Carnegie Mellon

Virtual Memory: Concepts

15-213: Introduction to Computer Systems
“17t" Lecture, July 9, 2019

Instructor:
Sol Boucher

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Today

Il Processes: Concepts

I Address spaces

I VM as a tool for caching

Il VM as a tool for memory management
I VM as a tool for memory protection

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Processes

] Definition: A process is an instance of a running

program.
m One of the most profound ideas in computer science

m Not the same as “program” or “processor”

Il Process provides each program with two key

abstractions: Memory

m Logical control flow Stack

m Each program seems to have exclusive use of the CPU Heap

m Provided by kernel mechanism called context switching ([:):;IZ

m Private address space

m Each program seems to have exclusive use of main CPU

memory. Registers

m Provided by kernel mechanism called virtual memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data ooo Data
Code Code Code
CPU CPU CPU

Registers Registers Registers

I Computer runs many processes simultaneously

m Applications for one or more users
m Web browsers, email clients, editors, ...

m Background tasks
m Monitoring network & 1/0 devices

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Multiprocessing Example

N[xterm

Proceszes: 123 total, 5 running, 9 stuck, 109 zleeping, B11 threads 1147 :07
Load Awg: 1,03, 1,13, 1,14 CPU uzage: 3,27 uszer, 5,158 =sys, 91.56% idle

SharedLibz: 576K resident, OB data, OB linkedit,

HemBegions: 27998 total, 1127H resident, 35M private, 434 shared,

PhysMem: 1039M wired, 1974M active, 10BZ2M inactiwve, 407VEM uszed, 18M free,

YH: 280G vsize, 1091M framework wsize, 230759213(1) pageins, B843367(0) pageouts,

Hetworks: packets: 41046228110 in, BEOBI0SE/7/L out, I
Dizkszt 178742391/34906 read, 12847373/0040 written, t

FII COMMAND ZCFU TIHE #TH #W0 #PORT #MREG EPEWT RSHED RSIZE WPEMT WSIZE
99217- Microsoft OF 0,0 02:28,34 4 1 202 418 Z1M 24H 21 BEM FEAH

33051 wsbmuxd 0,0 0030410 3 1 47 BE 436k 21EK 480k BOM 2422
FI006 iTunesHelper 0,0 OO301,23 2 1 55 3 faak 3124k 1124k 43M 24294
24286 bash 0,0 000,11 1 0 20 24 224k 732k 484K 1M 2378H
24280 xterm 0,0 00:00,83 1 0 22 73 BSEK 872K B9Z2k 9728k 2382H
595939- Microsoft Ex 0,3 21:;58,97 10 3 360 354 1BM =y 4EM 114K 1057M
54751 =leep 0,0 00:00,00 1 0 17 20 32k 212k 3R0K B3k ZE7O0M
54739 launchdadd 0,0 Q000,00 2 1 33 5 483k 220K 173EK 48HM 24091
4737 top B.o 000253 171 0 B 23 1416k 216K 2124k 17H 2378H
24713 automountd 0,0 0030002 7 1 53 B4 ob0k 216k 2184K haM 2413
54701 ocspd 0,0 000005 4 1 B1 54 1268k 2644k 3132K 5HOH 2426M
54661 Grab 0,6 00:02,75 B 3 222+ 389+ 1G5M+ Z2BM+ 40M+ FhM+ 2BDEH+
54653 cookied 0.0 00:00,15 2 1 40 Bl 331EK 224K 4088k 42M 2411H
FZHMA mdunrker fon nnsnt R7 4 1 5 g1 FROAK 419K 1FM A°H 24 2R

I Running program “top” on Mac

m System has 123 processes, 5 of which are active
m Identified by Process ID (PID)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Preview: Creating and Terminating Processes

From a programmer’s perspective, we can think of a process
as being in one of three states

I Running

m Process is executing (or waiting to, as we'll see later this week)

I Stopped

m Process execution is suspended until further notice (covered later)

B Terminated
m Process is stopped permanently

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Terminating Processes

] Process becomes terminated for one of three reasons:
m Returning from the main routine
m Calling the exit function
m One other that we'll discuss next week...

B void exit(int status)
m Terminates with an exit status of status
m Convention: normal return status is O, nonzero on error

m Another way to explicitly set the exit status is to return an integer value
from the main routine

] exit is called once but never returns.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Creating Processes

] Parent process creates a new running child process by
calling fork

PBint fork(void)
m Returns O to the child process, child’s PID to parent process
m Child is almost identical to parent...

Activity: part 1

B £ork is interesting (and often confusing) because
it is called once but returns twice

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Hmmm, How Does This Work?!

Process 1 Process 2 Process n

00007FFFFFFFFFFF
Stack Stack

1 1 1

OO0O007FFFFFFFFFFF (o <k

400000
000000

e o o
Shared Shared Shared
Libraries Libraries Libraries
1 1 1
Heap Heap Heap
Data Data Data
ext

Solution: Virtual Memory (today and next lecture)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Creating Processes

] Parent process creates a new running child process by
calling fork

PBint fork(void)
m Returns O to the child process, child’s PID to parent process
m Child is almost identical to parent:

m Child get an identical (but separate) copy of the parent’s virtual
address space.

m Child gets identical copies of the parent’s open file descriptors
m Child has a different PID than the parent

B £ork is interesting (and often confusing) because
it is called once but returns twice

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Today

] Processes: Concepts
I Address spaces

I VM as a tool for caching
I VM as a tool for memory management
I VM as a tool for memory protection

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

A System Using Physical Addressing

Main memory

Physical address

(PA)

CPU 7 >

PN HOdMRO

Data word

Il Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

A System Using Virtual Addressing

Main memory

0:
CPU Chip 1:
Virtual address Physical address §
(VA) (PA))
CPU > MMU > 4
4100 4 5
A

6:
7:
8:
M-1

Data word

l Used in all modern servers, laptops, and smart phones
I One of the great ideas in computer science

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Address Spaces

I Linear address space: Ordered set of contiguous non-negative integer
addresses:
{0,1,2,3...}

J Virtual address space: Set of N = 2" virtual addresses
{0,1,2,3,..,N-1}

I Physical address space: Set of M = 2™ physical addresses
{0,1,2,3,..., M-1}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Why Virtual Memory (VM)?

I Uses main memory efficiently
m Use DRAM as a cache for parts of a virtual address space

J Simplifies memory management
m Each process gets the same uniform linear address space

B Isolates address spaces
m One process can't interfere with another’s memory
m User program cannot access privileged kernel information and code

Activity: parts 2 and 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Today

] Processes: Concepts
I Address spaces

I VM as a tool for caching
I VM as a tool for memory management
I VM as a tool for memory protection

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

VM as a Tool for Caching

B Conceptually, virtual memory is an array of N contiguous
bytes stored on disk.

B The contents of the array on disk are cached in physical
memory (DRAM cache)

m These cache blocks are called pages (size is P = 2° bytes)

Virtual memory Physical memory

0
VP 0 | Unallocated
0

VP 1 | Cached \ Empty PP O
Uncached PP 1

Unallocated Empty

Cached
Uncached >< Empty
Cached PP 2m»-1

M-1
VP 2np-1 | Uncached N-1
Virtual pages (VPs) Physical pages (PPs)
stored on disk cached in DRAM

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

A

Carnegie Mellon

Remember: Memory/ \ Hierarchy

Regs CPU registers hold words retrieved
Smaller, from the L1 cache.
faster, Ll/ L1 cache
and (SRAM) L1 cache holds cache lines retrieved
?ojlioert | . L2 cache from the L2 cache.
Per byte (SRAM) ,
storage L2 cache holds cache lines
devices retrieved from L3 cache
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.

Larger,
slower, L4: Main memory
and (DRAM) Main memory holds disk
cheaper blocks retrieved from local
(per byte) disks.
storage | 5. Local secondary storage
devices (local disks)

Local disks hold files

retrieved from disks

on remote servers

L6: Remote secondary storage

(e.g., Web servers)

Bryant anfl. Q’Hallaron, Computer Systems: A Programmer’s Perspective Third Fdition 18

Carnegie Mellon

Remember: Set Associative Cache Block
offset
E = 2: Two lines per set
Assume: cache block size 8 bytes Address : l‘L\
2 lines per set t bits 0..01 | 100
A
- ~
(

v| [tag | [ol 1] 2[3]4]5]6]7]| |Lv] [tag | [of1]2[3]4]5]6]7

v] [tag | [o] a[2[3[4l 5[6] 7]| |[v] [tag] [o] o] 2 [4] 5[6]7]| — Indexto

find set
< v| [tag | [ol 1] 2[3]4]5]6]7]]| |Lv] [tag | [of1]2[3]4]5]6]7
|| || | || || || || || || | |

v| [tag | (o] 1l 2]3]4]l5]6l7]| [|v] [tag | [0l af2]3]4]5[6]7

\.

S sets

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

DRAM Cache Organization

Il DRAM cache organization driven by the enormous miss penalty
m DRAM is about 10x slower than SRAM
m Disk is about 10,000x slower than DRAM

I Consequences
m Large page (block) size: typically 4 KB, sometimes 4 MB
m Fully associative
m Any VP can be placed in any PP
m Requires a “large” mapping function - different from cache memories
m Highly sophisticated, expensive replacement algorithms
m Too complicated and open-ended to be implemented in hardware
m Write-back rather than write-through

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Enabling Data Structure: Page Table

I A page table is an array of page table entries (PTEs) that

maps virtual pages to physical pages.

m Per-process kernel data structure in DRAM

Physical memory

Physical page (DRAM)
number or
VP 1 PP O
VP 2
VP 7
VP 4 PP 3

® -
—
.‘ \\

R|lolo|lr|lOo]|~r |~

Valid disk address /
PTEO]| 0 null /

null > Virtual memory

>« ~ (disk)
PTE 7 o« "~] . VP 1
Memory re;:dent ~.. .o VP 2

age table RN Sa
Pag RS VP 3

(DRAM) S
~.o VP 4
VP 6
:) g VP 7
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Page Hit

Carnegie Mellon

B Page hit: reference to VM word that is in physical memory

(DRAM cache hit)
Phvsical Physical memory
Virtual address ysical page (DRAM)
number or T
valid disk address PPO
PTEO[0 null VP2
./—4 VP7
: — VP4 PP 3
1 —
0 o
1 | E\\
0 null ¢ Virtual memory
0 o \/ RS o (diSk)
PTE7| 1 o« "~ TNe VP 1
Memory resident\\ VP2
page table ~a
(DRAM) vP3
- VP4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

22

Page Fault

Carnegie Mellon

B Page fault: reference to VM word that is not in physical
memory (DRAM cache miss)

Physical memory

Physical page
Virtual address number or (DRAM)
valid disk address VP1
./4 VP 7
: i VP 4
1 —
> 0 R
1 | E\\
0 null ¢ Virtual memory
0 o« ~ | ~~. (disk)
PTE 7] 1 T N —
Memory resident ~~_ VP 2
page table “
(DRAM) VP3
. VP 4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PPO

PP 3

23

Handling Page Fault

I Page miss causes page fault (an exception)

Virtual address

PTEO

PTE 7

Carnegie Mellon

Physical memory

Physical page (DRAM)
number or T op 0
Val(;d disk adclllress / ToE
nu
e VP 7
: = VP4 PP 3
1 —
0 N
1 | g E\\
0 null ¢ Virtual memory
0 & \/ RS o (diSk)
! AN . VP 1
Memory resident ~~_ VP2
page table ~a
(DRAM) vP3
- VP4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

24

Handling Page Fault

I Page miss causes page fault (an exception)

Carnegie Mellon

I Operating system selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE 7

Physical memory

Physical page (DRAM)
number or T op 0
Val(;d disk adclllress / ToE
nu
e VP 7
: = VP4 PP 3
1 —
0 N
1 | g E\\
0 null ¢ Virtual memory
0 & \/ RS o (diSk)
! AN . VP 1
Memory resident ~~_ VP2
page table ~a
(DRAM) vP3
- VP4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

25

Carnegie Mellon

Handling Page Fault

I Page miss causes page fault (an exception)
I Operating system selects a victim to be evicted (here VP 4)

Physical memory

Physical page
Virtual address number or (DRAM)
valid disk address VP1 PPO
./4 VP 7
. — VP3 PP 3
1 —
1 o/‘
0 .
0 null Virtual memory
0 / [(disk)
PTE7L ./ =1 VP 1
Memory resident ~~_ \\ VP 2
page table Sso O~
(DRAM) RV VP3
RS - VP4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Handling Page Fault

I Page miss causes page fault (an exception)
I Operating system selects a victim to be evicted (here VP 4)
I Offending instruction is restarted: page hit!

Physical memory

Physical page
Virtual address number or (DRAM)
valid disk address L PPO
PTEO[0 null VP2
./—4 VP7
: — VP 3 PP 3
1 —
> 1 ./"
0 o
0 null Virtual memory
0 / S (disk)
PTE7[1 ./ d V1
Memory resident ~~_ \\ VP2
page table VRN
(DRAM) IR VP3
: o s . . R VP 4
Key point: Waiting until the miss to copy the page to - Y
DRAM is known as demand paging —

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Allocating Pages

I Allocating a new page (VP 5) of virtual memory.
Physical memory

Physical page (DRAM)
number or prey
Valid disk address PP O
./4 VP 7
” — VP3 PP 3
1 —
1 — |
0 [N
0 & N Virtual memory
0 e K (disk)
PTE7L '/"~\‘~~:‘~\ VP 1
Memory re;:dent \\\\ . 7P 2
page table S \\ RN
(DRAM) REVRRNERRN VP 3
RN VP 4
N VP 5
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Locality to the Rescue Again!

 Virtual memory seems terribly inefficient, but it works
because of locality.

I At any point in time, programs tend to access a set of active
virtual pages called the working set
m Programs with better temporal locality will have smaller working sets

B If (working set size < main memory size)
m Good performance for one process after compulsory misses

B If (SUM(working set sizes) > main memory size)

m Thrashing: Performance meltdown where pages are swapped (copied)
in and out continuously

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Admission of Guilt

J Lie: “Memory can be viewed as an array of bytes”...
m Actually discontinuous, with unmapped regions

J Lie: “Memory addresses refer to locations in RAM"...

m Programmer sees only virtual addresses, which CPU’s MMU translates
to physical addresses before sending them to the memory controller

J Lie: “Memory addresses are 64 bits”...

m Current x86-64 CPUs use 48-bit memory address buses, which is
enough to address 256 TB of RAM

m Future CPUs may widen this without a change to the ISA

Activity: part 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Preview: Address Translation

Page table
base register (PTBR)
(CR3in x86)

Virtual address

Physical page table
address for the current

2

process

Valid bit = 0:
Page not in memory "
(page fault)

n-1 p p-1 0
Virtual page number (VPN) Virtual page offset (VPO)
Page table
_Valid Physical page number (PPN)
Valid bit =1
m-1 p p-1 J 0

Y

Physical page number (PPN)

Physical page offset (PPO)

Physical address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

31

Carnegie Mellon

Today

[l Processes: Concepts
l Address spaces

I VM as a tool for caching
I VM as a tool for memory management
I VM as a tool for memory protection

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

VM as a Tool for Memory Management

B Key idea: each process has its own virtual address space
m It can view memory as a simple linear array
m Mapping function scatters addresses through physical memory
m Well-chosen mappings can improve locality

0 Address 0

Virtual lati Physical
Address VP 1 translation Address
Space for VP 2 > PP2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
) _PP6 library code)
. 0
Virtual . pps
Address VP 1
Space for VP 2
Process 2: coe

N-1 M-1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

VM as a Tool for Memory Management

B Simplifying memory allocation

m Each virtual page can be mapped to any physical page

m A virtual page can be stored in different physical pages at different times
B Sharing code and data among processes
m Map virtual pages to the same physical page (here: PP 6)

Virtual
Address
Space for

Process 1:

Virtual
Address
Space for

Process 2:

0

N-1

N-1

VP 1

VP 2

VP 1

VP 2

Address 0
translation
> PP2
3 PP6
—1 PP8
M-1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Physical
Address
Space

(DRAM)

(e.g., read-only
library code)

34

Carnegie Mellon

Simplifying Linking and Loading

BlLinking
m Each program has similar virtual
address space

m Code, data, and heap always start
at the same addresses.

Bloading

m Allocate virtual pages for . text
and .data sections & creates PTEs
marked as invalid

m The . text and .data sections
are copied, page by page, on
demand by the virtual memory
system

Activity: parts 5 and 6

0x400000

and quiz

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 0

Kernel virtual memory

User stack
(created at runtime)

’
T

Memory-mapped region for
shared libraries

T

Run-time heap
(created by malloc)

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Unused

Memory
invisible to
user code

+«—3rsp
(stack
pointer)

<— brk

Loaded
from

+ the
executable
file

35

Carnegie Mellon

Today

]l Processes: Concepts
I Address spaces

I VM as a tool for caching
I VM as a tool for memory management
B VM as a tool for memory protection

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

VM as a Tool for Memory Protection
 Extend PTEs with permission bits

Il MMU checks these bits on each access

Process i:
VP 0O:

VP 1:
VP 2:

Process j:

VP O:
VP 1:
VP 2:

Physical

Carnegie Mellon

Address Space

PP 2

PP 4

PP 6

PP 8

SUP READ WRITE EXEC Address
No Yes No Yes PP 6
No Yes Yes Yes PP4
Yes Yes Yes No PP 2
o
[J
SUP READ WRITE EXEC Address
No Yes No Yes PP 9
Yes Yes Yes Yes PP 6
No Yes Yes Yes PP 11

PP 9

Y V\AL |4 J/

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PP 11

37

Carnegie Mellon

Summary

Jl Programmer’s view of virtual memory
m Each process has its own private linear address space
m Cannot be corrupted by other processes

I System view of virtual memory
m Uses memory efficiently by caching virtual memory pages
m Efficient only because of locality
m Simplifies memory management and programming

m Simplifies protection by providing a convenient interpositioning point
to check permissions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Virtual Address Space of a Linux Process

~
Process-specific data)
Different for 2 structs (ptables,
each process task and mm structs, Kernel
L kernel stack))
virtual
. i memor
Identical for Physical memory y
each process
P Kernel code and data)
User stack \
%rsp > ‘
Memory mapped
region for shared
libraries
Process
brk — t > virtual
Runtime heap (malloc) memory
Uninitialized data (.bss)
Initialized data (.data)
000400000 —___Program text (.text)
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perse\.wn., oo) 39

Carnegie Mellon

Linux Organizes VM as Collection of “Areas”

Process virtual memory
vm_area_struct

task struct >
mm s truct Vm_end
mm » ped vm_start
vm_prot
mmap vm_flags
Shared libraries
vm_end —
. pgd: vm_start
. vim_prot
[Page global directory address vm._flags Data
m Points to L1 page table
B vm_prot:
m Read/write permissions for Text
this area g vm_end
. vim ﬂ ags vm_start >
- . vim_prot
m Pages shared with other vm_flags
processes or private to this vm_next 0
process Each process has own task_struct, etc

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Linux Page Fault Handling

vm_area_struct Process virtual memory

vm_end
vm_start
vim_prot
vm_flags
shared libraries
rg Segmentation fault:
——— o o 4o

> accessing a non-existing page
vm_end
vm_start > e
vim_prot dat d
vm_flags ata r€ad Normal page fault

text 9 Protection exception:

" vm end . write e.g., violating permission by
vm_start ——— writing to a read-only page (Linux
vm_prot reports as Segmentation fault)
vm_flags
vm_next

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

	Slide 1
	Slide 2
	Processes
	Multiprocessing: The Illusion
	Multiprocessing Example
	Creating and Terminating Processes
	Terminating Processes
	Creating Processes
	Hmmm, How Does This Work?!
	Slide 10
	Today
	A System Using Physical Addressing
	A System Using Virtual Addressing
	Address Spaces
	Why Virtual Memory (VM)?
	Today
	VM as a Tool for Caching
	Example Memory Hierarchy
	Remember: Set Associative Cache
	DRAM Cache Organization
	Enabling Data Structure: Page Table
	Page Hit
	Page Fault
	Handling Page Fault
	Handling Page Fault
	Handling Page Fault
	Handling Page Fault
	Allocating Pages
	Locality to the Rescue Again!
	Slide 30
	Slide 31
	Today
	VM as a Tool for Memory Management
	VM as a Tool for Memory Management
	Simplifying Linking and Loading
	Today
	VM as a Tool for Memory Protection
	Summary
	Virtual Address Space of a Linux Process
	Linux Organizes VM as Collection of “Areas”
	Linux Page Fault Handling

