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Il Processes: Concepts

I Address spaces

I VM as a tool for caching

Il VM as a tool for memory management
I VM as a tool for memory protection
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Processes

] Definition: A process is an instance of a running

program.
m One of the most profound ideas in computer science

m Not the same as “program” or “processor”

Il Process provides each program with two key

abstractions: Memory

m Logical control flow Stack

m Each program seems to have exclusive use of the CPU Heap

m Provided by kernel mechanism called context switching ([:):;IZ

m Private address space

m Each program seems to have exclusive use of main CPU

memory. Registers

m Provided by kernel mechanism called virtual memory
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Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data ooo Data
Code Code Code
CPU CPU CPU

Registers Registers Registers

I Computer runs many processes simultaneously

m Applications for one or more users
m Web browsers, email clients, editors, ...

m Background tasks
m Monitoring network & 1/0 devices
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Multiprocessing Example

N[ xterm

Proceszes: 123 total, 5 running, 9 stuck, 109 zleeping, B11 threads 1147 :07
Load Awg: 1,03, 1,13, 1,14 CPU uzage: 3,27 uszer, 5,158 =sys, 91.56% idle

SharedLibz: 576K resident, OB data, OB linkedit,

HemBegions: 27998 total, 1127H resident, 35M private, 434 shared,

PhysMem: 1039M wired, 1974M active, 10BZ2M inactiwve, 407VEM uszed, 18M free,

YH: 280G vsize, 1091M framework wsize, 230759213(1) pageins, B843367(0) pageouts,

Hetworks: packets: 41046228110 in, BEOBI0SE/7/L out, I
Dizkszt 178742391/34906 read, 12847373/0040 written, t

FII COMMAND ZCFU TIHE #TH  #W0  #PORT #MREG EPEWT  RSHED RSIZE WPEMT  WSIZE
99217- Microsoft OF 0,0 02:28,34 4 1 202 418 Z1M 24H 21 BEM FEAH

33051 wsbmuxd 0,0 0030410 3 1 47 BE 436k 21EK 480k BOM 2422
FI006  iTunesHelper 0,0 OO301,23 2 1 55 3 faak 3124k 1124k 43M 24294
24286 bash 0,0 000,11 1 0 20 24 224k 732k 484K 1M 2378H
24280 xterm 0,0 00:00,83 1 0 22 73 BSEK 872K B9Z2k 9728k 2382H
595939- Microsoft Ex 0,3 21:;58,97 10 3 360 354 1BM =y 4EM 114K 1057M
54751 =leep 0,0 00:00,00 1 0 17 20 32k 212k 3R0K B3k ZE7O0M
54739 launchdadd 0,0 Q000,00 2 1 33 5 483k 220K 173EK 48HM 24091
4737 top B.o 000253 171 0 B 23 1416k 216K 2124k 17H 2378H
24713 automountd 0,0 0030002 7 1 53 B4 ob0k 216k 2184K  haM 2413
54701  ocspd 0,0 000005 4 1 B1 54 1268k 2644k 3132K  5HOH 2426M
54661 Grab 0,6 00:02,75 B 3 222+ 389+ 1G5M+  Z2BM+  40M+  FhM+  2BDEH+
54653 cookied 0.0 00:00,15 2 1 40 Bl 331EK 224K 4088k 42M 2411H
FZHMA mdunrker fon nnsnt R7 4 1 5 g1 FROAK 419K 1FM A°H 24 2R

I Running program “top” on Mac

m System has 123 processes, 5 of which are active
m Identified by Process ID (PID)
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Preview: Creating and Terminating Processes

From a programmer’s perspective, we can think of a process
as being in one of three states

I Running

m Process is executing (or waiting to, as we'll see later this week)

I Stopped

m Process execution is suspended until further notice (covered later)

B Terminated
m Process is stopped permanently
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Terminating Processes

] Process becomes terminated for one of three reasons:
m Returning from the main routine
m Calling the exit function
m One other that we'll discuss next week...

B void exit(int status)
m Terminates with an exit status of status
m Convention: normal return status is O, nonzero on error

m Another way to explicitly set the exit status is to return an integer value
from the main routine

] exit is called once but never returns.
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Creating Processes

] Parent process creates a new running child process by
calling fork

PBint fork(void)
m Returns O to the child process, child’s PID to parent process
m Child is almost identical to parent...

Activity: part 1

B £ork is interesting (and often confusing) because
it is called once but returns twice
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Hmmm, How Does This Work?!

Process 1 Process 2 Process n

00007FFFFFFFFFFF
Stack Stack

1 1 1

OO0O007FFFFFFFFFFF (o <k

400000
000000

e o o
Shared Shared Shared
Libraries Libraries Libraries
1 1 1
Heap Heap Heap
Data Data Data
ext

Solution: Virtual Memory (today and next lecture)
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Creating Processes

] Parent process creates a new running child process by
calling fork

PBint fork(void)
m Returns O to the child process, child’s PID to parent process
m Child is almost identical to parent:

m Child get an identical (but separate) copy of the parent’s virtual
address space.

m Child gets identical copies of the parent’s open file descriptors
m Child has a different PID than the parent

B £ork is interesting (and often confusing) because
it is called once but returns twice
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Today

] Processes: Concepts
I Address spaces

I VM as a tool for caching
I VM as a tool for memory management
I VM as a tool for memory protection
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A System Using Physical Addressing

Main memory

Physical address

(PA)

CPU 7 >

PN HOdMRO

Data word

Il Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12
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A System Using Virtual Addressing

Main memory

0:
CPU Chip 1:
Virtual address Physical address §
(VA) (PA) )
CPU > MMU > 4
4100 4 5
A

6:
7:
8:
M-1

Data word

l Used in all modern servers, laptops, and smart phones
I One of the great ideas in computer science
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Address Spaces

I Linear address space: Ordered set of contiguous non-negative integer
addresses:
{0,1,2,3...}

J Virtual address space: Set of N = 2" virtual addresses
{0,1,2,3,..,N-1}

I Physical address space: Set of M = 2™ physical addresses
{0,1,2,3,..., M-1}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14
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Why Virtual Memory (VM)?

I Uses main memory efficiently
m Use DRAM as a cache for parts of a virtual address space

J Simplifies memory management
m Each process gets the same uniform linear address space

B Isolates address spaces
m One process can't interfere with another’s memory
m User program cannot access privileged kernel information and code

Activity: parts 2 and 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15
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Today

] Processes: Concepts
I Address spaces

I VM as a tool for caching
I VM as a tool for memory management
I VM as a tool for memory protection
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VM as a Tool for Caching

B Conceptually, virtual memory is an array of N contiguous
bytes stored on disk.

B The contents of the array on disk are cached in physical
memory (DRAM cache)

m These cache blocks are called pages (size is P = 2° bytes)

Virtual memory Physical memory

0
VP 0 | Unallocated
0

VP 1 | Cached \ Empty PP O
Uncached PP 1

Unallocated Empty

Cached
Uncached >< Empty
Cached PP 2m»-1

M-1
VP 2np-1 | Uncached N-1
Virtual pages (VPs) Physical pages (PPs)
stored on disk cached in DRAM

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17
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Remember: Memory/ \ Hierarchy

Regs CPU registers hold words retrieved
Smaller, from the L1 cache.
faster, Ll/ L1 cache
and (SRAM) L1 cache holds cache lines retrieved
?ojlioert | . L2 cache from the L2 cache.
Per byte (SRAM) ,
storage L2 cache holds cache lines
devices retrieved from L3 cache
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.

Larger,
slower, L4: Main memory
and (DRAM) Main memory holds disk
cheaper blocks retrieved from local
(per byte) disks.
storage | 5. Local secondary storage
devices (local disks)

Local disks hold files

retrieved from disks

on remote servers

L6: Remote secondary storage

(e.g., Web servers)

Bryant anfl. Q’Hallaron, Computer Systems: A Programmer’s Perspective Third Fdition 18
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Remember: Set Associative Cache Block
offset
E = 2: Two lines per set
Assume: cache block size 8 bytes Address : l‘L\
2 lines per set t bits 0..01 | 100
A
- ~
(

v| [ tag | [ol 1] 2[3]4]5]6]7]| |Lv] [ tag | [of1]2[3]4]5]6]7

v] [ tag | [o] a[2[ 3[4l 5[ 6] 7]| |[v] [ tag ] [o] o] 2 [ 4] 5[ 6]7]| — Indexto

find set
< v| [ tag | [ol 1] 2[3]4]5]6]7]]| |Lv] [ tag | [of1]2[3]4]5]6]7
|| || | || || || || || || | |

v| [ tag | (o] 1l 2]3]4]l5]6l7]| [|v] [ tag | [0l af2]3]4]5[6]7

\.

S sets
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DRAM Cache Organization

Il DRAM cache organization driven by the enormous miss penalty
m DRAM is about 10x slower than SRAM
m Disk is about 10,000x slower than DRAM

I Consequences
m Large page (block) size: typically 4 KB, sometimes 4 MB
m Fully associative
m Any VP can be placed in any PP
m Requires a “large” mapping function - different from cache memories
m Highly sophisticated, expensive replacement algorithms
m Too complicated and open-ended to be implemented in hardware
m Write-back rather than write-through

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20
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Enabling Data Structure: Page Table

I A page table is an array of page table entries (PTEs) that

maps virtual pages to physical pages.

m Per-process kernel data structure in DRAM

Physical memory

Physical page (DRAM)
number or
VP 1 PP O
VP 2
VP 7
VP 4 PP 3

® -
—
.‘ \\

R|lolo|lr|lOo]|~r |~

Valid disk address /
PTEO]| 0 null /

null > Virtual memory

>« ~ (disk)
PTE 7 o« "~ ] . VP 1
Memory re;:dent ~.. .o VP 2

age table RN Sa
Pag RS VP 3

(DRAM) S
~.o VP 4
VP 6
: ) g VP 7
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21
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B Page hit: reference to VM word that is in physical memory

(DRAM cache hit)
Phvsical Physical memory
Virtual address ysical page (DRAM)
number or T
valid disk address PPO
PTEO[ 0 null VP2
./—4 VP7
: — VP4 PP 3
1 —
0 o
1 | E\\
0 null ¢ Virtual memory
0 o \/ RS o (diSk)
PTE7| 1 o« "~ TNe VP 1
Memory resident\\ VP2
page table ~a
(DRAM) vP3
- VP4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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B Page fault: reference to VM word that is not in physical
memory (DRAM cache miss)

Physical memory

Physical page
Virtual address number or (DRAM)
valid disk address VP1
./4 VP 7
: i VP 4
1 —
> 0 R
1 | E\\
0 null ¢ Virtual memory
0 o« ~ | ~~. (disk)
PTE 7] 1 T N —
Memory resident ~~_ VP 2
page table “
(DRAM) VP3
. VP 4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Handling Page Fault

I Page miss causes page fault (an exception)

Virtual address

PTEO

PTE 7

Carnegie Mellon

Physical memory

Physical page (DRAM)
number or T op 0
Val(;d disk adclllress / ToE
nu
e VP 7
: = VP4 PP 3
1 —
0 N
1 | g E\\
0 null ¢ Virtual memory
0 & \/ RS o (diSk)
! AN . VP 1
Memory resident ~~_ VP2
page table ~a
(DRAM) vP3
- VP4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Handling Page Fault

I Page miss causes page fault (an exception)

Carnegie Mellon

I Operating system selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE 7

Physical memory

Physical page (DRAM)
number or T op 0
Val(;d disk adclllress / ToE
nu
e VP 7
: = VP4 PP 3
1 —
0 N
1 | g E\\
0 null ¢ Virtual memory
0 & \/ RS o (diSk)
! AN . VP 1
Memory resident ~~_ VP2
page table ~a
(DRAM) vP3
- VP4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Handling Page Fault

I Page miss causes page fault (an exception)
I Operating system selects a victim to be evicted (here VP 4)

Physical memory

Physical page
Virtual address number or (DRAM)
valid disk address VP1 PPO
./4 VP 7
. — VP3 PP 3
1 —
1 o/‘
0 .
0 null Virtual memory
0 / [ (disk)
PTE7L ./ =1 VP 1
Memory resident ~~_ \\ VP 2
page table Sso O~
(DRAM) RV VP3
RS - VP4
VP 6
VP 7
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Handling Page Fault

I Page miss causes page fault (an exception)
I Operating system selects a victim to be evicted (here VP 4)
I Offending instruction is restarted: page hit!

Physical memory

Physical page
Virtual address number or (DRAM)
valid disk address L PPO
PTEO[ 0 null VP2
./—4 VP7
: — VP 3 PP 3
1 —
> 1 ./"
0 o
0 null Virtual memory
0 / S (disk)
PTE7[1 ./ d V1
Memory resident ~~_ \\ VP2
page table VRN
(DRAM) IR VP3
: o s . . R VP 4
Key point: Waiting until the miss to copy the page to - Y
DRAM is known as demand paging —

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27
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Allocating Pages

I Allocating a new page (VP 5) of virtual memory.
Physical memory

Physical page (DRAM)
number or prey
Valid disk address PP O
./4 VP 7
” — VP3 PP 3
1 —
1 — |
0 [ N
0 & N Virtual memory
0 e K (disk)
PTE7L '/"~\‘~~:‘~\ VP 1
Memory re;:dent \\\\ . 7P 2
page table S \\ RN
(DRAM) REVRRNERRN VP 3
RN VP 4
N VP 5
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28



Locality to the Rescue Again!

 Virtual memory seems terribly inefficient, but it works
because of locality.

I At any point in time, programs tend to access a set of active
virtual pages called the working set
m Programs with better temporal locality will have smaller working sets

B If ( working set size < main memory size )
m Good performance for one process after compulsory misses

B If ( SUM(working set sizes) > main memory size )

m Thrashing: Performance meltdown where pages are swapped (copied)
in and out continuously

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29
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Admission of Guilt

J Lie: “Memory can be viewed as an array of bytes”...
m Actually discontinuous, with unmapped regions

J Lie: “Memory addresses refer to locations in RAM"...

m Programmer sees only virtual addresses, which CPU’s MMU translates
to physical addresses before sending them to the memory controller

J Lie: “Memory addresses are 64 bits”...

m Current x86-64 CPUs use 48-bit memory address buses, which is
enough to address 256 TB of RAM

m Future CPUs may widen this without a change to the ISA

Activity: part 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30
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Preview: Address Translation

Page table
base register (PTBR)
(CR3in x86)

Virtual address

Physical page table
address for the current

2

process

Valid bit = 0:
Page not in memory "
(page fault)

n-1 p p-1 0
Virtual page number (VPN) Virtual page offset (VPO)
Page table
_Valid Physical page number (PPN)
Valid bit =1
m-1 p p-1 J 0

Y

Physical page number (PPN)

Physical page offset (PPO)

Physical address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Today

[l Processes: Concepts
l Address spaces

I VM as a tool for caching
I VM as a tool for memory management
I VM as a tool for memory protection
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VM as a Tool for Memory Management

B Key idea: each process has its own virtual address space
m It can view memory as a simple linear array
m Mapping function scatters addresses through physical memory
m Well-chosen mappings can improve locality

0 Address 0

Virtual lati Physical
Address VP 1 translation Address
Space for VP 2 > PP2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
) _PP6 library code)
. 0
Virtual . pps
Address VP 1
Space for VP 2
Process 2: coe

N-1 M-1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33
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VM as a Tool for Memory Management

B Simplifying memory allocation

m Each virtual page can be mapped to any physical page

m A virtual page can be stored in different physical pages at different times
B Sharing code and data among processes
m Map virtual pages to the same physical page (here: PP 6)

Virtual
Address
Space for

Process 1:

Virtual
Address
Space for

Process 2:

0

N-1

N-1

VP 1

VP 2

VP 1

VP 2

Address 0
translation
> PP2
3 PP6
—1 PP8
M-1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Physical
Address
Space

(DRAM)

(e.g., read-only
library code)
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Simplifying Linking and Loading

BlLinking
m Each program has similar virtual
address space

m Code, data, and heap always start
at the same addresses.

Bloading

m Allocate virtual pages for . text
and .data sections & creates PTEs
marked as invalid

m The . text and .data sections
are copied, page by page, on
demand by the virtual memory
system

Activity: parts 5 and 6

0x400000

and quiz

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 0

Kernel virtual memory

User stack
(created at runtime)

’
T

Memory-mapped region for
shared libraries

T

Run-time heap
(created by malloc)

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Unused

Memory
invisible to
user code

+«—3rsp
(stack
pointer)

<— brk

Loaded
from

+ the
executable
file

35
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Today

]l Processes: Concepts
I Address spaces

I VM as a tool for caching
I VM as a tool for memory management
B VM as a tool for memory protection
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VM as a Tool for Memory Protection
 Extend PTEs with permission bits

Il MMU checks these bits on each access

Process i:
VP 0O:

VP 1:
VP 2:

Process j:

VP O:
VP 1:
VP 2:

Physical

Carnegie Mellon

Address Space

PP 2

PP 4

PP 6

PP 8

SUP READ WRITE EXEC Address
No Yes No Yes PP 6
No Yes Yes Yes PP4
Yes Yes Yes No PP 2
o
[ J
SUP READ WRITE EXEC Address
No Yes No Yes PP 9
Yes Yes Yes Yes PP 6
No Yes Yes Yes PP 11

PP 9

Y V\AL |4 J/

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Summary

Jl Programmer’s view of virtual memory
m Each process has its own private linear address space
m Cannot be corrupted by other processes

I System view of virtual memory
m Uses memory efficiently by caching virtual memory pages
m Efficient only because of locality
m Simplifies memory management and programming

m Simplifies protection by providing a convenient interpositioning point
to check permissions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38
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Virtual Address Space of a Linux Process

~
Process-specific data )
Different for 2 structs (ptables,
each process task and mm structs, Kernel
L kernel stack) )
virtual
. i memor
Identical for Physical memory y
each process
P Kernel code and data )
User stack \
%rsp > ‘
Memory mapped
region for shared
libraries
Process
brk — t > virtual
Runtime heap (malloc) memory
Uninitialized data (.bss)
Initialized data (.data)
000400000 —___Program text (.text)
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perse\.wn., oo ) 39
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Linux Organizes VM as Collection of “Areas”

Process virtual memory
vm_area_struct

task struct >
mm s truct Vm_end
mm » ped vm_start
vm_prot
mmap vm_flags
Shared libraries
vm_end —
. pgd: vm_start
. vim_prot
[ Page global directory address vm._flags Data
m Points to L1 page table
B vm_prot:
m Read/write permissions for Text
this area g vm_end
. vim ﬂ ags vm_start >
- . vim_prot
m Pages shared with other vm_flags
processes or private to this vm_next 0
process Each process has own task_struct, etc

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40
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Linux Page Fault Handling

vm_area_struct Process virtual memory

vm_end
vm_start
vim_prot
vm_flags
shared libraries
rg Segmentation fault:
——— o o 4o

> accessing a non-existing page
vm_end
vm_start > e
vim_prot dat d
vm_flags ata r€ad Normal page fault

text 9 Protection exception:

" vm end . write e.g., violating permission by
vm_start ——— writing to a read-only page (Linux
vm_prot reports as Segmentation fault)
vm_flags
vm_next

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41
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