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Agenda

■ Buffer Overflow Attacks

■ Attack Lab Activities
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Attack Lab

■ We’re letting you hijack programs by running 

buffer overflow attacks on them…

■ To understand stack discipline and stack frames

■ To defeat relatively secure programs with return 

oriented programming
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Stack Smashing Attack

■ Callq pushes the return address onto the stack

■ Retq pops this return address and jumps to it

Next return 

address$rsp
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Buffer Overflows

■ Local string variables are stored on the stack

■ C functions do not do size checking of strings

Next return 

address

Space 

allocated for 

string
$rsp
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Buffer Overflows

■ You can write a string that overwrites 

the return address

■ Activity 1 steps through an example 

of overwriting the return address on 

the stack

Extra long 

string input

$rsp

Next return 

address

Space 

allocated for 

string
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Executing Commands on the Stack

■ What if instead of jumping to a predefined 

function, we jumped to code on the stack?

■ Activity 2 steps through an example of 

executing code on the stack

Return address 

points to 

assembly 

above 

Assembly 

instructions on 

the stack

$rsp
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OS Countermeasures

■ Executable code is not allowed on the stack (unless 

we specifically allow it – e.g. through mprotect like we 

do for activity 2)

■ Thus, we have to use executable code already in the 

program to do what we want

■ But code often doesn’t already contain our exploit 

function – so what can we do instead?
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Return-Oriented Programming

■ Goal: execute a small section of code, return, call 

another small section of code. Repeat until you 

execute your exploit

■ Activity 3 steps you through an example of a return 

oriented programming exploit 
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Attack Lab Activities

■ Three activities
■ Each relies on a specially crafted assembly sequence to purposefully 

overwrite the stack

■ Activity 1 – Overwrites the return addresses (Buffer 

Overflow)

■ Activity 2 – Writes assembly instructions onto the stack

■ Activity 3 – Uses byte sequences in libc as the 

instructions (Return-Oriented Programming)
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Attack Lab Activities

■ Work in pairs: one student needs a laptop

■ Login to a shark machine

$ wget http://www.cs.cmu.edu/~213/activities/lec11a.tar

$ tar xf lec11a.tar

$ cd lec11a

$ make

$ gdb act1

http://www.cs.cmu.edu/~213/activities/rec4.tar
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Activity 1

(gdb) break clobber

(gdb) run

(gdb) x $rsp

(gdb) backtrace

Q. Does the value at the top of the stack match any frame?

A. 0x400553 is the address to return to in main
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Activity 1 Continued

(gdb) x /2gx $rdi // Here are the two key values

(gdb) stepi // Keep doing this until

(gdb)

clobber () at support.s:16

16              ret

(gdb) x $rsp

Q. Has the return address changed?

A. 0x400500 was the first number pointed to by $rdi

(gdb) finish // Should exit and print out “Hi!”
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Activity 1 Post

■ Clobber overwrites part of the stack with memory at 

$rdi, including the all-important return address

■ In act1, it writes two new return addresses:
■ 0x400500: address of printHi()

■ 0x400560: address in main

0x7fffffffe338

0x000000400553

0x000000400560

0x000000400500

0x000000400560

Call clobber()

Clobber executes

ret

In printHi()

ret

In main()
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Activity 2
$ gdb act2

(gdb) break clobber

(gdb) run

(gdb) x $rsp

Q. What is the address of the stack and the return address?

A. 0x7fffffffe018 -> 0x40058a

(gdb) x /4gx $rdi

Q. What will the new return address be?

A. 0x7fffffffe020 (First address stored using $rdi)
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Activitity 2 Continued

(gdb) x /5i $rdi + 8 // Display as instructions

Q. Why $rdi + 8?

A. Want to ignore the 8-byte return address

Q. What are the three addresses?

A. 0x48644d, 0x4022e0, 0x4011a0

(gdb) break puts

(gdb) break exit

Q. Do these addresses look familiar?

A. puts – 0x4022e0, exit – 0x4011a0
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Activity 2 Post

■ Normally programs cannot execute instructions on the 

stack
■ Main used mprotect to disable the memory protection for this activity

■ Clobber wrote an address that’s on the stack as a 

return address
■ Followed by a sequence of instructions

■ Three addresses show up in the exploit:

▪ 0x48644d  “Hi\n” string

▪ 0x4022e0  puts() function

▪ 0x4011a0  exit() function
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Activity 3

$ gdb act3

(gdb) break clobber

(gdb) run

(gdb) x /5gx $rdi

Q. Which value will be first on the stack? Why is this 

important?

A. 0x457d0c, this is the address to return to from clobber
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Activity 3 Continued

(gdb) x /2i <return address>

Q. What does this sequence do?

A. Pops next stack value into $rdi, then returns

Q. Check the other addresses.  Note that some are return 

addresses and some are for data.  When you continue, 

what will the code now do?

A. Print “Hi\n”
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Activity 3 Post

■ It’s harder to stop programs from running existing 

pieces of code in the executable.

■ Clobber wrote multiple return addresses (aka gadgets) 

that each performed a small task, along with data that 

will get popped off the stack while running the gadgets.

■0x457d0c: pop %rdi; retq

■0x47fa64: Pointer to the string “Hi\n”

■0x429a6a: pop %rax; retq

■0x400500: Address of a printing function

■0x47f001: callq *%rax
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■ Note that some of the return addresses actually 

cut off bytes from existing instructions

Activity 3 Post

0x457d0b    …0c         …0d    

-----------------------------------------

pop %r15 retq

41         5f c3

pop %rdi retq

5f c3
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If you get stuck…

■ Please read the writeup!

■ CS:APP Chapter 3

■ View lecture notes and course FAQ at http://www.cs.cmu.edu/~213

■ Post a private question on Piazza

■ man gdb – gdb's help command

http://www.cs.cmu.edu/~213
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Attack Lab Tools
 gcc –c test.s; objdump –d test.o > test.asm

Compiles the assembly code in test.s and shows the actual bytes for the 

instructions

 ./hex2raw < exploit.txt > converted.txt
Convert hex codes in exploit.txt into raw ASCII strings to pass to targets

See the writeup for more details on how to use this

 (gdb) display /12gx $rsp (gdb) display /2i $rip
Displays 12 elements on the stack and the next 2 instructions to run

GDB is also useful for tracing to see if an exploit is working


