
Page 1

Debugging
April 6, 2004
Debugging

April 6, 2004

TopicsTopics
� Defensive programming
� Know your bugs
� Debugging Tricks
� Overview of available tools

15-213
“The course that gives CMU its Zip!”

class23.ppt
– 2 – 15-213, S’04

Defensive ProgrammingDefensive Programming
55--20 Bugs per 1000 lines of code (InfoWorld, Oct. 200 3)20 Bugs per 1000 lines of code (InfoWorld, Oct. 200 3)

Programmers must anticipate bugs, even if Programmers must anticipate bugs, even if youryour code is bugcode is bug --free.free.

How?How?
� Check for errors at all possible opportunities: det ecting bugs early

eases finding the root cause.
� Maintain a clean, modular structure with documented interfaces:

goto’s, global variables, long-jumps, clever/obscure macros , etc.
considered harmful dangerous.

� Anticipate common errors: buffer overrun, off-by-on e,…
� Consider corner cases: 0/1 loops, empty lists, …
� Provide debugging support in your program: debuggin g messages,

data structure checkers (like the Heap-checker from the malloc -lab),
print-function for complicated structures, test-cas e generators, …

� Add redundancy
� Maintain test cases for regression testing: use ver sion control

systems (CVS, RCS, BitKeeper, Subversion, …)
� Use all the help you can get: heed compiler warning s, use debuggers,

verifyers, IDE’s, code generators, high-level tools ,…

– 3 – 15-213, S’04

AssertionsAssertions

Explicitly state what you expect to be true in your Explicitly state what you expect to be true in your
program: invariants, argument ranges, etc.program: invariants, argument ranges, etc.

AssertAssert --macro (ISO9899, ANSI C):macro (ISO9899, ANSI C):
Generates no tests if “NODEBUG” is defined

#include <assert.h>

#define MAX_ARRAY_SIZE 10

void foo(double a[], double b[], int n)
{ int i;

double *a_ptr = a, *b_ptr = b;
assert(n > 1 && n <= MAX_ARRAY_SIZE);

for (i = n; --i;) {
/* ... */
a_ptr++;
/* ... */
b_ptr++;

}

assert(a_ptr == &(a[n]) && b_ptr == &(b[n]));
}

– 4 – 15-213, S’04

Debug MessagesDebug Messages

Use of Use of cppcpp --macros and conditional compilation:macros and conditional compilation:

#ifdef DEBUG
extern int debug_level;
#define DEBUG_PRINT(level, format, args...) \

{ if((level) < debug_level) {\
fprintf(stderr, "BEBUG_PRINT line=%d in file='%s':\ n",\

__LINE__, __FILE__);\
fprintf(stderr, format , ## args);}\

}
#else
#define DEBUG_PRINT(level, format, args...)
#endif

foo(int a, int b) {
DEBUG_PRINT(0, "foo(a=%d, b=%d) started\n", a, b);

}

Page 2

– 5 – 15-213, S’04

Add RedundancyAdd Redundancy

Engineering tradeoff between robustness and Engineering tradeoff between robustness and
performance.performance.

Extreme case Google:Extreme case Google:
� Data structures have software maintained checksums

� Distributed system (> 10,000 machines): need fail-s top
characteristic, handle failures at higher level

Simple Cases:Simple Cases:
� Count item and compare to pointer difference (see a ssertion

example)

� Compute simple, inexpensive invariants (for example : the
sum of allocated and free memory objects in the hea p ought
to equal the heap size)

– 6 – 15-213, S’04

Integrated Development EnvironmentIntegrated Development Environment

ProgramProgram --editor (with syntax support), version control editor (with syntax support), version control
system, compiler, debugger, buildsystem, compiler, debugger, build --system, profiler, system, profiler,
graphical user interface, and integration = IDEgraphical user interface, and integration = IDE
� Microsoft Visual-*

� IBM’s Eclipse project

� Kdevelop (open source)

� Pro: convenience

� Con: often platform dependent

� No silver bullet

– 7 – 15-213, S’04

Debugging HistoryDebugging History

In 1945 G. Hopper found the first “bug” in IBM’s In 1945 G. Hopper found the first “bug” in IBM’s
Harvard Mark IHarvard Mark I , an electro, an electro --mechanical computer:mechanical computer:

– 8 – 15-213, S’04

Early DebuggingEarly Debugging

Use of front Use of front pannelpannel switches & lights:switches & lights:

Other tools included:Other tools included:
� Core dumps

� Print statements

� Hardware monitors

� Speakers

Page 3

– 9 – 15-213, S’04

Know your BugsKnow your Bugs

Common bugs in CCommon bugs in C --programsprograms
� Pointer bugs

� Dynamic memory allocation / deallocation bugs
� Memory leaks (missing free() calls)

� Buffer overflow bugs

� Arrays out of bound errors (off-by-one)

� Exception handling

� Variable scope problems (see linking lecture)

� Race conditions in multi-threaded codes

Other bugs not considered in this class:Other bugs not considered in this class:
� Specification errors

� Performance bugs

� Program logic errors (bad algorithms, data structur es, etc.)
– 10 – 15-213, S’04

Encounter with a BugEncounter with a Bug

Program produces unexpected result and/or crashesProgram produces unexpected result and/or crashes
� Is this behavior reproducible?

� Does it depend on input data?

� Does it change with compilation options? (-g vs. –O 2)

First goal: narrow the possible code range that cou ld be First goal: narrow the possible code range that cou ld be
responsible for the bug:responsible for the bug:
� Divide & Conquer

� Simplify the code that shows the bug

� In case of rare/intermittent bugs: try to cause the program to
fail more frequently

� Add logging or debugging printouts to pinpoint the
approximate location of the failure

– 11 – 15-213, S’04

GDB (GNU DeBugger)GDB (GNU DeBugger)

Basic functionality:Basic functionality:
� Can run programs in an observable environment
� Uses ptrace -interface to insert breakpoint, single step,

inspect & change registers and variables

� Does not require compilation with “-g”, but works m uch
better if it has the symbol tables available

� Maintains source line numbers and can inspect sourc e files

� Ability to attach to a running process

� Ability to watch memory locations

� Conditional breakpoints

� Some graphical user interfaces exist (DDD, KDbg, …)

– 12 – 15-213, S’04

DDDDDD

Graphical frontGraphical front --end to GDB with extended data end to GDB with extended data
visualization support: http://visualization support: http:// www.gnu.org/software/dddwww.gnu.org/software/ddd

Page 4

– 13 – 15-213, S’04

Annoyingly Frequent Case:Annoyingly Frequent Case:

Memory corruption due to an earlier pointer or dyna mic Memory corruption due to an earlier pointer or dyna mic
memory allocation error: bug cause and effect are memory allocation error: bug cause and effect are
separated by 1000’s of instructionsseparated by 1000’s of instructions
� Use GDB to watch the corruption happen:

� Use conditional breakpoints: break ... if cond

� Set a watchpount: [r,a]watch expr

� Use dog-tags in your program

� Use a debugging-version of malloc()

� Use run-time verification tools

– 14 – 15-213, S’04

DogtagsDogtags

GDB style watch points are frequently too slow to b e GDB style watch points are frequently too slow to b e
used in large, complex programs. used in large, complex programs.

� If dogtags are enabled, maintain a list of all alloc ated dogtags
(easier with C++ class objects using the constructo r)

� Initialize dogtags to a distinct value (e.g. 0xdeadb eeef)

� Provide function that checks the integrity of the d ogtags

� When to call this function?

#ifdef USE_DOG_TAGS
#define DOGTAG(x) int x;
#else
#define DOGTAG(x)
#endif

struct foobar {
DOGTAG(dt1);
int buf[20];
DOGTAG(dt2);

};

– 15 – 15-213, S’04

Dogtags (continued)Dogtags (continued)

Call check Call check funtionfuntion near suspect codes by manually near suspect codes by manually
inserting calls or (inserting calls or (hack alerthack alert):):

#ifdef AUTO_WATCH_DOG_TAGS
#define if(expr) if (CHECK_WATCHED_DOG_TAGS,(expr))
#define while(expr) while (CHECK_WATCHED_DOG_TAGS,(expr))
#define switch(expr) switch (CHECK_WATCHED_DOG_TAGS ,(expr))
#endif /* AUTO_WATCH_DOG_TAGS */

– 16 – 15-213, S’04

Dynamic Memory Allocation CheckerDynamic Memory Allocation Checker

mallocmalloc ()() and friends are a frequent source of trouble and friends are a frequent source of trouble
therefore there are numerous debugging aids for thi s therefore there are numerous debugging aids for thi s
problem. The typical functionality include:problem. The typical functionality include:
� Padding the allocated area with dogtags that are che cked

when any dynamic memory allocation functions are ca lled or
on demand.

� Checking for invalid free() calls (multiple, with b ad argument)

� Checking for access to freed memory regions

� Keeping statistics of the heap utilization

� Logging

Page 5

– 17 – 15-213, S’04

MALLOC_CHECK_MALLOC_CHECK_

In recent versions of Linux In recent versions of Linux libclibc (later than 5.4.23) and (later than 5.4.23) and
GNU GNU libclibc (2.x), defining (2.x), defining MALLOC_CHECK_ MALLOC_CHECK_ causes causes
extra checks to be enabled (at the expense of lower extra checks to be enabled (at the expense of lower
speed):speed):
� Checks for multiple free() calls

� Overruns by a single byte

– 18 – 15-213, S’04

Boehm-Weiser Conservative Garbage
Collector
Boehm-Weiser Conservative Garbage
Collector
Ref: Ref: http://http:// www.hpl.hp.com/personal/Hans_Boehm/gcwww.hpl.hp.com/personal/Hans_Boehm/gc //

Idea: forget about free() calls and try to use garb age Idea: forget about free() calls and try to use garb age
collection within C. Has to be conservative.collection within C. Has to be conservative.
� Checks for existing pointers to allocated memory re gions

� Circular pointers prevent reclaiming

� Assumes that pointers point to first byte (not nece ssarily
true)

� Assumes that pointers are not constructed on the fl y

– 19 – 15-213, S’04

Electric Fence, by Bruce PerensElectric Fence, by Bruce Perens

Ref: Ref: http://sunsite.unc.edu/pub/Linux/devel/lang/c/Elect ricFencehttp://sunsite.unc.edu/pub/Linux/devel/lang/c/Elect ricFence --2.0.5.tar.gz2.0.5.tar.gz

Idea: use the virtual memory mechanism to isolate a nd Idea: use the virtual memory mechanism to isolate a nd
protect memory regionsprotect memory regions
� Pro: very fast – uses hardware (page faults) for the testing

� Con: Fairly large memory overhead due to page-size granularity

� Variations of this idea: Wisconsin Wind-Tunnel proj ect – uses
ECC bits to get finer granularity (highly platform dependent)

– 20 – 15-213, S’04

Run Time Memory CheckersRun Time Memory Checkers

Very powerful tools that use binary translation Very powerful tools that use binary translation
techniques to instrument the program:techniques to instrument the program:
� The program (executable or object files) is disasse mbled and

memory access (or any other operations) are replace d with
code that add extra checking

� Generally results in a 2-50x slow-down, depending o n the
level of checking desired

� Can be used for profiling and performance optimizat ions

Page 6

– 21 – 15-213, S’04

Pixie, Atom, 3 rd Degree, TracepointPixie, Atom, 3 rd Degree, Tracepoint

Originally conceived as tool for computer architect ure Originally conceived as tool for computer architect ure
research. Started out as instruction level interpre ters research. Started out as instruction level interpre ters
then added compilation facilitiesthen added compilation facilities
� Pixie: MIPS specific

� Shade: Sun specific

� ATOM: Alpha specific
� 3rd Degree used Atom for debugging and verification pur poses
� Tracepoint tries (unsuccessfully) to commercialize t his tool

– 22 – 15-213, S’04

Valgrind (IA-32, x86 ISA)Valgrind (IA-32, x86 ISA)

Open source software licensed under the GPL (like L inux): Open source software licensed under the GPL (like L inux):
http://http:// valgrind.kde.org/index.htmlvalgrind.kde.org/index.html

ValgringValgring is a general purpose binary translation is a general purpose binary translation
infrastructure for the IAinfrastructure for the IA --32 instruction set architecture32 instruction set architecture

Tools based on Tools based on ValgrindValgrind include:include:
� Memcheck detects memory-management problems

� Addrcheck is a lightweight version of Memcheck which does no
uninitialised-value checking

� Cachegrind is a cache profiler. It performs detailed simulatio n of
the I1, D1 and L2 caches in your CPU

� Helgrind is a thread debugger which finds data races in
multithreaded programs

– 23 – 15-213, S’04

MemcheckMemcheck

Uses Uses ValgrindValgrind to:to:
� Use of uninitialised memory

� Reading/writing memory after it has been free'd

� Reading/writing off the end of malloc'd blocks

� Reading/writing inappropriate areas on the stack

� Memory leaks -- where pointers to malloc'd blocks are lost
forever

� Passing of uninitialised and/or unaddressible memory to
system calls

� Mismatched use of malloc/new/new[] vs
free/delete/delete []

� Overlapping src and dst pointers in memcpy() and related
functions

� Some misuses of the POSIX pthreads API

– 24 – 15-213, S’04

KCachegrindKCachegrind

Profiling and cache simulation tool based on Profiling and cache simulation tool based on ValgrindValgrind

Page 7

– 25 – 15-213, S’04

PurifyPurify

Reed Hastings and Bob Joyce. “Reed Hastings and Bob Joyce. “ Purify: Fast detection Purify: Fast detection
of memory leaks and access errorsof memory leaks and access errors ” In Proc. 1992 ” In Proc. 1992
Winter USENIX Conference, pages 125Winter USENIX Conference, pages 125 ----136, 1992136, 1992

Commercialized by Rational Software, acquired by IB MCommercialized by Rational Software, acquired by IB M
� Binary translation based verification system with h igh level

program development extension (project management)

� Earlier versions used in 15-211 (1997)

� Pro: Very mature, powerful tool

� Con: Costly, limited range of supported platforms

� Commercial competitor: Insure++ from Parasoft

– 26 – 15-213, S’04

ProfilingProfiling

Where is your program spending its CPU time?Where is your program spending its CPU time?

Profiling is used to find performance bugs and to f ineProfiling is used to find performance bugs and to f ine --
tune program performance.tune program performance.

Principle approaches:Principle approaches:
� Compile time instrumentation (gcc –p …)

� Statistical sampling (DCPI for Alpha based machines)

� Instrumentation via binary translation tools

– 27 – 15-213, S’04

gcc –pg …gcc –pg …

Add instrumentation (counters) at function granular ity Add instrumentation (counters) at function granular ity
(calls to (calls to mcountmcount ()()))

[agn@char src]$ gprof driver gmon.out
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
50.03 15.71 15.71 51 308.04 308.04 naive_kernel
14.11 20.14 4.43 88358912 0.00 0.00 is_alive

7.58 22.52 2.38 20 119.00 1570.00 run_benchmark
6.02 24.41 1.89 11044258 0.00 0.00 s_buf1_set
5.76 26.22 1.81 11044258 0.00 0.00 s_buf_set
5.67 28.00 1.78 51 34.90 34.90 nofunc8_next_generation
3.18 29.00 1.00 11044258 0.00 0.00 naive_set
2.29 29.72 0.72 51 14.12 14.12 s_buf_kernel
2.10 30.38 0.66 11044258 0.00 0.00 nofunc5_turn_on

. . .

– 28 – 15-213, S’04

Debugging an Entire System?Debugging an Entire System?

Debugging kernel level code is hard: mistakes gener ally Debugging kernel level code is hard: mistakes gener ally
crash the system. Realcrash the system. Real --time constraints prevent time constraints prevent
setingseting breakpoint is places like interrupt handlers or breakpoint is places like interrupt handlers or
I/O drivers.I/O drivers.

Alternatives:Alternatives:
� SimOS (Stanford, http://simos.stanford.edu/) defunct

� Vmware: commercial version of SimOS for virtualizing
production server, running Windows under Linux or v ice
versa

� Simics: commercial system level simulation for comp uter
architecture research and system level software
development

� User Mode Linux: Run Linux under Linux as a user le vel
process http://user-mode-linux.sourceforge.net/

Page 8

– 29 – 15-213, S’04

User Level LinuxUser Level Linux
UserUser --Mode Linux is a safe, secure way of running Linux v ersions and Mode Linux is a safe, secure way of running Linux v ersions and

Linux processes. Run buggy software, experiment wit h new Linux Linux processes. Run buggy software, experiment wit h new Linux
kernels or distributions, and poke around in the in ternals of Likernels or distributions, and poke around in the in ternals of Li nux, nux,
all without risking your main Linux setupall without risking your main Linux setup ..

– 30 – 15-213, S’04

