be
responsible for the bug:

m Divide & Conquer

= Simplify the code that shows the bug

= In case of rare/intermittent bugs: try to cause the
fail more frequently

= Add logging or debugging printouts to pinpoint the
approximate location of the failure

program to

_10- 15-213, S04

DDD

Graphical front -end to GDB with extended data
visualization support: http:// www.gnu.org/software/ddd

% [T

=

Fie Eit View Progam Commands Sietis Source

.

0] 1stose1

]

[IMJ

(o) arapn E1saay “(11sEonent-onext->selF) degendent on 4
3y 7

A st = (List %) oxa04dfen i

1o- 15-213, S04

Annoyingly Frequent Case:

Memory corruption due to an earlier pointer or dyna mic
memory allocation error: bug cause and effect are
separated by 1000's of instructions

m Use GDB to watch the corruption happen:
® Use conditional breakpoints: break ... if cond
® Set a watchpount: [r,a]Jwatch expr

m Use dog-tags in your program
= Use a debugging-version of malloc()
= Use run-time verification tools

13- 15-213, S'04

Dogtags (continued)

Call check funtion near suspect codes by manually
inserting calls or (hack alert):

#ifdef AUTO_WATCH_DOG_TAGS

#define if(expr) if (CHECK_WATCHED_DOG_TAGS, (expr))

#define while(expr) while (CHECK_WATCHED_DOG_TAGS,(expr))
#define switch(expr) switch (CHECK_WATCHED_DOG_TAGS ,(expr))
#endif /* AUTO_WATCH_DOG_TAGS */

— 15— 15-213, S04

Page 4

Dogtags

GDB style watch points are frequently too slow to b e
used in large, complex programs.

#ifdef USE_DOG_TAGS struct foobar {
#define DOGTAG(x) int x; DOGTAG(dt1);
#else int buf[20];
#define DOGTAG(x) DOGTAG(dt2);
#endif }

m If dogtags are enabled, maintain a list of all alloc ated dogtags
(easier with C++ class objects using the constructo r)

m |nitialize dogtags to a distinct value (e.g. Oxdeadb eeef)
m Provide function that checks the integrity of the d ogtags
m When to call this function?
—14 - 15-213, S'04

Dynamic Memory Allocation Checker

malloc () and friends are a frequent source of trouble
therefore there are numerous debugging aids for thi s
problem. The typical functionality include:

m Padding the allocated area with dogtags that are che cked
when any dynamic memory allocation functions are ca lled or
on demand.

m Checking for invalid free() calls (multiple, with b ad argument)

m Checking for access to freed memory regions

m Keeping statistics of the heap utilization

= Logging

16— 15-213, S04

MALLOC_CHECK_

In recent versions of Linux libc (later than 5.4.23) and
GNU libc (2.x), defining MALLOC_CHECK causes
extra checks to be enabled (at the expense of lower
speed):

m Checks for multiple free() calls
m Overruns by a single byte

_17- 15-213, S'04

Electric Fence, by Bruce Perens

Ref: http://sunsite.unc.edu/pub/Linux/devel/lang/c/Elect ricFence -2.0.5.tar.gz

Idea: use the virtual memory mechanism to isolate a nd
protect memory regions
m Pro: very fast — uses hardware (page faults) for the
m Con: Fairly large memory overhead due to page-size

testing
granularity

ect — uses
dependent)

m Variations of this idea: Wisconsin Wind-Tunnel proj
ECC bits to get finer granularity (highly platform

_19- 15-213, S04

Page 5

Boehm-Weiser Conservative Garbage

Collector
Ref: http:// www.hpl.hp.com/personal/Hans_Boehm/gc /

Idea: forget about free() calls and try to use garb age
collection within C. Has to be conservative.

m Checks for existing pointers to allocated memory re gions
m Circular pointers prevent reclaiming
m Assumes that pointers point to first byte (not nece ssarily

true)
m Assumes that pointers are not constructed on the fl y

18- 15-213, S04

Run Time Memory Checkers

Very powerful tools that use binary translation
techniques to instrument the program:

= The program (executable or object files) is disasse =~ mbled and
memory access (or any other operations) are replace d with
code that add extra checking

m Generally results in a 2-50x slow-down, dependingo n the

level of checking desired
m Can be used for profiling and performance optimizat ions

-20- 15-213, S04

Pixie, Atom, 3 @ Degree, Tracepoint

Originally conceived as tool for computer architect ure
research. Started out as instruction level interpre ters
then added compilation facilities

m Pixie: MIPS specific
m Shade: Sun specific
m ATOM: Alpha specific

e 3 Degree used Atom for debugging and verification pur poses
® Tracepoint tries (unsuccessfully) to commercialize t his tool
_21- 15-213, S'04

Memcheck

Uses Valgrind to:
m Use of uninitialised memory
m Reading/writing memory after it has been free'd
m Reading/writing off the end of malloc'd blocks
m Reading/writing inappropriate areas on the stack
= Memory leaks -- where pointers to malloc'd blocks are lost
forever
m Passing of uninitialised and/or unaddressible memory to
system calls
= Mismatched use of malloc/new/new(] Vs
free/delete/delete []
m Overlapping src and dst pointersin memcpy() and related
functions
= Some misuses of the POSIX pthreads API
- 23— 15-213, S04

Page 6

Valgrind (IA-32, x86 ISA)

Open source software licensed under the GPL (like L
http:// valgrind.kde.org/index.html

inux):

Valgring is a general purpose binary translation
infrastructure for the 1A -32 instruction set architecture

Tools based on Valgrind include:
m Memcheck detects memory-management problems

m Addrcheck is a lightweight version of Memcheck which does no
uninitialised-value checking

m Cachegrind is a cache profiler. It performs detailed simulatio n of
the 11, D1 and L2 caches in your CPU

m Helgrind is a thread debugger which finds data races in
multithreaded programs

oo 15-213, S04

KCachegrind

Profiling and cache simulation tool based on Valgrind

] \

g
L 3
- !

15-213, S'04

— 24—

Purify

Reed Hastings and Bob Joyce. “ Purify: Fast detection
of memory leaks and access errors " In Proc. 1992
Winter USENIX Conference, pages 125 --136, 1992

Commercialized by Rational Software, acquired by IB M

m Binary translation based verification system with h igh level
program development extension (project management)

m Earlier versions used in 15-211 (1997)
m Pro: Very mature, powerful tool
m Con: Costly, limited range of supported platforms

» Commercial competitor: Insure++ from Parasoft

o5 15-213, S'04

gce —pg ...

Add instrumentation (counters) at function granular ity
(calls to mcount ())

[agn@char src]$ gprof driver gmon.out
Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
50.03 15.71 1571 51 308.04 308.04 naive_kernel
1411 20.14 4.4388358912 0.00 0.00 is_alive
758 2252 238 20 119.00 1570.00 run_benchmark
6.02 24.41 18911044258 0.00 0.00 s_bufl_set
576 26.22 1.8111044258 0.00 0.00 s_buf_set
5.67 28.00 178 51 34.90 34.90 nofunc8_next_generation
3.18 29.00 1.0011044258 0.00 0.00 naive_set
229 2972 0.72 51 14.12 1412 s_buf_kernel
2.10 30.38 0.6611044258 0.00 0.00 nofunc5_turn_on
-27- 15-213, S04

Page 7

Profiling

Where is your program spending its CPU time?

Profiling is used to find performance bugs and to f ine-
tune program performance.

Principle approaches:
m Compile time instrumentation (gcc —p ...)
m Statistical sampling (DCPI for Alpha based machines)
= Instrumentation via binary translation tools

26 15-213, S04

Debugging an Entire System?

Debugging kernel level code is hard: mistakes gener ally
crash the system. Real -time constraints prevent
seting breakpoint is places like interrupt handlers or
1/O drivers.

Alternatives:
m SimOS (Stanford, http:/simos.stanford.edu/) defunct

m Vmware: commercial version of SimOS for virtualizing
production server, running Windows under Linux or v ice
versa

m Simics: commercial system level simulation for comp uter
architecture research and system level software
development

m User Mode Linux: Run Linux under Linux as a user le vel
process http://user-mode-linux.sourceforge.net/

- 28— 15-213, S04

User Level Linux

User-Mode Linux is a safe, secure way of running Linux v ersions and
Linux processes. Run buggy software, experiment wit h new Linux
kernels or distributions, and poke around in the in ternals of Li nux,
all without risking your main Linux setup

29 15-213, S'04

Page 8

—30—

—

15-213, S’04

