Carnegie Mellon

Dynamic Memory Allocation:
Advanced Concepts

15-213: Introduction to Computer Systems
20t Lecture, June 25, 2019

Instructor:
Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Dynamic Memory Allocation

m Programmers use Application
dynamic memory Dynamic Memory Allocator
allocators (such as Heap
malloc) to acquire VM
at run time.

" For data structures whose User stack

size is only known at
runtime.

2 ¥

Top of heap

m Dynamic memory

Heap (viamalloc)

" (brk ptr)

allocators manage an

Uninitialized data (.bss)

area of process virtual
memory known as the

Initialized data (.data)

heap.

Program text (. text)

0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Last Lecture: Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

m Method 2: Explicit list among the free blocks using pointers

/_\

5 — 4 6 2

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Summary: Implicit Lists

m Implementation: very simple

m Allocate cost:
" [inear time worst case

m Free cost:
= constant time worst case
= even with coalescing

m Memory usage:
= will depend on placement policy
" First-fit, next-fit or best-fit

m Not used in practice formalloc/free because of linear-
time allocation

= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Today

m Explicit free lists
m Segregated free lists
m Memory-related perils and pitfalls

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit free list using length—Ilinks all blocks

m Method 2: Explicit free list among the free blocks using pointers

_— .

5| ~ 4 6 2

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Explicit Free Lists

Allocated (as before) Free
Size a Size a
Next
Payload and Prev
padding
Size a Size a

m Maintain list(s) of free blocks, not all blocks
" The “next” free block could be anywhere

= So we need to store forward/back pointers, not just sizes
= Still need boundary tags for coalescing

= Luckily we track only free blocks, so we can use payload area

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Explicit Free Lists

m Logically:

>
J N
\ 4
v
\ 4
@]

a

m Physically: blocks can be in any order

B
1

/ Forward (next) links
A /Q 5

4 — 44 4 6 /7 < 6 4 4 4 4

c \/
& Back (prev) links

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Allocating From Explicit Free Lists

conceptual graphic

Before

22

After (with splitting)

W

= malloc(..)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly
freed block?

m Unordered

" UFO{lestinfir Asjde: Premature Optimization

» |Insert free
= FIFO (first-in-fi
» |Insert free

" Pro: simple an

= Con: studies st DO n’t !

m Address-ordere

= |nsert freed bl
addr(prev) < aaar(curr) < aaar(next)

= Con: requires search

" Pro: studies suggest fragmentation is lower than LIFO/FIFO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly
freed block?
m Unordered
= LIFO (last-in-first-out) policy
= Insert freed block at the beginning of the free list
= FIFO (first-in-first-out) policy
= |nsert freed block at the end of the free list
" Pro: simple and constant time

= Con: studies suggest fragmentation is worse than address ordered

m Address-ordered policy

" |nsert freed blocks so that free list blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

= Con: requires search

" Pro: studies suggest fragmentation is lower than LIFO/FIFO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Freeing With a LIFO Policy (Case 1)

conceptual graphic

Before
free(p)

Root LI o)

m Insert the freed block at the root of the list

After

Root I ‘@

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Freeing With a LIFO Policy (Case 2)

conceptual graphic
Before free (p)

Root ; I % O

m Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

After

Root [l O 4\%?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

-
@

Freeing With a LIFO Policy (Case 3)

conceptual graphic

ao

m Splice out predecessor block, coalesce both memory blocks,
and insert the new block at the root of the list

After

BEfore free ()

Root 1 I

: |

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Freeing With a LIFO Policy (Case 4)

conceptual graphic

it

m Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

Before free (p)

Root i I

After

L

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Root [

o ¢
h

Carnegie Mellon

Some Advice: An Implementation Trick

LIFO Insertion

FIFO Insertion Point
Point \’\

A 101 8B I ¢ [bo

L T

Free —D—D)—————
Pointer Next fit

m Use circular, doubly-linked list
m Support multiple approaches with single data structure

m First-fit vs. next-fit
= Either keep free pointer fixed or move as search list

m LIFO vs. FIFO
" |nsert as next block (LIFO), or previous block (FIFO)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Explicit List Summary

m Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full

= Slightly more complicated allocate and free since needs to splice blocks
in and out of the list

= Some extra space for the links (2 extra words needed for each block)
= Does this increase internal fragmentation?

m Most common use of linked lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Today

m Explicit free lists
m Segregated free lists
m Memory-related perils and pitfalls

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Segregated List (Seglist) Allocators

m Each size class of blocks has its own free list

\ 4
\ 4
\ 4

1-2

w
\ 4
\ 4
\ 4
\ 4
l

l

5-8

9-inf .

m Often have separate classes for each small size
m For larger sizes: One class for each two-power size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Seglist Allocator

m Given an array of free lists, each one for some size class

m To allocate a block of size n:
= Search appropriate free list for block of size m > n
= |f an appropriate block is found:
= Split block and place fragment on appropriate list (optional)
" |f no block is found, try next larger class
= Repeat until block is found

m If no block is found:
= Request additional heap memory from OS (using sbrk ())
= Allocate block of n bytes from this new memory
= Place remainder as a single free block in largest size class.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Seglist Allocator (cont.)

m To free a block:
= Coalesce and place on appropriate list

m Advantages of seglist allocators
® Higher throughput
= |og time for power-of-two size classes
= Better memory utilization

= First-fit search of segregated free list approximates a best-fit
search of entire heap.

= Extreme case: Giving each block its own size class is equivalent to
best-fit.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

More Info on Allocators

m D. Knuth, “The Art of Computer Programming”, 2" edition,
Addison Wesley, 1973

"= The classic reference on dynamic storage allocation

m Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.

= Comprehensive survey
= Available from CS:APP student site (csapp.cs.cmu.edu)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Today

m Explicit free lists
m Segregated free lists
m Memory-related perils and pitfalls

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Memory-Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

C operators

Postfix

Operators Associativity
() [] left to right
1~ & (type) sizeof right to left
* Unary left to right
. Prefix left to right
<< >> SEIn left to right
< = > = left to right
= I= left to right
& left to right
A left to right
| left to right
&& left to right
| | left to right
: right to left
= 4= -= *= [= %= §= A= = <<= >>= right to left
, left to right

m ->, (), and [] have high precedence, with * and & just below
m Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53, updated

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Pointer Declarations: Test Yourself!

int *p p is a pointer to int

int *p[13] p is an array[13] of pointer to int

int *(p[13]) p is an array[13] of pointer to int

int **p p is a pointer to a pointer to an int

int (*p) [13] p is a pointer to an array[13] of int

int *£() f is a function returning a pointer to int
int (*£f) () fis a pointer to a function returning int
int (*(*£())[13]) () fis a function returning ptr to an array[13]

of pointers to functions returning int

int (*(*x[3]) ()) [5] X is an array[3] of pointers to functions
returning pointers to array[5] of ints

Source: K&R Sec 5.12

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Parsing: int (*(*f()) [13]) ()

int (*(*£()) [13]) ()
int (*(*£()) [13]) () f is a function

int (*(*) [13]) () f is a function
that returns a ptr

int ([13]) () f is a a function
that returns a ptr to an
array of 13

int (* [137) () f is a ptr to a function
that returns a ptr to an
array of 13 ptrs

int (*(*£())[13]1) () f 1is a ptr to a function
that returns a ptr to an
array of 13 ptrs to function
returning an int

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

C Pointer Declarations: Test Yourself!

int *p p is a pointer to int

int *p[13] p is an array[13] of pointer to int

int *(p[13]) p is an array[13] of pointer to int

int **p p is a pointer to a pointer to an int

int (*p) [13] p is a pointer to an array[13] of int

int *£ () fis a function returning a pointer to int
int (*£f) () fis a pointer to a function returning int
int (*(*£())[13]) () fis a function returning ptr to an array[13]

of pointers to functions returning int

int (*(*x[3]) ()) [5] X is an array[3] of pointers to functions
returning pointers to array[5] of ints

Source: K&R Sec 5.12

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

A better way: int (*(*£()) [13]) ()

// pointer to a function returning an int
typedef int (*pfri) ()

// An array of thirteen pfri’s
typedef pfri arrl3pfri[13];

// pointer to an array of thirteen pfri’s
typedef arrl3pfri* ptrToArr;

// ptr to function returning a

// ptr to an array of 13 pointer’s to functions which return ints
typedef ptrToArr (*pfrArrl3fri) ()

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Dereferencing Bad Pointers

m The classic scanf bug

int val;

scanf ("$d", wval) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Reading Uninitialized Memory

m Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec(int **A, int *x) {
int *y = malloc (N*sizeof (int));
int i, j;

for (i=0; i<N; i++)
for (j=0; IJ<N; jJ++)
y[i] += A[i][]j]1*x[]]’
return y;

m Can avoid by using calloc

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Overwriting Memory

m Allocating the (possibly) wrong sized object

int **p;
p = malloc (N*sizeof (lnt)) ’
for (i=0; i<N; i++) {

pl[i] = malloc(M*sizeof (int)) ;

}

m Can you spot the bug?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Overwriting Memory

m Off-by-one errors

char **p;
p = malloc(N*sizeof (char *));

for (i=0; i<=N; i++) {
pl[i] = malloc (M*sizeof (char));

char *p;

p = malloc(strlen(s)) ;
strcpy (p,s) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Overwriting Memory

m Not checking the max string size

char s[8];
int 1i;

gets(s); /* reads “123456789” from stdin */

m Basis for classic buffer overflow attacks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Overwriting Memory

m Misunderstanding pointer arithmetic

int *search(int *p, int wval) {

while (p && *p != val)
p += sizeof (int);

return p;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Overwriting Memory

m Referencing a pointer instead of the object it points to

int *BinheapDelete (int **binheap, int *size) {
int *packet;
packet = binheap[0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify (binheap, *size, 0);
return (packet) ; operators

} 0 1 ->
++ --

Associativity
left to right
right to left
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
right to left

1 ~

. ++
+ - & (type) sizeof

- -

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

N w—w— > |
-

-

right to left
left to right

36

Carnegie Mellon

Referencing Nonexistent Variables

m Forgetting that local variables disappear when a function
returns

int *foo () {
int val;

return &val;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Freeing Blocks Multiple Times

m Nasty!

X = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int));
<manipulate y>
free (x) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Referencing Freed Blocks

m Evil!

x = malloc (N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int));
for (i=0; i<M; i++)
yIi] = x[i]++;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Failing to Free Blocks (Memory Leaks)

m Slow, long-term Kkiller!

foo() {
int *x = malloc(N*sizeof(int)) ;

return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Failing to Free Blocks (Memory Leaks)

m Freeing only part of a data structure

struct list {
int wval;
struct list *next;

};

foo () {
struct list *head = malloc(sizeof (struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Dealing With Memory Bugs
m Debugger: gdb

" Good for finding bad pointer dereferences
= Hard to detect the other memory bugs

m Data structure consistency checker
= Runs silently, prints message only on error
= Use as a probe to zero in on error
m Binary translator: valgrind
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
= Checks each individual reference at runtime
= Bad pointers, overwrites, refs outside of allocated block

m glibc malloc contains checking code
" setenv MALLOC CHECK 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

