
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Network Programming: Part II

15-213 / 18-213: Introduction to Computer Systems
“22nd” Lecture, July 24, 2019

Instructor:

Sol Boucher

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface

 Set of system-level functions used in conjunction with
Unix I/O to build network applications.

 Created in the early 80s as part of the original Berkeley
distribution of Unix that contained an early version of the
Internet protocols.

 Available on all modern systems
 Unix variants, Windows, OS X, IOS, Android, ARM

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client Server

Sockets
 What is a socket?

 To the kernel, a socket is an endpoint of communication

 To an application, a socket is a file descriptor that lets the
application read/write from/to the network

 Remember: All Unix I/O devices, including networks, are
modeled as files

 Clients and servers communicate with each other by
reading from and writing to socket descriptors

 The main distinction between regular file I/O and socket
I/O is how the application “opens” the socket descriptors

clientfd serverfd

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: C Standard I/O, Unix I/O and RIO
 Robust I/O (RIO): 15-213 special wrappers

good coding practice: handles error checking, signals, and
“short counts”

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen
fread fwrite
fscanf fprintf
 sscanf
sprintf fgets
fputs fflush
fseek
fclose

open read
write lseek
stat close

rio_readn
rio_writen
rio_readinitb
rio_readlineb
rio_readnb

RIO
functions

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Socket Programming Example

 Echo server and client
 Server

 Accepts connection request

 Repeats back lines as they are typed

 Client
 Requests connection to server

 Repeatedly:
 Read line from terminal
 Send to server
 Read reply from server
 Print line to terminal

Coding demo

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

5. Drop client5. Drop client
4. Disconnect client4. Disconnect client

3. Exchange
data

3. Exchange
data

2. Start client2. Start client 1. Start server1. Start server

Client /
Server
Session

Echo
Server

+ Client
Structure

Client Server

rio_readlineb

rio_writen
rio_readlineb

fputs

fgets
rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from client

accept

open_listenfd

open_clientfd

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Addresses
 Structures

 String conversions

 DNS

 Sockets and ports
 Creating and associating sockets

 Opening ports

 Connections

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Socket Address Structures
 Internet (IPv4) specific socket address:

 Must cast (struct sockaddr_in *) to (struct sockaddr *)
for functions that take socket address arguments.

sin_family

0 0 0 0 0 0 0 0

Family Specific

struct sockaddr_in {
 uint16_t sin_family; /* Protocol family (always AF_INET) */
 uint16_t sin_port; /* Port num in network byte order */
 struct in_addr sin_addr; /* IP addr in network byte order */
 unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */
};

sin_port

AF_INET

sin_addr

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Socket Address Structures & getaddrinfo
 Generic socket address:

 For address arguments to connect, bind, and accept
 Necessary only because C did not have generic (void *) pointers when

the sockets interface was designed

 For casting convenience, we adopt the Stevens convention:

 typedef struct sockaddr SA;

 getaddrinfo converts string representations of hostnames, host
addresses, ports, service names to socket address structures

struct sockaddr {
 uint16_t sa_family; /* Protocol family */
 char sa_data[14]; /* Address data. */
};

sa_family
Family Specific

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Host and Service Conversion: getaddrinfo

 Given host and service, getaddrinfo returns result
that points to a linked list of addrinfo structs, each of which
points to a corresponding socket address struct, and which
contains arguments for the sockets interface functions.

 Helper functions:
 freeadderinfo frees the entire linked list.

 gai_strerror converts error code to an error message.

int getaddrinfo(const char *host, /* Hostname or address */
 const char *service, /* Port or service name */
 const struct addrinfo *hints,/* Input parameters */
 struct addrinfo **result); /* Output linked list */

void freeaddrinfo(struct addrinfo *result); /* Free linked list */

const char *gai_strerror(int errcode); /* Return error msg */

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linked List Returned by getaddrinfo

ai_canonname

result

ai_addr

ai_next

addrinfo structs

Socket address structs

NULL

ai_addr

ai_next

NULL

ai_addr

NULL

 Clients: walk this list, trying each socket address in turn, until
the calls to socket and connect succeed.

 Servers: walk the list until calls to socket and bind succeed.

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

addrinfo Struct

 Each addrinfo struct returned by getaddrinfo contains
arguments that can be passed directly to socket function.

 Also points to a socket address struct that can be passed
directly to connect and bind functions.

struct addrinfo {
 int ai_flags; /* Hints argument flags */
 int ai_family; /* First arg to socket function */
 int ai_socktype; /* Second arg to socket function */
 int ai_protocol; /* Third arg to socket function */
 char *ai_canonname; /* Canonical host name */
 size_t ai_addrlen; /* Size of ai_addr struct */
 struct sockaddr *ai_addr; /* Ptr to socket address structure */
 struct addrinfo *ai_next; /* Ptr to next item in linked list */
};

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Host and Service Conversion: getnameinfo
 getnameinfo is the inverse of getaddrinfo, converting a

socket address to the corresponding host and service.
 Replaces obsolete gethostbyaddr and getservbyport funcs.

 Reentrant and protocol independent.

int getnameinfo(const SA *sa, socklen_t salen, /* In: socket addr */
 char *host, size_t hostlen, /* Out: host */
 char *serv, size_t servlen, /* Out: service */
 int flags); /* optional flags */

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conversion Example

#include "csapp.h"

int main(int argc, char **argv)
{
 struct addrinfo *p, *listp, hints;
 char buf[MAXLINE];
 int rc, flags;

 /* Get a list of addrinfo records */
 memset(&hints, 0, sizeof hints);
 // hints.ai_family = AF_INET; /* IPv4 only */
 hints.ai_socktype = SOCK_STREAM; /* TCP only */
 if ((rc = getaddrinfo(argv[1], NULL, &hints, &listp)) != 0) {
 fprintf(stderr, "getaddrinfo error: %s\n", gai_strerror(rc));
 exit(1);
 }

hostinfo.c

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conversion Example (cont)

 /* Walk the list and display each IP address */
 flags = NI_NUMERICHOST; /* Display address instead of name */
 for (p = listp; p; p = p->ai_next) {
 Getnameinfo(p->ai_addr, p->ai_addrlen,
 buf, MAXLINE, NULL, 0, flags);
 printf("%s\n", buf);
 }

 /* Clean up */
 Freeaddrinfo(listp);

 exit(0);
} hostinfo.c

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Running hostinfo

whaleshark> ./hostinfo localhost
127.0.0.1

whaleshark> ./hostinfo whaleshark.ics.cs.cmu.edu
128.2.210.175

whaleshark> ./hostinfo twitter.com
199.16.156.230
199.16.156.38
199.16.156.102
199.16.156.198

whaleshark> ./hostinfo google.com
172.217.15.110
2607:f8b0:4004:802::200e

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Addresses
 Structures

 String conversions

 DNS

 Sockets and ports
 Creating and associating sockets

 Opening ports

 Connections

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

SA listSA list

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: socket
 Clients and servers use the socket function to create a

socket descriptor:

 Example:

int socket(int domain, int type, int protocol)

int sockfd = socket(AF_INET, SOCK_STREAM, 0);

Indicates that we are using
32-bit IPV4 addresses

Indicates that the socket
will be the end point of a

connection

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: socket
 Clients and servers use the socket function to create a

socket descriptor:

 Example:

 Better Example: (It is protocol Independent)

int socket(int domain, int type, int protocol)

int sockfd = socket(AF_INET, SOCK_STREAM, 0);

Indicates that we are using
32-bit IPV4 addresses

Indicates that the socket
will be the end point of a

connection

struct addrinfo *p = …;
int clientfd = socket(p->ai_family, p->ai_socktype, p->ai_protocol);

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: socket

 Example:

 Better Example: (It is protocol Independent)

int socket(int domain, int type, int protocol)

int clientfd = socket(AF_INET, SOCK_STREAM, 0);

Indicates that we are using
32-bit IPV4 addresses

Indicates that the socket
will be the end point of a

connection

struct addrinfo *p = …;
int clientfd = socket(p->ai_family, p->ai_socktype, p->ai_protocol);

struct addrinfo {
 int ai_flags; /* Hints argument flags */
 int ai_family; /* First arg to socket function */
 int ai_socktype; /* Second arg to socket function */
 int ai_protocol; /* Third arg to socket function */
 char *ai_canonname; /* Canonical host name */
 size_t ai_addrlen; /* Size of ai_addr struct */
 struct sockaddr *ai_addr; /* Ptr to socket address structure */
 struct addrinfo *ai_next; /* Ptr to next item in linked list */
};

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

listenfdclientfd

SA list SA list

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: bind
 A server uses bind to ask the kernel to associate the

server’s socket address with a socket descriptor:

 Recall: typedef struct sockaddr SA;
 Process can read bytes that arrive on the connection whose

endpoint is addr by reading from descriptor sockfd
 Similarly, writes to sockfd are transferred along

connection whose endpoint is addr

Best practice is to use getaddrinfo to supply the arguments
addr and addrlen.

int bind(int sockfd, SA *addr, socklen_t addrlen);

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: bind
 A server uses bind to ask the kernel to associate the

server’s socket address with a socket descriptor:

 Recall: typedef struct sockaddr SA;
 Process can read bytes that arrive on the connection whose

endpoint is addr by reading from descriptor sockfd
 Similarly, writes to sockfd are transferred along

connection whose endpoint is addr

Best practice is to use getaddrinfo to supply the arguments
addr and addrlen.

int bind(int sockfd, SA *addr, socklen_t addrlen);

struct addrinfo {
 int ai_flags; /* Hints argument flags */
 int ai_family; /* First arg to socket function */
 int ai_socktype; /* Second arg to socket function */
 int ai_protocol; /* Third arg to socket function */
 char *ai_canonname; /* Canonical host name */
 size_t ai_addrlen; /* Size of ai_addr struct */
 struct sockaddr *ai_addr; /* Ptr to socket address structure */
 struct addrinfo *ai_next; /* Ptr to next item in linked list */
};

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

SA list

listenfd

listenfd <-> SA

SA list

clientfd

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: listen
 By default, kernel assumes that descriptor from socket

function is an active socket that will be on the client end
of a connection.

 A server calls the listen function to tell the kernel that a
descriptor will be used by a server rather than a client:

 Converts sockfd from an active socket to a listening
socket that can accept connection requests from clients.

 backlog is a hint about the number of outstanding
connection requests that the kernel should queue up
before starting to refuse requests.

int listen(int sockfd, int backlog);

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Addresses
 Structures

 String conversions

 DNS

 Sockets and ports
 Creating and associating sockets

 Opening ports

 Connections

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

SA list

clientfd

SA list

listenfd

listenfd <-> SA

listening listenfd

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: accept
 Servers wait for connection requests from clients by

calling accept:

 Waits for connection request to arrive on the connection
bound to listenfd, then fills in client’s socket address
in addr and size of the socket address in addrlen.

 Returns a connected descriptor that can be used to
communicate with the client via Unix I/O routines.

int accept(int listenfd, SA *addr, int *addrlen);

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

listening listenfd

SA list SA list

clientfd listenfd

listenfd <-> SA

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: connect
 A client establishes a connection with a server by calling

connect:

 Attempts to establish a connection with server at socket
address addr
 If successful, then clientfd is now ready for reading and writing.

 Resulting connection is characterized by socket pair

(x:y, addr.sin_addr:addr.sin_port)
 x is client address
 y is ephemeral port that uniquely identifies client process on

client host

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int connect(int clientfd, SA *addr, socklen_t addrlen);

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

connect/accept Illustrated
listenfd(3)

Client
1. Server blocks in accept,
waiting for connection request
on listening descriptor
listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection request by
calling and blocking in connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from
accept. Client returns from connect.
Connection is now established between
clientfd and connfd

connfd(4)

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Connected vs. Listening Descriptors

 Listening descriptor
 End point for client connection requests
 Created once and exists for lifetime of the server

 Connected descriptor
 End point of the connection between client and server
 A new descriptor is created each time the server accepts a

connection request from a client
 Exists only as long as it takes to service client

 Why the distinction?
 Allows for concurrent servers that can communicate over many

client connections simultaneously
 E.g., Each time we receive a new request, we fork a child to

handle the request

Demo

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Addresses
 Structures

 String conversions

 DNS

 Sockets and ports
 Creating and associating sockets

 Opening ports

 Connections

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

listening listenfd

connected connfdconnected (to SA) clientfd

SA list SA list

clientfd listenfd

listenfd <-> SA

Quiz

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_clientfd

int open_clientfd(char *hostname, char *port) {
 int clientfd;
 struct addrinfo hints, *listp, *p;

 /* Get a list of potential server addresses */
 memset(&hints, 0, sizeof hints);
 hints.ai_socktype = SOCK_STREAM; /* Open a TCP connection */
 hints.ai_flags = AI_NUMERICSERV; /* …using numeric port arg. */
 hints.ai_flags |= AI_ADDRCONFIG; /* Recommended for connections */
 Getaddrinfo(hostname, port, &hints, &listp);

csapp.c

 Establish a connection with a server

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_clientfd (cont)

int open_clientfd(char *hostname, char *port) {
 int clientfd;
 struct addrinfo hints, *listp, *p;

 /* Get a list of potential server addresses */
 memset(&hints, 0, sizeof hints);
 hints.ai_socktype = SOCK_STREAM; /* Open a connection */
 hints.ai_flags = AI_NUMERICSERV; /* …using numeric port. */
 hints.ai_flags |= AI_ADDRCONFIG; /* Recommended */
 Getaddrinfo(hostname, port, &hints, &listp);

 /* Walk the list for one that we can successfully connect to */
 for (p = listp; p; p = p->ai_next) {
 /* Create a socket descriptor */
 if ((clientfd = socket(p->ai_family, p->ai_socktype,
 p->ai_protocol)) < 0)
 continue; /* Socket failed, try the next */

 /* Connect to the server */
 if (connect(clientfd, p->ai_addr, p->ai_addrlen) != -1)
 break; /* Success */
 Close(clientfd); /* Connect failed, try another */
 }

 /* Clean up */
 Freeaddrinfo(listp);
 if (!p) /* All connects failed */
 return -1;
 else /* The last connect succeeded */
 return clientfd;
} csapp.c

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_listenfd

 int open_listenfd(char *port)
{
 struct addrinfo hints, *listp, *p;
 int listenfd, optval = 1;

 /* Get a list of potential server addresses */
 memset(&hints, 0, sizeof hints);
 hints.ai_socktype = SOCK_STREAM; /* Accept connect. */
 hints.ai_flags = AI_PASSIVE | AI_ADDRCONFIG; /* …on any IP addr */
 hints.ai_flags |= AI_NUMERICSERV; /* …using port no. */
 Getaddrinfo(NULL, port, &hints, &listp);

csapp.c

 Create a listening descriptor that can be used to accept
connection requests from clients.

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_listenfd (cont)

 /* Walk the list for one that we can bind to */
 for (p = listp; p; p = p->ai_next) {
 /* Create a socket descriptor */
 if ((listenfd = socket(p->ai_family, p->ai_socktype,
 p->ai_protocol)) < 0)
 continue; /* Socket failed, try the next */

 /* Eliminates "Address already in use" error from bind */
 Setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
 (const void *)&optval , sizeof(int));

 /* Bind the descriptor to the address */
 if (bind(listenfd, p->ai_addr, p->ai_addrlen) == 0)
 break; /* Success */
 Close(listenfd); /* Bind failed, try the next */
 } csapp.c

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_listenfd (cont)

 /* Clean up */
 Freeaddrinfo(listp);
 if (!p) /* No address worked */
 return -1;

 /* Make it a listening socket ready to accept conn. requests */
 if (listen(listenfd, LISTENQ) < 0) {
 Close(listenfd);
 return -1;
 }
 return listenfd;
} csapp.c

 Key point: open_clientfd and open_listenfd are
both independent of any particular version of IP.

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Additional slides

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Host and Service Conversion: getaddrinfo
 getaddrinfo is the modern way to convert string

representations of hostnames, host addresses, ports, and
service names to socket address structures.
 Replaces obsolete gethostbyname and getservbyname funcs.

 Advantages:
 Reentrant (can be safely used by threaded programs).

 Allows us to write portable protocol-independent code
 Works with both IPv4 and IPv6

 Disadvantages
 Somewhat complex

 Fortunately, a small number of usage patterns suffice in most cases.

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Echo Server/Client Session Example

whaleshark: ./echoserver 6616
Connected to (BAMBOOSHARK.ICS.CS.CMU.EDU, 33707) (A)
server received 26 bytes (B)
server received 17 bytes (C)
Connected to (BAMBOOSHARK.ICS.CS.CMU.EDU, 33708) (D)
server received 29 bytes (E)

bambooshark: ./echoclient whaleshark.ics.cs.cmu.edu 6616 (A)
This line is being echoed (B)
This line is being echoed
This one is, too (C)
This one is, too
^D
bambooshark: ./echoclient whaleshark.ics.cs.cmu.edu 6616 (D)
This one is a new connection (E)
This one is a new connection
^D

Client

Server

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Unbuffered RIO Input/Output
 Same interface as Unix read and write
 Especially useful for transferring data on network sockets

 rio_readn returns short count only if it encounters EOF
 Only use it when you know how many bytes to read

 rio_writen never returns a short count

 Calls to rio_readn and rio_writen can be interleaved arbitrarily on
the same descriptor

#include "csapp.h"

ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_writen(int fd, void *usrbuf, size_t n);

 Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Buffered RIO Input Functions
 Efficiently read text lines and binary data from a file partially

cached in an internal memory buffer

 rio_readlineb reads a text line of up to maxlen bytes from file
fd and stores the line in usrbuf

 Especially useful for reading text lines from network sockets
 Stopping conditions

 maxlen bytes read
 EOF encountered
 Newline (‘\n’) encountered

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

 Return: num. bytes read if OK, 0 on EOF, -1 on error

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Echo Client: Main Routine
#include "csapp.h"

int main(int argc, char **argv)
{
 int clientfd;
 char *host, *port, buf[MAXLINE];
 rio_t rio;

 host = argv[1];
 port = argv[2];

 clientfd = Open_clientfd(host, port);
 Rio_readinitb(&rio, clientfd);

 while (Fgets(buf, MAXLINE, stdin) != NULL) {
Rio_writen(clientfd, buf, strlen(buf));
Rio_readlineb(&rio, buf, MAXLINE);
Fputs(buf, stdout);

 }
 Close(clientfd);
 exit(0);
} echoclient.c

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Iterative Echo Server: Main Routine
#include "csapp.h”
void echo(int connfd);

int main(int argc, char **argv)
{
 int listenfd, connfd;
 socklen_t clientlen;
 struct sockaddr_storage clientaddr; /* Enough room for any addr */

 char client_hostname[MAXLINE], client_port[MAXLINE];

 listenfd = Open_listenfd(argv[1]);
 while (1) {

clientlen = sizeof(struct sockaddr_storage); /* Important! */
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
Getnameinfo((SA *) &clientaddr, clientlen,

 client_hostname, MAXLINE, client_port, MAXLINE, 0);
printf("Connected to (%s, %s)\n", client_hostname, client_port);
echo(connfd);
Close(connfd);

 }
 exit(0);
}

echoserveri.c

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Echo Server: echo function

void echo(int connfd)
{
 size_t n;
 char buf[MAXLINE];
 rio_t rio;

 Rio_readinitb(&rio, connfd);
 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {
 printf("server received %d bytes\n", (int)n);

Rio_writen(connfd, buf, n);
 }
}

 The server uses RIO to read and echo text lines until EOF
(end-of-file) condition is encountered.
 EOF condition caused by client calling close(clientfd)

echo.c

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example HTTP Transaction
whaleshark> telnet www.cmu.edu 80 Client: open connection to server
Trying 128.2.42.52... Telnet prints 3 lines to terminal
Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.
Escape character is '^]'.
GET / HTTP/1.1 Client: request line
Host: www.cmu.edu Client: required HTTP/1.1 header
 Client: empty line terminates headers
HTTP/1.1 301 Moved Permanently Server: response line
Date: Wed, 05 Nov 2014 17:05:11 GMT Server: followed by 5 response headers
Server: Apache/1.3.42 (Unix) Server: this is an Apache server
Location: http://www.cmu.edu/index.shtml Server: page has moved here
Transfer-Encoding: chunked Server: response body will be chunked
Content-Type: text/html; charset=... Server: expect HTML in response body
 Server: empty line terminates headers
15c Server: first line in response body
<HTML><HEAD> Server: start of HTML content
…
</BODY></HTML> Server: end of HTML content
0 Server: last line in response body
Connection closed by foreign host. Server: closes connection

 HTTP standard requires that each text line end with “\r\n”
 Blank line (“\r\n”) terminates request and response headers

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example HTTP Transaction, Take 2
whaleshark> telnet www.cmu.edu 80 Client: open connection to server
Trying 128.2.42.52... Telnet prints 3 lines to terminal
Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.
Escape character is '^]'.
GET /index.shtml HTTP/1.1 Client: request line
Host: www.cmu.edu Client: required HTTP/1.1 header
 Client: empty line terminates headers
HTTP/1.1 200 OK Server: response line
Date: Wed, 05 Nov 2014 17:37:26 GMT Server: followed by 4 response headers
Server: Apache/1.3.42 (Unix)
Transfer-Encoding: chunked
Content-Type: text/html; charset=...
 Server: empty line terminates headers
1000 Server: begin response body
<html ..> Server: first line of HTML content
…
</html>
0 Server: end response body
Connection closed by foreign host. Server: close connection

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testing the Echo Server With telnet
whaleshark> ./echoserveri 15213
Connected to (MAKOSHARK.ICS.CS.CMU.EDU, 50280)
server received 11 bytes
server received 8 bytes

makoshark> telnet whaleshark.ics.cs.cmu.edu 15213
Trying 128.2.210.175...
Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).
Escape character is '^]'.
Hi there!
Hi there!
Howdy!
Howdy!
^]
telnet> quit
Connection closed.
makoshark>

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tiny Web Server

 Tiny Web server described in text
 Tiny is a sequential Web server

 Serves static and dynamic content to real browsers
 text files, HTML files, GIF, PNG, and JPEG images

 239 lines of commented C code

 Not as complete or robust as a real Web server
 You can break it with poorly-formed HTTP requests (e.g.,

terminate lines with “\n” instead of “\r\n”)

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tiny Operation

 Accept connection from client
 Read request from client (via connected socket)
 Split into <method> <uri> <version>

 If method not GET, then return error

 If URI contains “cgi-bin” then serve dynamic content
 (Would do wrong thing if had file “abcgi-bingo.html”)

 Fork process to execute program

 Otherwise serve static content
 Copy file to output

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tiny Serving Static Content

void serve_static(int fd, char *filename, int filesize)
{
 int srcfd;
 char *srcp, filetype[MAXLINE], buf[MAXBUF];

 /* Send response headers to client */
 get_filetype(filename, filetype);
 sprintf(buf, "HTTP/1.0 200 OK\r\n");
 sprintf(buf, "%sServer: Tiny Web Server\r\n", buf);
 sprintf(buf, "%sConnection: close\r\n", buf);
 sprintf(buf, "%sContent-length: %d\r\n", buf, filesize);
 sprintf(buf, "%sContent-type: %s\r\n\r\n", buf, filetype);
 Rio_writen(fd, buf, strlen(buf));

 /* Send response body to client */
 srcfd = Open(filename, O_RDONLY, 0);
 srcp = Mmap(0, filesize, PROT_READ, MAP_PRIVATE, srcfd, 0);
 Close(srcfd);
 Rio_writen(fd, srcp, filesize);
 Munmap(srcp, filesize);
} tiny.c

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content

Client Server

 Client sends request to server

 If request URI contains the
string “/cgi-bin”, the Tiny
server assumes that the
request is for dynamic content

GET /cgi-bin/env.pl HTTP/1.1

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content (cont)

Client Server
 The server creates a child

process and runs the
program identified by the URI
in that process

env.pl

fork/exec

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content (cont)

Client Server
 The child runs and generates

the dynamic content

 The server captures the
content of the child and
forwards it without
modification to the client

env.pl

Content

Content

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Issues in Serving Dynamic Content

 How does the client pass program
arguments to the server?

 How does the server pass these
arguments to the child?

 How does the server pass other info
relevant to the request to the child?

 How does the server capture the
content produced by the child?

 These issues are addressed by the
Common Gateway Interface (CGI)
specification.

Client Server

Content

Content

Request

Create

env.pl

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

CGI

 Because the children are written according to the CGI
spec, they are often called CGI programs.

 However, CGI really defines a simple standard for
transferring information between the client (browser), the
server, and the child process.

 CGI is the original standard for generating dynamic
content. Has been largely replaced by other, faster
techniques:
 E.g., fastCGI, Apache modules, Java servlets, Rails controllers

 Avoid having to create process on the fly (expensive and slow).

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The add.com Experience

Output page

host port CGI program

arguments

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content With GET
 Question: How does the client pass arguments to the server?
 Answer: The arguments are appended to the URI

 Can be encoded directly in a URL typed to a browser or a URL
in an HTML link
 http://add.com/cgi-bin/adder?15213&18213
 adder is the CGI program on the server that will do the addition.

 argument list starts with “?”
 arguments separated by “&”

 spaces represented by “+” or “%20”

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content With GET

 URL suffix:
 cgi-bin/adder?15213&18213

 Result displayed on browser:

Welcome to add.com: THE Internet
addition portal.

The answer is: 15213 + 18213 = 33426

Thanks for visiting!

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content With GET

 Question: How does the server pass these arguments to
the child?

 Answer: In environment variable QUERY_STRING
 A single string containing everything after the “?”

 For add: QUERY_STRING = “15213&18213”

 /* Extract the two arguments */
 if ((buf = getenv("QUERY_STRING")) != NULL) {
 p = strchr(buf, '&');

 *p = '\0';
 strcpy(arg1, buf);
 strcpy(arg2, p+1);
 n1 = atoi(arg1);
 n2 = atoi(arg2);
 } adder.c

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

void serve_dynamic(int fd, char *filename, char *cgiargs)
{
 char buf[MAXLINE], *emptylist[] = { NULL };

 /* Return first part of HTTP response */
 sprintf(buf, "HTTP/1.0 200 OK\r\n");
 Rio_writen(fd, buf, strlen(buf));
 sprintf(buf, "Server: Tiny Web Server\r\n");
 Rio_writen(fd, buf, strlen(buf));

 if (Fork() == 0) { /* Child */
 /* Real server would set all CGI vars here */
 setenv("QUERY_STRING", cgiargs, 1);
 Dup2(fd, STDOUT_FILENO); /* Redirect stdout to client */

 Execve(filename, emptylist, environ); /* Run CGI program */
 }
 Wait(NULL); /* Parent waits for and reaps child */
}

Serving Dynamic Content with GET

 Question: How does the server capture the content produced by the child?
 Answer: The child generates its output on stdout. Server uses dup2 to

redirect stdout to its connected socket.

tiny.c

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content with GET

 /* Make the response body */
 sprintf(content, "Welcome to add.com: ");
 sprintf(content, "%sTHE Internet addition portal.\r\n<p>", content);
 sprintf(content, "%sThe answer is: %d + %d = %d\r\n<p>",
 content, n1, n2, n1 + n2);
 sprintf(content, "%sThanks for visiting!\r\n", content);

 /* Generate the HTTP response */
 printf("Content-length: %d\r\n", (int)strlen(content));
 printf("Content-type: text/html\r\n\r\n");
 printf("%s", content);
 fflush(stdout);

 exit(0); adder.c

 Notice that only the CGI child process knows the content
type and length, so it must generate those headers.

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

bash:makoshark> telnet whaleshark.ics.cs.cmu.edu 15213
Trying 128.2.210.175...
Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).
Escape character is '^]'.
GET /cgi-bin/adder?15213&18213 HTTP/1.0

HTTP/1.0 200 OK
Server: Tiny Web Server
Connection: close
Content-length: 117
Content-type: text/html

Welcome to add.com: THE Internet addition portal.
<p>The answer is: 15213 + 18213 = 33426
<p>Thanks for visiting!
Connection closed by foreign host.
bash:makoshark>

Serving Dynamic Content With GET

HTTP request sent by client

HTTP response generated
by the server

HTTP response generated
by the CGI program

Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

For More Information

 W. Richard Stevens et. al. “Unix Network Programming:
The Sockets Networking API”, Volume 1, Third Edition,
Prentice Hall, 2003
 THE network programming bible.

 Michael Kerrisk, “The Linux Programming Interface”, No
Starch Press, 2010
 THE Linux programming bible.

 Complete versions of all code in this lecture is available
from the 213 schedule page.
 http://www.cs.cmu.edu/~213/schedule.html
 csapp.{.c,h}, hostinfo.c, echoclient.c, echoserveri.c, tiny.c, adder.c

 You can use any of this code in your assignments.

Carnegie Mellon

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Web History

 1989:
 Tim Berners-Lee (CERN) writes internal proposal to develop a

distributed hypertext system
 Connects “a web of notes with links”
 Intended to help CERN physicists in large projects share and

manage information

 1990:
 Tim BL writes a graphical browser for Next machines

Carnegie Mellon

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Web History (cont)
 1992

 NCSA server released

 26 WWW servers worldwide
 1993

 Marc Andreessen releases first version of NCSA Mosaic browser

 Mosaic version released for (Windows, Mac, Unix)

 Web (port 80) traffic at 1% of NSFNET backbone traffic

 Over 200 WWW servers worldwide
 1994

 Andreessen and colleagues leave NCSA to form “Mosaic
Communications Corp” (predecessor to Netscape)

Carnegie Mellon

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

HTTP Versions

 Major differences between HTTP/1.1 and HTTP/1.0
 HTTP/1.0 uses a new connection for each transaction

 HTTP/1.1 also supports persistent connections
 multiple transactions over the same connection
 Connection: Keep-Alive

 HTTP/1.1 requires HOST header
 Host: www.cmu.edu
 Makes it possible to host multiple websites at single Internet host

 HTTP/1.1 supports chunked encoding
 Transfer-Encoding: chunked

 HTTP/1.1 adds additional support for caching

Carnegie Mellon

75Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GET Request to Apache Server
From Firefox Browser

GET /~bryant/test.html HTTP/1.1
Host: www.cs.cmu.edu
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US;
rv:1.9.2.11) Gecko/20101012 Firefox/3.6.11
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 115
Connection: keep-alive
CRLF (\r\n)

URI is just the suffix, not the entire URL

Carnegie Mellon

76Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GET Response From Apache Server

HTTP/1.1 200 OK
Date: Fri, 29 Oct 2010 19:48:32 GMT
Server: Apache/2.2.14 (Unix) mod_ssl/2.2.14 OpenSSL/0.9.7m
mod_pubcookie/3.3.2b PHP/5.3.1
Accept-Ranges: bytes
Content-Length: 479
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html
<html>
<head><title>Some Tests</title></head>

<body>
<h1>Some Tests</h1>
 . . .
</body>
</html>

Carnegie Mellon

77Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Data Transfer Mechanisms

 Standard
 Specify total length with content-length

 Requires that program buffer entire message

 Chunked
 Break into blocks

 Prefix each block with number of bytes (Hex coded)

Carnegie Mellon

78Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Chunked Encoding Example
HTTP/1.1 200 OK\n
Date: Sun, 31 Oct 2010 20:47:48 GMT\n
Server: Apache/1.3.41 (Unix)\n
Keep-Alive: timeout=15, max=100\n
Connection: Keep-Alive\n
Transfer-Encoding: chunked\n
Content-Type: text/html\n
\r\n
d75\r\n
<html>
<head>
.<link href="http://www.cs.cmu.edu/style/calendar.css" rel="stylesheet"
type="text/css">
</head>
<body id="calendar_body">

<div id='calendar'><table width='100%' border='0' cellpadding='0'
cellspacing='1' id='cal'>

 . . .
</body>
</html>
\r\n
0\r\n
\r\n

First Chunk: 0xd75 = 3445 bytes

Second Chunk: 0 bytes (indicates last chunk)

Carnegie Mellon

79Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proxies
 A proxy is an intermediary between a client and an origin server

 To the client, the proxy acts like a server

 To the server, the proxy acts like a client

Client Proxy
Origin
Server

1. Client request 2. Proxy request

3. Server response4. Proxy response

Carnegie Mellon

80Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Proxies?
 Can perform useful functions as requests and responses pass by

 Examples: Caching, logging, anonymization, filtering, transcoding

Client
A

Proxy
cache

Origin
Server

Request foo.html

Request foo.html

foo.html

foo.html

Client
B

Request foo.html

foo.html

Fast inexpensive local network

Slower more
expensive
global network

	Slide 1
	Slide 2
	Sockets
	Review: C Standard I/O, Unix I/O and RIO
	Socket Programming Example
	Echo Server + Client Structure_clipboard1
	Slide 7
	Slide 8
	Socket Address Structures
	Socket Address Structures & getaddrinfo
	Sockets Interface
	Host and Service Conversion: getaddrinfo
	Linked List Returned by getaddrinfo
	addrinfo Struct
	Host and Service Conversion: getnameinfo
	Conversion Example
	Conversion Example (cont)
	Running hostinfo
	Slide 19
	Sockets Interface
	Sockets Interface: socket
	Sockets Interface: socket_clipboard0
	Sockets Interface: socket
	Sockets Interface
	Sockets Interface: bind
	Sockets Interface: bind
	Sockets Interface
	Sockets Interface: listen
	Slide 29
	Sockets Interface
	Sockets Interface: accept
	Sockets Interface
	Sockets Interface: connect
	connect/accept Illustrated
	Connected vs. Listening Descriptors
	Slide 36
	Sockets Interface
	Sockets Interface
	Sockets Helper: open_clientfd
	Sockets Helper: open_clientfd (cont)
	Sockets Interface
	Sockets Helper: open_listenfd
	Sockets Helper: open_listenfd (cont)
	Sockets Helper: open_listenfd (cont)
	Additional slides
	Host and Service Conversion: getaddrinfo_clipboard0
	Echo Server/Client Session Example
	Recall: Unbuffered RIO Input/Output
	Recall: Buffered RIO Input Functions
	Echo Client: Main Routine
	Iterative Echo Server: Main Routine
	Echo Server: echo function
	Example HTTP Transaction
	Example HTTP Transaction, Take 2
	Testing the Echo Server With telnet
	Tiny Web Server
	Tiny Operation
	Tiny Serving Static Content
	Serving Dynamic Content
	Serving Dynamic Content (cont)
	Serving Dynamic Content (cont)
	Issues in Serving Dynamic Content
	CGI
	The add.com Experience
	Serving Dynamic Content With GET
	Serving Dynamic Content With GET
	Serving Dynamic Content With GET
	Serving Dynamic Content with GET
	Serving Dynamic Content with GET
	Serving Dynamic Content With GET
	For More Information
	Web History
	Web History (cont)
	HTTP Versions
	GET Request to Apache Server From Firefox Browser
	GET Response From Apache Server
	Data Transfer Mechanisms
	Chunked Encoding Example
	Proxies
	Why Proxies?

