
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow:
Signals and Nonlocal Jumps

15-213: Introduction to Computer Systems
“15th” Lecture, July 16, 2019

Instructor:

Sol Boucher

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review from last lecture

 Exceptions
 Events that require nonstandard control flow

 Generated externally (interrupts) or internally (traps and faults)

 Processes
 At any given time, system has multiple active processes

 Only one can execute at a time on any single core

 Each process appears to have total control of
processor + private memory space

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Exceptions Are Not Errors!

⬛On error, system library functions typically return -1 and set
global variable errno to indicate cause.

⬛Hard and fast rule:
▪ You must check the return status of every such function

▪ Exception: printf() family, a few calls listed in the tshlab writeup

⬛Example:

 if ((pid = fork()) < 0) {
 fprintf(stderr, "fork error: %s\n", strerror(errno));
 exit(1);
 }

 // Equivalent shorthand for the above!
 if ((pid = fork()) < 0) {
 perror("fork error");
 exit(1);
 }

Avoid exiting on failure in your shell!

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Process Control, Graphs

 Spawning processes
 Call fork
 One call, two returns

 Process completion
 Call exit
 One call, no return

 Reaping and waiting for processes
 Call wait or waitpid

 Loading and running programs
 Call execve (or variant)

 One call, (normally) no return

Activity: part 1 (all!)

printf wait printffork

printf

exit

HelloP

HelloC

ChildT

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Process Lifecycle

From a programmer’s perspective, we can think of a process
as being in one of three states

⬛Running
▪ Process is either executing, or waiting to be executed and will

eventually be scheduled (i.e., chosen to execute) by the kernel

⬛Stopped
▪ Process execution is suspended and will not be scheduled until

further notice (this lecture!)

⬛Terminated
▪ Process is stopped permanently

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ECF Exists at All Levels of a System
 Exceptions

 Hardware and operating system kernel software

 Process Context Switch
 Hardware timer and kernel software

 Signals
 Kernel software and application software

 Nonlocal jumps
 Application code

Previous Lecture

This Lecture

Textbook and
supplemental slides

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 (partial) Taxonomy

Asynchronous
Synchronous

Interrupts TrapsFaultsAborts

ECF

Signals

Handled in user process

Handled in kernel

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Shells
 Signals
 Signal handling

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linux Process Hierarchy

Login shell

ChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

Login shell

Child

…
……

Note: you can view the
hierarchy using the Linux
pstree command

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shell Programs
 A shell is an application program that runs programs on behalf

of the user.
 sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)

 csh/tcsh BSD Unix C shell

 bash “Bourne-Again” Shell (default GNU/Linux shell)

 Simple shell
 Described in the textbook, starting at p. 753

 Implementation of a very elementary shell

 Purpose
 Understand what happens when you type commands
 Understand use and operation of process control operations

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell Example
linux> ./shellex
> /bin/ls -l csapp.c
-rw-r--r-- 1 bryant users 23053 Jun 15 2015 csapp.c
> /bin/ps
 PID TTY TIME CMD
31542 pts/2 00:00:01 tcsh
32017 pts/2 00:00:00 shellex
32019 pts/2 00:00:00 ps
> /bin/sleep 10 &
32031 /bin/sleep 10 &
> /bin/ps
 PID TTY TIME CMD
31542 pts/2 00:00:01 tcsh
32024 pts/2 00:00:00 emacs
32030 pts/2 00:00:00 shellex
32031 pts/2 00:00:00 sleep
32033 pts/2 00:00:00 ps
> quit

Must give full pathnames for programs

Run program in background

Sleep is running in background

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell Implementation
 Basic loop

 Read line from command line

 Execute the requested operation
 Built-in command (only one implemented is quit)
 Load and execute program from file

int main(int argc, char** argv)
{
 char cmdline[MAXLINE]; /* command line */

 while (1) {
 /* read */
 printf("> ");
 Fgets(cmdline, MAXLINE, stdin);
 if (feof(stdin))
 exit(0);

 /* evaluate */
 eval(cmdline);
 }
 ...

Execution is a
sequence of
read/evaluate
steps

shellex.c

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* Argument list execve() */
 char buf[MAXLINE]; /* Holds modified command line */
 int bg; /* Should the job run in bg or fg? */
 pid_t pid; /* Process id */

 strcpy(buf, cmdline);
 bg = parseline(buf, argv);
 if (argv[0] == NULL)
 return; /* Ignore empty lines */

 if (!builtin_command(argv)) {
 if ((pid = Fork()) == 0) { /* Child runs user job */
 if (execve(argv[0], argv, environ) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }
 }

 /* Parent waits for foreground job to terminate */
if (!bg) {

 int status;
 if (waitpid(pid, &status, 0) < 0)
 unix_error("waitfg: waitpid error");
 }
 else
 printf("%d %s", pid, cmdline);
 }
 return;
} shellex.cshellex.c

parseline will parse ‘buf’ into
‘argv’ and return whether or not
input line ended in ‘&’

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* Argument list execve() */
 char buf[MAXLINE]; /* Holds modified command line */
 int bg; /* Should the job run in bg or fg? */
 pid_t pid; /* Process id */

 strcpy(buf, cmdline);
 bg = parseline(buf, argv);
 if (argv[0] == NULL)
 return; /* Ignore empty lines */

 if (!builtin_command(argv)) {
 if ((pid = Fork()) == 0) { /* Child runs user job */
 if (execve(argv[0], argv, environ) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }
 }

 /* Parent waits for foreground job to terminate */
if (!bg) {

 int status;
 if (waitpid(pid, &status, 0) < 0)
 unix_error("waitfg: waitpid error");
 }
 else
 printf("%d %s", pid, cmdline);
 }
 return;
} shellex.cshellex.c

Ignore empty lines.

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* Argument list execve() */
 char buf[MAXLINE]; /* Holds modified command line */
 int bg; /* Should the job run in bg or fg? */
 pid_t pid; /* Process id */

 strcpy(buf, cmdline);
 bg = parseline(buf, argv);
 if (argv[0] == NULL)
 return; /* Ignore empty lines */

 if (!builtin_command(argv)) {
 if ((pid = Fork()) == 0) { /* Child runs user job */
 if (execve(argv[0], argv, environ) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }
 }

 /* Parent waits for foreground job to terminate */
if (!bg) {

 int status;
 if (waitpid(pid, &status, 0) < 0)
 unix_error("waitfg: waitpid error");
 }
 else
 printf("%d %s", pid, cmdline);
 }
 return;
} shellex.cshellex.c

If it is a ‘built in’ command, then
handle it here in this program.
Otherwise fork/exec the program
specified in argv[0]

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* Argument list execve() */
 char buf[MAXLINE]; /* Holds modified command line */
 int bg; /* Should the job run in bg or fg? */
 pid_t pid; /* Process id */

 strcpy(buf, cmdline);
 bg = parseline(buf, argv);
 if (argv[0] == NULL)
 return; /* Ignore empty lines */

 if (!builtin_command(argv)) {
 if ((pid = Fork()) == 0) { /* Child runs user job */
 if (execve(argv[0], argv, environ) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }
 }

 /* Parent waits for foreground job to terminate */
if (!bg) {

 int status;
 if (waitpid(pid, &status, 0) < 0)
 unix_error("waitfg: waitpid error");
 }
 else
 printf("%d %s", pid, cmdline);
 }
 return;
} shellex.cshellex.c

Create child

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* Argument list execve() */
 char buf[MAXLINE]; /* Holds modified command line */
 int bg; /* Should the job run in bg or fg? */
 pid_t pid; /* Process id */

 strcpy(buf, cmdline);
 bg = parseline(buf, argv);
 if (argv[0] == NULL)
 return; /* Ignore empty lines */

 if (!builtin_command(argv)) {
 if ((pid = Fork()) == 0) { /* Child runs user job */
 if (execve(argv[0], argv, environ) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }
 }

 /* Parent waits for foreground job to terminate */
if (!bg) {

 int status;
 if (waitpid(pid, &status, 0) < 0)
 unix_error("waitfg: waitpid error");
 }
 else
 printf("%d %s", pid, cmdline);
 }
 return;
} shellex.cshellex.c

Start argv[0].
Remember execve only returns on
error.

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* Argument list execve() */
 char buf[MAXLINE]; /* Holds modified command line */
 int bg; /* Should the job run in bg or fg? */
 pid_t pid; /* Process id */

 strcpy(buf, cmdline);
 bg = parseline(buf, argv);
 if (argv[0] == NULL)
 return; /* Ignore empty lines */

 if (!builtin_command(argv)) {
 if ((pid = Fork()) == 0) { /* Child runs user job */
 if (execve(argv[0], argv, environ) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }
 }

 /* Parent waits for job to terminate */
 int status;
 if (waitpid(pid, &status, 0) < 0)
 unix_error("waitfg: waitpid error");
 if (!bg) {
 }
 else
 printf("%d %s", pid, cmdline);
 }
 return;
} shellex.cshellex.c

Wait until it is done.

Activity: part 2 (all!)

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* Argument list execve() */
 char buf[MAXLINE]; /* Holds modified command line */
 int bg; /* Should the job run in bg or fg? */
 pid_t pid; /* Process id */

 strcpy(buf, cmdline);
 bg = parseline(buf, argv);
 if (argv[0] == NULL)
 return; /* Ignore empty lines */

 if (!builtin_command(argv)) {
 if ((pid = Fork()) == 0) { /* Child runs user job */
 if (execve(argv[0], argv, environ) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }
 }

 /* Parent waits for foreground job to terminate */
 if (!bg) {
 int status;
 if (waitpid(pid, &status, 0) < 0)
 unix_error("waitfg: waitpid error");
 }
 else
 printf("%d %s", pid, cmdline);
 }
 return;
} shellex.cshellex.c

If running child in
foreground, wait until
it is done.

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* Argument list execve() */
 char buf[MAXLINE]; /* Holds modified command line */
 int bg; /* Should the job run in bg or fg? */
 pid_t pid; /* Process id */

 strcpy(buf, cmdline);
 bg = parseline(buf, argv);
 if (argv[0] == NULL)
 return; /* Ignore empty lines */

 if (!builtin_command(argv)) {
 if ((pid = Fork()) == 0) { /* Child runs user job */
 if (execve(argv[0], argv, environ) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }
 }

 /* Parent waits for foreground job to terminate */
 if (!bg) {
 int status;
 if (waitpid(pid, &status, 0) < 0)
 unix_error("waitfg: waitpid error");
 }
 else
 printf("%d %s", pid, cmdline);
 }
 return;
} shellex.cshellex.c

If running child in
background, print pid
and continue doing
other stuff.

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* Argument list execve() */
 char buf[MAXLINE]; /* Holds modified command line */
 int bg; /* Should the job run in bg or fg? */
 pid_t pid; /* Process id */

 strcpy(buf, cmdline);
 bg = parseline(buf, argv);
 if (argv[0] == NULL)
 return; /* Ignore empty lines */

 if (!builtin_command(argv)) {
 if ((pid = Fork()) == 0) { /* Child runs user job */
 if (execve(argv[0], argv, environ) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }
 }

 /* Parent waits for foreground job to terminate */
 if (!bg) {
 int status;
 if (waitpid(pid, &status, 0) < 0)
 unix_error("waitfg: waitpid error");
 }
 else
 printf("%d %s", pid, cmdline);
 }
 return;
} shellex.cshellex.c

There is a
problem with
this code.

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Problem with Simple Shell Example
 Our example shell correctly waits for and reaps foreground jobs

 But what about background jobs?
 Will become zombies when they terminate

 Will never be reaped because shell (typically) will not terminate

 Will create a memory leak that could run the kernel out of memory

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ECF to the Rescue!

 Solution: Exceptional control flow
 The kernel will interrupt regular processing to alert us when a background

process completes

 In Unix, the alert mechanism is called a signal

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Shells
 Signals
 Signal handling

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals
 A signal is a small message that notifies a process that an

event of some type has occurred in the system
 Akin to exceptions and interrupts

 Sent from the kernel (sometimes at the request of another process) to a
process

 Signal type is identified by small integer ID’s (1-30)

 Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event

2 SIGINT Terminate User typed ctrl-c

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

 Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination process

 Kernel sends a signal for one of the following reasons:
 Kernel has detected a system event such as divide-by-zero (SIGFPE) or the

termination of a child process (SIGCHLD)

 Another process has invoked the kill system call to explicitly request
the kernel to send a signal to the destination process

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending and Blocked Signals

 A signal is pending if sent but not yet received
 There can be at most one pending signal of any particular type

 Important: Signals are not queued
 If a process has a pending signal of type k, then subsequent signals of

type k that are sent to that process are discarded

 A process can block the receipt of certain signals
 Blocked signals can be delivered, but will not be received until the signal

is unblocked

 A pending signal is received at most once

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Receiving a Signal
 A destination process receives a signal when it is forced by

the kernel to react in some way to the delivery of the signal

 Some possible ways to react:
 Ignore the signal (do nothing)

 Terminate the process (with optional core dump)

 Catch the signal by executing a user-level function called signal handler
 Akin to a hardware exception handler being called in response to an

asynchronous interrupt:

(2) Control passes
to signal handler

(3) Signal
handler runs

(4) Signal handler
returns to
next instruction

IcurrInext

(1) Signal received
by process

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending/Blocked Bits

 Kernel maintains pending and blocked bit vectors in the
context of each process
 pending: represents the set of pending signals

 Kernel sets bit k in pending when a signal of type k is delivered
 Kernel clears bit k in pending when a signal of type k is received

 blocked: represents the set of blocked signals
 Can be set and cleared by using the sigprocmask function
 Also referred to as the signal mask.

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Sends to C

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1

Received by C

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C0

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with /bin/kill Program
 /bin/kill program

sends arbitrary signal to a
process or process group

 Examples
 /bin/kill –9 24818

Send SIGKILL to process 24818

 /bin/kill –9 –24817
Send SIGKILL to every process
in process group 24817

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with kill Function
void fork12(void)
{
 pid_t pid[N];
 int i;
 int child_status;

 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0) {
 /* Child: Infinite Loop */
 while(1)
 ;
 }

 for (i = 0; i < N; i++) {
 printf("Killing process %d\n", pid[i]);
 kill(pid[i], SIGINT);
 }

 for (i = 0; i < N; i++) {
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminated abnormally\n", wpid);
 }
} forks.c

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals: Process Groups
 Every process belongs to exactly one process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrp()
Return process group of current process

setpgid()
Change process group of a process (see
text for details)

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals from the Keyboard
 Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every

job in the foreground process group.
 SIGINT – default action is to terminate each process
 SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Shells
 Signals
 Signal handling

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Receiving Signals
 Suppose kernel is returning from an exception handler

and is ready to pass control to process p

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Receiving Signals
 Suppose kernel is returning from an exception handler

and is ready to pass control to process p

 Kernel computes pnb = pending & ~blocked
 The set of pending nonblocked signals for process p

 If (pnb == 0)
 Pass control to next instruction in the logical flow for p

 Else
 Choose least nonzero bit k in pnb and force process p to receive

signal k

 The receipt of the signal triggers some action by p

 Repeat for all nonzero k in pnb
 Pass control to next instruction in logical flow for p

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Default Actions

 Each signal type has a predefined default action, which is
one of:
 The process terminates

 The process stops until restarted by a SIGCONT signal

 The process ignores the signal

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Installing Signal Handlers
 The signal function modifies the default action associated

with the receipt of signal signum:
 handler_t *signal(int signum, handler_t *handler)

 Different values for handler:
 SIG_IGN: ignore signals of type signum
 SIG_DFL: revert to the default action on receipt of signals of type signum
 Otherwise, handler is the address of a user-level signal handler

 Called when process receives signal of type signum
 Referred to as “installing” the handler
 Executing handler is called “catching” or “handling” the signal
 When the handler executes its return statement, control passes back to

instruction in the control flow of the process that was interrupted by
receipt of the signal

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Handling Example
void sigint_handler(int sig) /* SIGINT handler */
{
 printf("So you think you can stop the bomb with ctrl-c, do you?\n");
 sleep(2);
 printf("Well...");
 fflush(stdout);
 sleep(1);
 printf("OK. :-)\n");
 exit(0);
}

int main(int argc, char** argv)
{
 /* Install the SIGINT handler */
 if (signal(SIGINT, sigint_handler) == SIG_ERR)
 unix_error("signal error");

 /* Wait for the receipt of a signal */
 pause();

 return 0;
} sigint.c

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals Handlers as Concurrent Flows

 A signal handler is a separate logical flow (not process) that
runs concurrently with the main program

Process A

while (1)
 ;

Process A

handler(){
 …
}

Process B

Time

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another View of Signal Handlers as
Concurrent Flows

Signal delivered
to process A

Signal received
by process A

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nested Signal Handlers

 Handlers can be interrupted by other handlers

(2) Control passes
to handler S

 Main program

(5) Handler T
returns to
handler S

Icurr

Inext

(1) Program
catches signal s

 Handler S Handler T

(3) Program
catches signal t

(4) Control passes
to handler T

(6) Handler S
returns to
main
program

(7) Main program
resumes

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safe Signal Handling

 Handlers are tricky because they are concurrent with
main program and share the same global data structures.
 Shared data structures can become corrupted.

 We’ll explore concurrency issues later in the term.

 For now here are some guidelines to help you avoid
trouble.

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Async-Signal-Safety

 Function is async-signal-safe if either reentrant (e.g., all
variables stored on stack frame, CS:APP3e 12.7.2) or non-
interruptible by signals.

 Posix guarantees 117 functions to be async-signal-safe
 Source: “man 7 signal”

 Popular functions on the list:
 _exit, write, wait, waitpid, sleep, kill

 Popular functions that are not on the list:
 printf, sprintf, malloc, exit
 Unfortunate fact: write is the only async-signal-safe output function

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safely Generating Formatted Output
 Use the reentrant SIO (Safe I/O library) from csapp.c in

your handlers.
 ssize_t sio_puts(char s[]) /* Put string */
 ssize_t sio_putl(long v) /* Put long */
 void sio_error(char s[]) /* Put msg & exit */

void sigint_handler(int sig) /* Safe SIGINT handler */
{
 sio_puts("So you think you can stop the bomb with ctrl-
c, do you?\n");
 sleep(2);
 sio_puts("Well...");
 sleep(1);
 sio_puts("OK. :-)\n");
 _exit(0);
} sigintsafe.c

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Pending signals are
not queued
 For each signal type, one

bit indicates whether or
not signal is pending…

 …thus at most one
pending signal of any
particular type.

 You can’t use signals
to count events, such as
children terminating.

volatile int ccount = 0;
void child_handler(int sig) {
 int olderrno = errno;
 pid_t pid;
 if ((pid = wait(NULL)) < 0)
 Sio_error("wait error");
 ccount--;
 sio_puts("Handler reaped child ");
 sio_putl((long)pid);
 sio_puts(" \n");
 sleep(1);
 errno = olderrno;
}

void fork14() {
 pid_t pid[N];
 int i;
 ccount = N;
 Signal(SIGCHLD, child_handler);

 for (i = 0; i < N; i++) {
 if ((pid[i] = Fork()) == 0) {
 sleep(1);
 exit(0); /* Child exits */
 }
 }
 while (ccount > 0) /* Parent spins */
 ;
} forks.c

whaleshark> ./forks 14
Handler reaped child 23240
Handler reaped child 23241
. . .(hangs)

(in)Correct Signal Handling

N == 5

This code is incorrect!

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Correct Signal Handling

 Must wait for all terminated child processes
 Put wait in a loop to reap all terminated children

void child_handler2(int sig)
{
 int olderrno = errno;
 pid_t pid;
 while ((pid = wait(NULL)) > 0) {
 ccount--;
 sio_puts("Handler reaped child ");
 sio_putl((long)pid);
 sio_puts(" \n");
 }
 if (errno != ECHILD)
 sio_error("wait error");
 errno = olderrno;
}

whaleshark> ./forks 15
Handler reaped child 23246
Handler reaped child 23247
Handler reaped child 23248
Handler reaped child 23249
Handler reaped child 23250
whaleshark>

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking and Unblocking Signals

 Implicit blocking mechanism
 Kernel blocks any pending signals of type currently being handled.

 E.g., A SIGINT handler can’t be interrupted by another SIGINT

 Explicit blocking and unblocking mechanism
 sigprocmask function

 Supporting functions
 sigemptyset – Create empty set

 sigfillset – Add every signal number to set

 sigaddset – Add signal number to set

 sigdelset – Delete signal number from set

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Temporarily Blocking Signals

 sigset_t mask, prev_mask;

 sigemptyset(&mask);
 sigaddset(&mask, SIGINT);

 /* Block SIGINT and save previous blocked set */
 sigprocmask(SIG_BLOCK, &mask, &prev_mask);

 /* Code region that will not be interrupted by SIGINT */

 /* Restore previous blocked set, unblocking SIGINT */
 sigprocmask(SIG_SETMASK, &prev_mask, NULL);

…

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Flows to Avoid Races

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, prev_all;
 int n = N; /* N = 5 */
 sigfillset(&mask_all);
 signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (n--) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 sigprocmask(SIG_BLOCK, &mask_all, &prev_all); /* Parent */
 addjob(pid); /* Add the child to the job list */
 sigprocmask(SIG_SETMASK, &prev_all, NULL);
 }
 exit(0);
}

 Simple shell with a subtle synchronization error because it
assumes parent runs before child.

procmask1.c

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Flows to Avoid Races

void handler(int sig)
{
 int olderrno = errno;
 sigset_t mask_all, prev_all;
 pid_t pid;

 sigfillset(&mask_all);
 while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */
 sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
 deletejob(pid); /* Delete the child from the job list */
 sigprocmask(SIG_SETMASK, &prev_all, NULL);
 }
 if (errno != ECHILD)
 sio_error("waitpid error");
 errno = olderrno;
}

 SIGCHLD handler for a simple shell
 Blocks all signals while running critical code

procmask1.c

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Corrected Shell Program without Race

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, mask_one, prev_one;
 int n = N; /* N = 5 */
 sigfillset(&mask_all);
 sigemptyset(&mask_one);
 sigaddset(&mask_one, SIGCHLD);
 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (n--) {
 sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */
 if ((pid = Fork()) == 0) { /* Child process */
 sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
 Execve("/bin/date", argv, NULL);
 }
 sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */

 addjob(pid); /* Add the child to the job list */
 sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
 }
 exit(0);
} procmask2.c

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals

volatile sig_atomic_t pid;

void sigchld_handler(int s)
{
 int olderrno = errno;
 pid = waitpid(-1, NULL, 0); /* Main is waiting for nonzero pid */
 errno = olderrno;
}

void sigint_handler(int s)
{
}

 Handlers for program explicitly waiting for SIGCHLD to arrive.

waitforsignal.c

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals
int main(int argc, char **argv) {
 sigset_t mask, prev;
 int n = N; /* N = 10 */
 signal(SIGCHLD, sigchld_handler);
 signal(SIGINT, sigint_handler);
 sigemptyset(&mask);
 sigaddset(&mask, SIGCHLD);

 while (n--) {
sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */

 exit(0);
/* Parent */
pid = 0;
sigprocmask(SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

/* Wait for SIGCHLD to be received (wasteful!) */
while (!pid)

 ;
/* Do some work after receiving SIGCHLD */

 printf(".");
 }
 printf("\n");
 exit(0);
} waitforsignal.c

Similar to a shell waiting
for a foreground job to
terminate.

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals

while (!pid) /* Race! */
 pause();

 Program is correct, but very wasteful
 Other options:

 Solution: sigsuspend

while (!pid) /* Too slow! */
 sleep(1);

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waiting for Signals with sigsuspend

sigprocmask(SIG_SETMASK, &mask, &prev);
pause();
sigprocmask(SIG_SETMASK, &prev, NULL);

 int sigsuspend(const sigset_t *mask)

 Equivalent to atomic (uninterruptable) version of:

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waiting for Signals with sigsuspend
int main(int argc, char **argv) {
 sigset_t mask, prev;
 int n = N; /* N = 10 */
 Signal(SIGCHLD, sigchld_handler);
 Signal(SIGINT, sigint_handler);
 Sigemptyset(&mask);
 Sigaddset(&mask, SIGCHLD);
 while (n--) {
 Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
 if (Fork() == 0) /* Child */
 exit(0);

 /* Wait for SIGCHLD to be received */
 pid = 0;
 while (!pid)
 Sigsuspend(&prev);
 /* Optionally unblock SIGCHLD */
 Sigprocmask(SIG_SETMASK, &prev, NULL);

/* Do some work after receiving SIGCHLD */
 printf(".");
 }
 printf("\n");
 exit(0);
} sigsuspend.c

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Guidelines for Writing Safe Handlers

 G0: Keep your handlers as simple as possible
 e.g., Set a global flag and return

 G1: Call only async-signal-safe functions in your handlers
 printf, sprintf, malloc, and exit are not safe!

 G2: Save and restore errno on entry and exit
 So that other handlers don’t overwrite your value of errno

 G3: Protect accesses to shared data structures by temporarily
blocking all signals.
 To prevent possible corruption

 G4: Declare global variables as volatile
 To prevent compiler from storing them in a register

 G5: Declare global flags as volatile sig_atomic_t
 flag: variable that is only read or written (e.g. flag = 1, not flag++)

 Flag declared this way does not need to be protected like other globals

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Portable Signal Handling
 Ugh! Different versions of Unix can have different signal

handling semantics
 Some older systems restore action to default after catching signal

 Some interrupted system calls can return with errno == EINTR

 Some systems don’t block signals of the type being handled

 Solution: sigaction (or this course’s Signal wrapper)

handler_t *Signal(int signum, handler_t *handler)
{
 struct sigaction action, old_action;

 action.sa_handler = handler;
 sigemptyset(&action.sa_mask); /* Block sigs of type being handled */
 action.sa_flags = SA_RESTART; /* Restart syscalls if possible */

 if (sigaction(signum, &action, &old_action) < 0)
 unix_error("Signal error");
 return (old_action.sa_handler);
} csapp.c

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Shells
 Signals
 Signal handling
 Nonlocal jumps

 Consult your textbook and additional slides

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
 Signals provide process-level exception handling

 Can generate from user programs

 Can define effect by declaring signal handler

 Be very careful when writing signal handlers

 Nonlocal jumps provide exceptional control flow within
process
 Within constraints of stack discipline

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Additional slides

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of ctrl-c and ctrl-z
bluefish> ./forks 17
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107
<types ctrl-z>
Suspended
bluefish> ps w
 PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17
28108 pts/8 T 0:01 ./forks 17
28109 pts/8 R+ 0:00 ps w
bluefish> fg
./forks 17
<types ctrl-c>
bluefish> ps w
 PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nonlocal Jumps: setjmp/longjmp
 Powerful (but dangerous) user-level mechanism for

transferring control to an arbitrary location
 Controlled to way to break the procedure call / return discipline
 Useful for error recovery and signal handling

 int setjmp(jmp_buf j)
 Must be called before longjmp
 Identifies a return site for a subsequent longjmp
 Called once, returns one or more times

 Implementation:
 Remember where you are by storing the current register context,

stack pointer, and PC value in jmp_buf
 Return 0

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

setjmp/longjmp (cont)

 void longjmp(jmp_buf j, int i)
 Meaning:

 return from the setjmp remembered by jump buffer j again ...
 … this time returning i instead of 0

 Called after setjmp
 Called once, but never returns

 longjmp Implementation:
 Restore register context (stack pointer, base pointer, PC value) from jump

buffer j
 Set %eax (the return value) to i
 Jump to the location indicated by the PC stored in jump buf j

Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

setjmp/longjmp Example

 Goal: return directly to original caller from a deeply-
nested function

/* Deeply nested function foo */
void foo(void)
{
 if (error1)

longjmp(buf, 1);
 bar();
}

void bar(void)
{
 if (error2)
 longjmp(buf, 2);
}

Carnegie Mellon

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

jmp_buf buf;

int error1 = 0;
int error2 = 1;

void foo(void), bar(void);

int main()
{
 switch(setjmp(buf)) {
 case 0:
 foo();
 break;
 case 1:
 printf("Detected an error1 condition in foo\n");
 break;
 case 2:
 printf("Detected an error2 condition in foo\n");
 break;
 default:
 printf("Unknown error condition in foo\n");
 }
 exit(0);
}

setjmp/longjmp
Example (cont)

Carnegie Mellon

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of Nonlocal Jumps
 Works within stack discipline

 Can only long jump to environment of function that has been called
but not yet completed

jmp_buf env;

P1()
{
 if (setjmp(env)) {
 /* Long Jump to here */
 } else {
 P2();
 }
}

P2()
{ . . . P2(); . . . P3(); }

P3()
{
 longjmp(env, 1);
}

P1

P2

P2

P2

P3

env
P1

Before longjmp After longjmp

Carnegie Mellon

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of Long Jumps (cont.)
 Works within stack discipline

 Can only long jump to environment of function that has been called
but not yet completed

jmp_buf env;

P1()
{
 P2(); P3();
}

P2()
{
 if (setjmp(env)) {
 /* Long Jump to here */
 }
}

P3()
{
 longjmp(env, 1);
}

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env
X

Carnegie Mellon

75Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d
#include "csapp.h"

sigjmp_buf buf;

void handler(int sig)
{
 siglongjmp(buf, 1);
}

int main()
{
 if (!sigsetjmp(buf, 1)) {
 Signal(SIGINT, handler);

Sio_puts("starting\n");
 }
 else
 Sio_puts("restarting\n");

 while(1) {
Sleep(1);
Sio_puts("processing...\n");

 }
 exit(0); /* Control never reaches here */
} restart.c

greatwhite> ./restart
starting
processing...
processing...
processing...
restarting
processing...
processing...
restarting
processing...
processing...
processing...

Ctrl-c

Ctrl-c

	Slide 1
	Review from last lecture
	System Call Error Handling
	Review (cont.)
	Creating and Terminating Processes
	ECF Exists at All Levels of a System
	(partial) Taxonomy
	Today
	Linux Process Hierarchy
	Shell Programs
	Simple Shell Example
	Simple Shell Implementation
	Simple Shell eval Function
	Simple Shell eval Function
	Simple Shell eval Function
	Simple Shell eval Function
	Simple Shell eval Function
	Simple Shell eval Function
	Slide 19
	Simple Shell eval Function
	Simple Shell eval Function
	Problem with Simple Shell Example
	ECF to the Rescue!
	Today
	Signals
	Signal Concepts: Sending a Signal
	Signal Concepts: Pending and Blocked Signals
	Signal Concepts: Receiving a Signal
	Signal Concepts: Pending/Blocked Bits
	Signal Concepts: Sending a Signal
	Signal Concepts: Sending a Signal
	Signal Concepts: Sending a Signal
	Signal Concepts: Sending a Signal
	Signal Concepts: Sending a Signal
	Sending Signals with /bin/kill Program
	Sending Signals with kill Function
	Sending Signals: Process Groups
	Sending Signals from the Keyboard
	Slide 39
	Receiving Signals
	Receiving Signals
	Default Actions
	Installing Signal Handlers
	Signal Handling Example
	Signals Handlers as Concurrent Flows
	Another View of Signal Handlers as Concurrent Flows
	Nested Signal Handlers
	Safe Signal Handling
	Async-Signal-Safety
	Safely Generating Formatted Output
	(in)Correct Signal Handling
	Correct Signal Handling
	Blocking and Unblocking Signals
	Temporarily Blocking Signals
	Synchronizing Flows to Avoid Races
	Synchronizing Flows to Avoid Races
	Corrected Shell Program without Race
	Explicitly Waiting for Signals
	Explicitly Waiting for Signals
	Explicitly Waiting for Signals
	Waiting for Signals with sigsuspend
	Waiting for Signals with sigsuspend
	Guidelines for Writing Safe Handlers
	Portable Signal Handling
	Today
	Summary
	Additional slides
	Example of ctrl-c and ctrl-z
	Nonlocal Jumps: setjmp/longjmp
	setjmp/longjmp (cont)
	setjmp/longjmp Example
	setjmp/longjmp Example (cont)
	Limitations of Nonlocal Jumps
	Limitations of Long Jumps (cont.)
	Slide 75

