
Lecture 15: Linking 15-213/15-513/14-513 Fall 2022

Learning Objectives

• Be able to name the four principal steps of the C build process.

• Be able to identify which C language elements will produce labels and symbols.

• Recognize the difference between an object file’s symbol table and its relocation
table.

• Understand that types are a feature of the C language that disappear upon
compilation.

• Be able to recognize when globals clash, even if the compiler and/or linker cannot
tell.

Getting Started

To get set up for today’s activity, run these commands on a shark machine:

$ mkdir linking
$ cd linking
$ wget http://www.cs.cmu.edu/~213/activities/linking
$ chmod +x linking
$ ./linking

Then follow the instructions on your screen, filling in the discussion questions below
when you are prompted to do so. As you complete each part of the exercise, you’ll
reinvoke the linking executable repeatedly in the same manner.1

3 Phases of Compilation

Problem 1. In the first step, where did all the extra code coming from? What do you
think the lines beginning with ‘#’ and a number mean?

The extra code came from stdio.h and other headers included by that header.
The lines beginning with ‘#’ and a number tell the second step of compilation which

lines of code came from which files.
1In case you get lost or want to see a past set of instructions again, you can seek directly to any part

of the activity. Each invocation of linking outputs a “page number” in the upper-right corner; if
passed to linking as a command-line argument, this replays that part. You can also provide the
section numbers from this sheet.

Solutions 1/5



Linking

Problem 2. The gcc -S main.c step produces a file called main.s. What type of file
is this? Examining its contents, you should notice labels corresponding to the global
variable and both functions. Given only a label’s name, can you tell what its C type is?

main.s contains assembly language. You can’t tell what C type a label is; that
information has been discarded. You may be able to reconstruct some of the type by
looking at the code or data stored at each label and how it is used, but it is not possible
to do this perfectly.

4 The Symbol Table

Problem 3. Looking at the addresses in the leftmost column, do you notice anything
suspicious about the locations of global and set_global?

Both global and set_global appear to be at address 0! You can’t have two different
things at the same address, and you can’t have anything at address 0.

5 Object File Sections

Problem 4. Which section contains set_global? How about global?

set_global is in the .text section, and global is in the .data section.

Problem 5. The output also contains flags describing the properties of each section.
Thinking back to attack lab, describe one limitation that these flags (or the lack thereof)
impose on each of the sections from your previous answer.

Only the .text section has the CODE flag. This is how the operating system knows
to set things up so that only the data in the .text section can be executed as machine
code.

Most of the sections (except .data and .bss) have the READONLY flag. This is how
the operating system knows to set things up so that the data in those sections cannot
be modified by the running programe.

Problem 6. The sections’ offsets within the object file differ, but what do you notice
about their memory addresses (VMA and LMA)?

All of the memory addresses are zero.

6 Relocations

Problem 7. Try disassembling the object file using objdump -d. At what address(es)
does the code seem to expect to find global? How about the printf() function?

Solutions 2/5



Linking

The code seems to expect to find global at offset 0 from register %rip—which
doesn’t make a whole lot of sense. This must be another value that still needs to
be filled in, like the section addresses. Similarly, the call instructions that will call
printf are currently making a call to the very next instruction—you may remember
that this is the same as “offset 0 from register %rip.”

Problem 8. The object file also includes what’s known as a “relocation table.” Examine
this with objdump -r. What locations does it record (the leftmost column), and do
you have a guess as to why this will be useful?

The locations in the leftmost column identify all of the places in the machine code
where a value still needs to be filled in. The next step will use these “relocation records”
to update all of the machine instructions with the correct addresses for global, printf,
etc.

7 The BSS

Problem 9. global has moved to a different section: which one? Can you guess why
the compiler treats zero-initialized variables specially?

global is now in the .bss section. Maybe, if all the variables that will be zero-
initialized are gathered into this section, they can be handled more efficiently, some-
how?

Problem 10. Look at the Size column. How large will the .bss section be in the
loaded process memory image? Now look at the entries in the File off column. How
large is the .bss section is the executable file? Can you infer how the .bss section is
treated differently from the other sections in an ELF executable?

The .bss section’s size in memory will be 4 (just big enough for one int) but its
offset in the file is the same as the offset of the next section in the file. In other words, it
doesn’t take up any space in the file.

10 Clashing Symbols

Problem 11. Take a quick look at both main_zero.c and helper.c. What do you think
will happen when we try to link these modules together?

Both of them define global, so the link operation will fail.

Solutions 3/5



Linking

13 Missing Declarations

Problem 12. Will building this program (linking against helper.o) work? If so, why?
If not, at what step of the build (preprocessing, compilation, assembly, or linking) will
it fail?

This will fail at the compilation stage, because the compiler does not have any type
information for global.

(For historical reasons, a missing declaration of a function, like set_global, causes
the compiler to guess what its type is, rather than issuing an error. It still complains
about this, but, when you actually compiled main_scary.c, did you notice that it
printed “error: ‘global’ undeclared” but “warning: implicit declaration of function
‘set_global’ ” ? Warnings don’t stop compilation.)

15 Mismatched Types

Problem 13. What’s wrong with the program now?

global is declared as a float here, even though helper.c defines it as an int. And
set_global is declared to take a float argument, even though helper.c defines it to
take an int argument.

Problem 14. Will building this program work? If so, why? If not, at what step will it
fail?

This program will compile and link successfully, even though it’s wrong! The
compiler doesn’t look at helper.c at all while compiling main_scary.c, so it does
not notice the mismatch. And the symbols global and set_global, in the object files,
don’t have types, so the linker does not notice either.

16 (Advanced) Silent Failure

Problem 15. Did the build fail as early as you expected?

If you wrote anything but “this program will compile and link successfully, even
though it’s wrong” as your answer to the previous question, you got a surprise!

18 (Advanced) Mutability

Problem 16. What is inconsistent now? How do you expect the program to behave?

Solutions 4/5



Linking

Now the inconsistency is that global is defined with the constmodifier in helper.c,
but it’s declared without that modifier in main_scary.c, and furthermore main tries
to modify the value. This program will still compile and link, but will crash with a
“Segmentation fault” message when it tries to modify the value. If you look at the
symbol table for helper.o again, you’ll see that global is now in the .rodata section,
which, like .text, is protected from modification.

Solutions 5/5


	Phases of Compilation
	The Symbol Table
	Object File Sections
	Relocations
	The BSS
	Clashing Symbols
	Missing Declarations
	Mismatched Types
	(Advanced) Silent Failure
	(Advanced) Mutability

