Virtual Memory: Concepts

15-213: Introduction to Computer Systems "17th" Lecture, July 9, 2019

Instructor:

Sol Boucher

Today

- Processes: Concepts
- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
- VM as a tool for memory protection

Processes

- Definition: A process is an instance of a running program.
 - One of the most profound ideas in computer science
 - Not the same as "program" or "processor"
- Process provides each program with two key abstractions:
 - **■** Logical control flow
 - Each program seems to have exclusive use of the CPU
 - Provided by kernel mechanism called *context switching*
 - **■** Private address space
 - Each program seems to have exclusive use of main memory.
 - Provided by kernel mechanism called *virtual memory*

Multiprocessing: The Illusion

- Computer runs many processes simultaneously
 - Applications for one or more users
 - Web browsers, email clients, editors, ...
 - Background tasks
 - Monitoring network & I/O devices

Multiprocessing Example

```
000
                                           X xterm
 Processes: 123 total, 5 running, 9 stuck, 109 sleeping, 611 threads
                                                                                      11:47:07
 Load Avg: 1.03, 1.13, 1.14 CPU usage: 3.27% user, 5.15% sys, 91.56% idle
 SharedLibs: 576K resident, OB data, OB linkedit.
 MemRegions: 27958 total, 1127M resident, 35M private, 494M shared.
 PhysMem: 1039M wired, 1974M active, 1062M inactive, 4076M used, 18M free.
 VM: 280G vsize, 1091M framework vsize, 23075213(1) pageins, 5843367(0) pageouts.
 Networks: packets: 41046228/11G in, 66083096/77G out.
 Disks: 17874391/349G read, 12847373/594G written.
 PID
        COMMAND
                                   #TH
                                              #PORT #MREG RPRVT
                                                                 RSHRD
                                                                        RSIZE
                     %CPU TIME
                                         #WQ
                                                                               VPRVT
                                                                                      VSIZE
 99217- Microsoft Of 0.0 02:28.34 4
                                              202
                                                    418
                                                          21M
                                                                 24M
                                                                        21M
                                                                               66M
                                                                                      763M
 99051
        usbmuxd
                     0.0 00:04.10 3
                                              47
                                                    66
                                                          436K
                                                                 216K
                                                                        480K
                                                                               60M
                                                                                      2422M
                                              55
 99006
        iTunesHelper 0.0 00:01.23 2
                                                    78
                                                          728K
                                                                 3124K
                                                                        1124K
                                                                               43M
                                                                                      2429M
 84286
                                                    24
                                                          224K
                     0.0 00:00.11 1
                                                                 732K
                                                                        484K
                                                                               17M
                                                                                      2378M
        bash
                                              32
 84285
        xterm
                     0.0 00:00.83 1
                                                    73
                                                          656K
                                                                 872K
                                                                        692K
                                                                               9728K
                                                                                      2382M
 55939- Microsoft Ex 0.3 21:58.97 10
                                              360
                                                    954
                                                                 65M
                                                                        46M
                                                                                      1057M
                                                          16M
                                                                               114M
 54751
        sleep
                     0.0 00:00.00 1
                                              17
                                                    20
                                                          92K
                                                                 212K
                                                                        360K
                                                                               9632K
                                                                                      2370M
                                              33
                                                    50
                                                                        1736K
 54739
        launchdadd
                                                          488K
                                                                 220K
                                                                               48M
                                                                                      2409M
                     0.0 00:00.00 2
                                              30
 54737
                     6.5 00:02.53 1/1
                                                          1416K
                                                                 216K
                                                                        2124K
                                                                               17M
        top
                                                                                      2378M
                     0.0 00:00.02 7
                                              53
 54719
        automountd
                                                    64
                                                          860K
                                                                 216K
                                                                        2184K
                                                                               53M
                                                                                      2413M
 54701
                     0.0 00:00.05 4
                                              61
                                                    54
                                                          1268K
                                                                 2644K
                                                                        3132K
                                                                               50M
                                                                                      2426M
        ocspd
                     0.6 00:02.75 6
                                                    389+
                                                          15M+
 54661
        Grab
                                                                 26M+
                                                                        40M+
                                                                               75M+
                                                                                      2556M+
 54659
                     0.0 00:00.15 2
                                                          3316K
                                                                 224K
                                                                                      2411M
        cookied
                                              40
                                                    61
                                                                        4088K
                                                                               42M
 53818
        mdworker
                     0.0 00:01.67 4
                                              52
                                                    91
                                                          7628K
                                                                 7419K
                                                                        16M
                                                                               48M
                                                                                      2438M
Running program "top" on Mac
                                                          2464K
                                                                 6148K
                                                                               44M
                                                                                      2434M
                                                          280K
                                                                 872K
                                                                        532K
                                                                               9700K
                                                          52K
                                                                 216K
                                                                        88K
                                                                               18M
```

- System has 123 processes, 5 of which are active
- Identified by Process ID (PID)

Preview: Creating and Terminating Processes

From a programmer's perspective, we can think of a process as being in one of three states

Running

Process is executing (or waiting to, as we'll see later this week)

Stopped

Process execution is suspended until further notice (covered later)

Terminated

Process is stopped permanently

Terminating Processes

- Process becomes terminated for one of three reasons:
 - Returning from the main routine
 - Calling the exit function
 - One other that we'll discuss next week...
- void exit(int status)
 - Terminates with an exit status of status
 - Convention: normal return status is 0, nonzero on error
 - Another way to explicitly set the exit status is to return an integer value from the main routine
- exit is called once but never returns.

Creating Processes

- Parent process creates a new running child process by calling fork
- int fork(void)
 - Returns 0 to the child process, child's PID to parent process
 - Child is almost identical to parent...

Activity: part 1

fork is interesting (and often confusing) because it is called *once* but returns *twice*

Hmmm, How Does This Work?!

Solution: Virtual Memory (today and next lecture)

Creating Processes

- Parent process creates a new running child process by calling fork
- int fork(void)
 - Returns 0 to the child process, child's PID to parent process
 - Child is almost identical to parent:
 - Child get an identical (but separate) copy of the parent's virtual address space.
 - Child gets identical copies of the parent's open file descriptors
 - Child has a different PID than the parent
- **Interesting** (and often confusing) because it is called *once* but returns *twice*

Today

- Processes: Concepts
- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
- VM as a tool for memory protection

A System Using Physical Addressing

Used in "simple" systems like embedded microcontrollers in devices like cars, elevators, and digital picture frames

A System Using Virtual Addressing

- Used in all modern servers, laptops, and smart phones
- One of the great ideas in computer science

Address Spaces

Linear address space: Ordered set of contiguous non-negative integer addresses:

$$\{0, 1, 2, 3 \dots\}$$

- Virtual address space: Set of $N = 2^n$ virtual addresses $\{0, 1, 2, 3, ..., N-1\}$
- Physical address space: Set of $M = 2^m$ physical addresses $\{0, 1, 2, 3, ..., M-1\}$

Why Virtual Memory (VM)?

- Uses main memory efficiently
 - Use DRAM as a cache for parts of a virtual address space
- Simplifies memory management
 - Each process gets the same uniform linear address space
- Isolates address spaces
 - One process can't interfere with another's memory
 - User program cannot access privileged kernel information and code

Activity: parts 2 and 3

Today

- **Processes: Concepts**
- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
- VM as a tool for memory protection

VM as a Tool for Caching

- Conceptually, virtual memory is an array of N contiguous bytes stored on disk.
- The contents of the array on disk are cached in physical memory (DRAM cache)
 - These cache blocks are called *pages* (size is P = 2^p bytes)

Remember: Set Associative Cache

Block offset

E = 2: Two lines per set
Assume: cache block size 8 bytes

S sets

DRAM Cache Organization

- DRAM cache organization driven by the enormous miss penalty
 - DRAM is about 10x slower than SRAM
 - Disk is about 10,000x slower than DRAM

Consequences

- Large page (block) size: typically 4 KB, sometimes 4 MB
- Fully associative
 - Any VP can be placed in any PP
 - Requires a "large" mapping function different from cache memories
- Highly sophisticated, expensive replacement algorithms
 - Too complicated and open-ended to be implemented in hardware
- Write-back rather than write-through

Enabling Data Structure: Page Table

- A page table is an array of page table entries (PTEs) that maps virtual pages to physical pages.
 - Per-process kernel data structure in DRAM

Page Hit

Page hit: reference to VM word that is in physical memory (DRAM cache hit)

Page Fault

Page fault: reference to VM word that is not in physical memory (DRAM cache miss)

Page miss causes page fault (an exception)

- Page miss causes page fault (an exception)
- Operating system selects a victim to be evicted (here VP 4)

- Page miss causes page fault (an exception)
- Operating system selects a victim to be evicted (here VP 4)

- Page miss causes page fault (an exception)
- Operating system selects a victim to be evicted (here VP 4)
- Offending instruction is restarted: page hit!

Allocating Pages

Allocating a new page (VP 5) of virtual memory.

Locality to the Rescue Again!

- Virtual memory seems terribly inefficient, but it works because of locality.
- At any point in time, programs tend to access a set of active virtual pages called the working set
 - Programs with better temporal locality will have smaller working sets
- If (working set size < main memory size)</p>
 - Good performance for one process after compulsory misses
- If (SUM(working set sizes) > main memory size)
 - Thrashing: Performance meltdown where pages are swapped (copied) in and out continuously

Admission of Guilt

- Lie: "Memory can be viewed as an array of bytes"...
 - Actually discontinuous, with unmapped regions
- Lie: "Memory addresses refer to locations in RAM"...
 - Programmer sees only virtual addresses, which CPU's MMU translates to physical addresses before sending them to the memory controller
- Lie: "Memory addresses are 64 bits"...
 - Current x86-64 CPUs use 48-bit memory address buses, which is enough to address 256 TB of RAM
 - Future CPUs may widen this without a change to the ISA

Activity: part 4

Preview: Address Translation

Today

- **Processes: Concepts**
- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
- VM as a tool for memory protection

VM as a Tool for Memory Management

- Key idea: each process has its own virtual address space
 - It can view memory as a simple linear array
 - Mapping function scatters addresses through physical memory
 - Well-chosen mappings can improve locality

VM as a Tool for Memory Management

- Simplifying memory allocation
 - Each virtual page can be mapped to any physical page
 - A virtual page can be stored in different physical pages at different times
- Sharing code and data among processes
 - Map virtual pages to the same physical page (here: PP 6)

35

Simplifying Linking and Loading

Linking

- Each program has similar virtual address space
- Code, data, and heap always start at the same addresses.

Loading

- Allocate virtual pages for .text and .data sections & creates PTEs marked as invalid
- The .text and .data sections are copied, page by page, on demand by the virtual memory system

Activity: parts 5 and 6 and quiz

 0×400000

Today

- **Processes: Concepts**
- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
- VM as a tool for memory protection

VM as a Tool for Memory Protection

- Extend PTEs with permission bits
- MMU checks these bits on each access

Summary

- Programmer's view of virtual memory
 - Each process has its own private linear address space
 - Cannot be corrupted by other processes
- System view of virtual memory
 - Uses memory efficiently by caching virtual memory pages
 - **■** Efficient only because of locality
 - Simplifies memory management and programming
 - Simplifies protection by providing a convenient interpositioning point to check permissions

Virtual Address Space of a Linux Process

Linux Organizes VM as Collection of "Areas"

Linux Page Fault Handling

Segmentation fault: accessing a non-existing page

Normal page fault

Protection exception:

e.g., violating permission by writing to a read-only page (Linux reports as Segmentation fault)