
Carnegie Mellon

15-213 Attack Lab

June 13, 2018

Carnegie Mellon

Agenda

■ Buffer Overflow Attacks

■ Attack Lab Activities

Carnegie Mellon

Attack Lab

■ We’re letting you hijack programs by running

buffer overflow attacks on them…

■ To understand stack discipline and stack frames

■ To defeat relatively secure programs with return

oriented programming

Carnegie Mellon

Stack Smashing Attack

■ Callq pushes the return address onto the stack

■ Retq pops this return address and jumps to it

Next return

address$rsp

Carnegie Mellon

Buffer Overflows

■ Local string variables are stored on the stack

■ C functions do not do size checking of strings

Next return

address

Space

allocated for

string
$rsp

Carnegie Mellon

Buffer Overflows

■ You can write a string that overwrites

the return address

■ Activity 1 steps through an example

of overwriting the return address on

the stack

Extra long

string input

$rsp

Next return

address

Space

allocated for

string

Carnegie Mellon

Executing Commands on the Stack

■ What if instead of jumping to a predefined

function, we jumped to code on the stack?

■ Activity 2 steps through an example of

executing code on the stack

Return address

points to

assembly

above

Assembly

instructions on

the stack

$rsp

Carnegie Mellon

OS Countermeasures

■ Executable code is not allowed on the stack (unless

we specifically allow it – e.g. through mprotect like we

do for activity 2)

■ Thus, we have to use executable code already in the

program to do what we want

■ But code often doesn’t already contain our exploit

function – so what can we do instead?

Carnegie Mellon

Return-Oriented Programming

■ Goal: execute a small section of code, return, call

another small section of code. Repeat until you

execute your exploit

■ Activity 3 steps you through an example of a return

oriented programming exploit

Carnegie Mellon

Attack Lab Activities

■ Three activities
■ Each relies on a specially crafted assembly sequence to purposefully

overwrite the stack

■ Activity 1 – Overwrites the return addresses (Buffer

Overflow)

■ Activity 2 – Writes assembly instructions onto the stack

■ Activity 3 – Uses byte sequences in libc as the

instructions (Return-Oriented Programming)

Carnegie Mellon

Attack Lab Activities

■ Work in pairs: one student needs a laptop

■ Login to a shark machine

$ wget http://www.cs.cmu.edu/~213/activities/lec11a.tar

$ tar xf lec11a.tar

$ cd lec11a

$ make

$ gdb act1

http://www.cs.cmu.edu/~213/activities/rec4.tar

Carnegie Mellon

Activity 1

(gdb) break clobber

(gdb) run

(gdb) x $rsp

(gdb) backtrace

Q. Does the value at the top of the stack match any frame?

A. 0x400553 is the address to return to in main

Carnegie Mellon

Activity 1 Continued

(gdb) x /2gx $rdi // Here are the two key values

(gdb) stepi // Keep doing this until

(gdb)

clobber () at support.s:16

16 ret

(gdb) x $rsp

Q. Has the return address changed?

A. 0x400500 was the first number pointed to by $rdi

(gdb) finish // Should exit and print out “Hi!”

Carnegie Mellon

Activity 1 Post

■ Clobber overwrites part of the stack with memory at

$rdi, including the all-important return address

■ In act1, it writes two new return addresses:
■ 0x400500: address of printHi()

■ 0x400560: address in main

0x7fffffffe338

0x000000400553

0x000000400560

0x000000400500

0x000000400560

Call clobber()

Clobber executes

ret

In printHi()

ret

In main()

Carnegie Mellon

Activity 2
$ gdb act2

(gdb) break clobber

(gdb) run

(gdb) x $rsp

Q. What is the address of the stack and the return address?

A. 0x7fffffffe018 -> 0x40058a

(gdb) x /4gx $rdi

Q. What will the new return address be?

A. 0x7fffffffe020 (First address stored using $rdi)

Carnegie Mellon

Activitity 2 Continued

(gdb) x /5i $rdi + 8 // Display as instructions

Q. Why $rdi + 8?

A. Want to ignore the 8-byte return address

Q. What are the three addresses?

A. 0x48644d, 0x4022e0, 0x4011a0

(gdb) break puts

(gdb) break exit

Q. Do these addresses look familiar?

A. puts – 0x4022e0, exit – 0x4011a0

Carnegie Mellon

Activity 2 Post

■ Normally programs cannot execute instructions on the

stack
■ Main used mprotect to disable the memory protection for this activity

■ Clobber wrote an address that’s on the stack as a

return address
■ Followed by a sequence of instructions

■ Three addresses show up in the exploit:

▪ 0x48644d “Hi\n” string

▪ 0x4022e0 puts() function

▪ 0x4011a0 exit() function

Carnegie Mellon

Activity 3

$ gdb act3

(gdb) break clobber

(gdb) run

(gdb) x /5gx $rdi

Q. Which value will be first on the stack? Why is this

important?

A. 0x457d0c, this is the address to return to from clobber

Carnegie Mellon

Activity 3 Continued

(gdb) x /2i <return address>

Q. What does this sequence do?

A. Pops next stack value into $rdi, then returns

Q. Check the other addresses. Note that some are return

addresses and some are for data. When you continue,

what will the code now do?

A. Print “Hi\n”

Carnegie Mellon

Activity 3 Post

■ It’s harder to stop programs from running existing

pieces of code in the executable.

■ Clobber wrote multiple return addresses (aka gadgets)

that each performed a small task, along with data that

will get popped off the stack while running the gadgets.

■0x457d0c: pop %rdi; retq

■0x47fa64: Pointer to the string “Hi\n”

■0x429a6a: pop %rax; retq

■0x400500: Address of a printing function

■0x47f001: callq *%rax

Carnegie Mellon

■ Note that some of the return addresses actually

cut off bytes from existing instructions

Activity 3 Post

0x457d0b …0c …0d

pop %r15 retq

41 5f c3

pop %rdi retq

5f c3

Carnegie Mellon

If you get stuck…

■ Please read the writeup!

■ CS:APP Chapter 3

■ View lecture notes and course FAQ at http://www.cs.cmu.edu/~213

■ Post a private question on Piazza

■ man gdb – gdb's help command

http://www.cs.cmu.edu/~213

Carnegie Mellon

Attack Lab Tools
 gcc –c test.s; objdump –d test.o > test.asm

Compiles the assembly code in test.s and shows the actual bytes for the

instructions

 ./hex2raw < exploit.txt > converted.txt
Convert hex codes in exploit.txt into raw ASCII strings to pass to targets

See the writeup for more details on how to use this

 (gdb) display /12gx $rsp (gdb) display /2i $rip
Displays 12 elements on the stack and the next 2 instructions to run

GDB is also useful for tracing to see if an exploit is working

