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Announcements

⬛This is the last lecture needed for bomblab!
▪ Friday’s will be more relevant to attacklab.

⬛No lecture tomorrow.
▪ TAs will hold office hours in this room instead.
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Today

⬛Arrays

⬛Structures
▪ Nested arrays and structures

⬛Nested arrays
▪ Multi-dimensional

▪ Multi-level

⬛Endianness

Activity: r integer and 
r array ONLY
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Array Allocation
⬛Basic Principle

T  A[L];

▪ Array of data type T and length L

▪ Contiguously allocated region of L * sizeof(T) bytes in memory

char string[12];

x x + 12

int val[5];

x x + 4 x + 8 x + 12 x + 16 x + 20

double a[3];

x + 24x x + 8 x + 16

char *p[3];

x x + 8 x + 16 x + 24
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Array Access
⬛Basic Principle

T  A[L];

▪ Array of data type T and length L

▪ Identifier A can be used as a pointer to array element 0: Type T*

⬛Reference Type Value
val int * x
*val int 1
val + 4 int  * x + 16
*(val + 4) int 3
val[4] int 3
&val[4] int * x + 16
val + i int * x + 4 * i // &val[i]
val[5] int ???

int val[5]; 1 5 2 1 3

x x + 4 x + 8 x + 12 x + 16 x + 20
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Array Accessing Example

■Register %rdi contains 
starting address of array

■Register %rsi contains 
array index

■Desired digit at 
%rdi + 4*%rsi

■Use memory reference 
(%rdi,%rsi,4)

int getNth
  (int *z, size_t digit)
{
  return z[digit];
}

  # %rdi = z
  # %rsi = digit
movl (%rdi,%rsi,4), %eax  # z[digit]

x86-64

int val[5]; 1 5 2 1 3

16 20 24 28 32 36
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Understanding Pointers & Arrays #1

⬛Cmp: Compiles (Y/N)

⬛Bad: Possible bad pointer reference (Y/N)

⬛Size: Value returned by sizeof

Decl An *An

Cmp Bad Size Cmp Bad Size

int A1[3];

int *A2;
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Understanding Pointers & Arrays #1

⬛Cmp: Compiles (Y/N)

⬛Bad: Possible bad pointer reference (Y/N)

⬛Size: Value returned by sizeof

Decl An *An

Cmp Bad Size Cmp Bad Size

int A1[3]; Y N 12 Y N 4

int *A2; Y N 8 Y Y 4

A1

A2
Allocated  int

Unallocated pointer

Allocated  pointer

Unallocated  int
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Today

Activity: r struct and
r nested ONLY

⬛Arrays
⬛Structures

▪ Nested arrays and structures

⬛Nested arrays
▪ Multi-dimensional

▪ Multi-level

⬛Endianness
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Structure Representation

⬛Structure represented as block of memory
▪ Big enough to hold all of the fields

⬛Fields ordered according to declaration
▪ Even if another ordering could yield a more compact 

representation

⬛Compiler determines overall size + positions of fields
▪ Machine-level program has no understanding of the structures 

in the source code 

a

r

i next

0 16 24 32

struct rec {
    int a[4];
    size_t i;
    struct rec *next;
};
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  # r in %rdi, idx in %rsi  
  leaq  (%rdi,%rsi,4), %rax
  ret

int *get_ap
 (struct rec *r, size_t idx)
{
  return &r->a[idx];
}

Generating Pointer to Structure Member

⬛Generating Pointer to 
Array Element
▪ Offset of each structure 

member determined at 
compile time

▪ Compute as r + 4*idx

r+4*idx

a

r

i next

0 16 24 32

struct rec {
    int a[4];
    size_t i;
    struct rec *next;
};
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.L11:                         # loop:
  movslq  16(%rdi), %rax      #   i = M[r+16]   
  movl    %esi, (%rdi,%rax,4) #   M[r+4*i] = val
  movq    24(%rdi), %rdi      #   r = M[r+24]
  testq   %rdi, %rdi          #   Test r
  jne     .L11                #   if !=0 goto loop

void set_val
  (struct rec *r, int val)
{
  while (r) {
    int i = r->i;
    r->a[i] = val;
    r = r->next;
  }
}

Following Linked List
⬛C Code

Register Value

%rdi r

%rsi val

struct rec {
    int a[4];
    int i;
    struct rec *next;
};

Element i

r

i next

0 16 24 32

a
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Alignment Principles

⬛Aligned Data
▪ Primitive data type requires K bytes

▪ Address must be multiple of K

▪ Required on some machines; advised on x86-64

⬛Motivation for Aligning Data
▪ Memory accessed by (aligned) chunks of 4 or 8 bytes (system 

dependent)

▪ Inefficient to load or store datum that spans quad word 
boundaries

▪ Virtual memory trickier when datum spans 2 pages

⬛Compiler
▪ Inserts gaps in structure to ensure correct alignment of fields
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Specific Cases of Alignment (x86-64)

⬛1 byte: char, …
▪ no restrictions on address

⬛2 bytes: short, …

▪ lowest 1 bit of address must be 02

⬛4 bytes: int, float, …

▪ lowest 2 bits of address must be 002

⬛8 bytes: double, long, char *, …

▪ lowest 3 bits of address must be 0002
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Structures & Alignment
⬛Unaligned Data

⬛Aligned Data
▪ Address must be multiple of K

▪ Here K = 8, due to double element

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

c i[0] i[1] v

p p+1 p+5 p+9 p+17

struct S1 {
  char c;
  int i[2];
  double v;
} *p;

struct S1 {
  char c;
  int i[2];
  double v;
} *p;
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Meeting Overall Alignment Requirement

⬛For largest alignment requirement K

⬛Overall structure must be multiple of K
struct S2 {
  double v;
  int i[2];
  char c;
} *p;

struct S2 {
  double v;
  int i[2];
  char c;
} *p;

v i[0] i[1] c 7 bytes

p+0 p+8 p+16 p+24

Multiple of K=8
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Arrays of Structures

⬛Overall structure length 
multiple of K

⬛Satisfy alignment requirement 
for every element

struct S2 {
  double v;
  int i[2];
  char c;
} a[10];

struct S2 {
  double v;
  int i[2];
  char c;
} a[10];

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72
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Accessing Array Elements

⬛Compute array offset 12*idx
▪ sizeof(S3), including alignment spacers

⬛Element j is at offset 8 within structure

⬛Assembler gives offset a+8
▪ Resolved during linking

struct S3 {
  short i;
  float v;
  short j;
} a[10];

struct S3 {
  short i;
  float v;
  short j;
} a[10];

short get_j(int idx)
{
  return a[idx].j;
}

short get_j(int idx)
{
  return a[idx].j;
}

# %rdi = idx
leaq (%rdi,%rdi,2),%rax # 3*idx
movzwl a+8(,%rax,4),%eax

# %rdi = idx
leaq (%rdi,%rdi,2),%rax # 3*idx
movzwl a+8(,%rax,4),%eax

 a[0] • • •  a[idx]  • • •
a+0 a+12 a+12*idx

i 2 bytes v j 2 bytes

a+12*idx a+12*idx+8
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Saving Space

⬛Put large data types first

⬛Effect (K=4)

struct S4 {
  char c;
  int i;
  char d;
} *p;

struct S4 {
  char c;
  int i;
  char d;
} *p;

struct S5 {
  int i;
  char c;
  char d;
} *p;

struct S5 {
  int i;
  char c;
  char d;
} *p;

c i3 bytes d 3 bytes

ci d 2 bytes
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Example Struct Exam Question

http://www.cs.cmu.edu/~213/oldexams/exam1-f12.pdf

See appendix!
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Today

Activity: r 2d ONLY
and quiz!

⬛Arrays

⬛Structures
▪ Nested arrays and structures

⬛Nested arrays
▪ Multi-dimensional

▪ Multi-level

⬛Endianness



Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multidimensional (Nested) Arrays
⬛Declaration

T   A[R][C];

▪ 2D array of data type T

▪ R rows, C columns

▪ Type T element requires K bytes

⬛Array Size
▪ R * C * K bytes

⬛Arrangement
▪ Row-Major Ordering

A[0][0] A[0][C-1]

A[R-1][0]

• • •

• • • A[R-1][C-1]

•
•
•

•
•
•

int A[R][C];

• • •
A
[0]
[0]

A
[0]

[C-1]
• • •

A
[1]
[0]

A
[1]

[C-1]
• • •

A
[R-1]
[0]

A
[R-1]
[C-1]

•  •  •

4*R*C  
Bytes
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Nested Array Example

⬛“Row-Major” ordering of all elements in memory

▪ Variable pgh: array of 4 elements, allocated contiguously

▪ Each element is an array of 5 int’s, allocated contiguously

#define PCOUNT 4
int pgh[PCOUNT][5] = 
  {{1, 5, 2, 0, 6},
   {1, 5, 2, 1, 3 },
   {1, 5, 2, 1, 7 },
   {1, 5, 2, 2, 1 }};

int pgh[4][5];

76 96 116 136 156

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1
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Nested Array Element Access Code

⬛Array Elements 
▪  pgh[index][dig] is int

▪ Address: pgh + 20*index + 4*dig
=   pgh + 4*(5*index + dig)

int get_pgh_digit(size_t index, size_t dig)
{
  return pgh[index][dig];
}

leaq (%rdi,%rdi,4), %rax # 5*index
addl %rax, %rsi # 5*index+dig
movl pgh(,%rsi,4), %eax # M[pgh + 4*(5*index+dig)]

pgh

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

pgh[1][1]
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Understanding Pointers & Arrays #2

⬛Cmp: Compiles (Y/N)

⬛Bad: Possible bad pointer reference (Y/N)

⬛Size: Value returned by sizeof

Decl An *An **An

Cmp Bad Size Cmp Bad Size Cmp Bad Size

int A1[15];

int A2[3][5];

int (*A3)[5];

int *A4[3];

int (*A5[3]);
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Understanding Pointers & Arrays #2
Decl An *An **An

Cmp Bad Size Cmp Bad Size Cmp Bad Size

int A1[15]; Y N 60 Y N 4 N - -

int A2[3][5]; Y N 60 Y N 20 Y N 4

int (*A3)[5]; Y N 8 Y Y 20 Y Y 4

int *A4[3]; Y N 24 Y N 8 Y Y 4

int (*A5[3]); Y N 24 Y N 8 Y Y 4

A1

A4/A5

Allocated  int

Unallocated pointer

Allocated  pointer

Unallocated  int

A3

A1/A2
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Multi-Level Array Example

⬛ Variable univ denotes 
array of 3 elements

⬛ Each element is a pointer

▪ 8 bytes

⬛ Each pointer points to array 
of int’s 

int cmu[5] = { 1, 5, 2, 1, 3 };
int mit[5] = { 0, 2, 1, 3, 9 };
int ucb[5] = { 9, 4, 7, 2, 0 };

#define UCOUNT 3
int *univ[UCOUNT] = {mit, cmu, ucb};

36160

16

56

168

176

univ

cmu

mit

ucb

1 5 2 1 3

16 20 24 28 32 36

0 2 1 3 9

36 40 44 48 52 56

9 4 7 2 0

56 60 64 68 72 76
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Element Access in Multi-Level Array

⬛Computation
▪ Element access Mem[Mem[univ+8*index]+4*digit]

▪ Must do two memory reads

▪ First get pointer to row array

▪ Then access element within array

  salq    $2, %rsi            # 4*digit
  addq    univ(,%rdi,8), %rsi # p = univ[index] + 4*digit
  movl    (%rsi), %eax        # return *p
  ret

int get_univ_digit
  (size_t index, size_t digit)
{
  return univ[index][digit];
}
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Array Element Accesses

int get_pgh_digit
  (size_t index, size_t digit)
{
  return pgh[index][digit];
}

int get_univ_digit
  (size_t index, size_t digit)
{
  return univ[index][digit];
}

Nested array Multi-level array

Accesses looks similar in C, but address computations very different: 

Mem[pgh+20*index+4*digit] Mem[Mem[univ+8*index]+4*digit]
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Today

Activity: r endianness

⬛Arrays

⬛Structures
▪ Nested arrays and structures

⬛Nested arrays
▪ Multi-dimensional

▪ Multi-level

⬛Endianness
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Byte-Addressable Memory

⬛Programs refer to data by address
▪ For now, imagine memory as a large array of bytes

▪ An address is like an index into that array

▪ A pointer variable stores an address

• • •
00
••
•0

FF
••
•F
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Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8
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Word-Oriented Memory Organization

⬛Addresses Specify Byte 
Locations
▪ Address of first byte in word

▪ Addresses of successive words differ 
by 4 (32-bit) or 8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr

Addr

Addr

Addr

Addr

Addr

0000

0004

0008

0012

0000

0008
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Byte Ordering

⬛So, how are the bytes within a multi-byte word ordered in 
memory?

⬛Conventions
▪ Big Endian: Sun, PPC Mac, Internet

▪ Least significant byte has highest address

▪ Little Endian: x86, ARM processors running Android, iOS, and 
Windows

▪ Least significant byte has lowest address
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Byte Ordering Example

⬛Example
▪ Variable x has 4-byte value of 0x01234567

▪ Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01
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Examining Data Representations

⬛Code to Print Byte Representation of Data
▪ Casting pointer to unsigned char * allows use as a byte array

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
  size_t i;
  for (i = 0; i < len; i++)
    printf(”%p\t0x%.2x\n", start+i, start[i]);
  printf("\n");
}

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
  size_t i;
  for (i = 0; i < len; i++)
    printf(”%p\t0x%.2x\n", start+i, start[i]);
  printf("\n");
}

Non-portable C code!
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show_bytes Execution Example

int a = 15213; // 0x3b6d
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(a));

int a = 15213; // 0x3b6d
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(a));

Result (Linux x86-64):

int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00

int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00
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Representing Pointers

Different compilers & machines assign different locations to objects

Even get different results each time run program

int B = -15213;
int *P = &B;
int B = -15213;
int *P = &B;

x86-64Sun IA32

EF

FF

FB

2C

AC

28

F5

FF

3C

1B

FE

82

FD

7F

00

00
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char S[6] = "18213";char S[6] = "18213";

Representing Strings

⬛Strings in C
▪ Represented by array of characters

▪ Each character encoded in ASCII format

▪ Standard 7-bit encoding of character set

▪ Character “0” has code 0x30
– Digit i  has code 0x30+i

▪ String should be NUL-terminated

▪ Final character = 0

⬛Compatibility
▪ Byte ordering not an issue

IA32 Sun

31

38

32

31

33

00

31

38

32

31

33

00
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 Address Instruction Code Assembly Rendition
 8048365: 5b                   pop    %ebx
 8048366: 81 c3 ab 12 00 00    add    $0x12ab,%ebx
 804836c: 83 bb 28 00 00 00 00 cmpl   $0x0,0x28(%ebx)

Reading Byte-Reversed Listings

⬛Disassembly
▪ Text representation of binary machine code

▪ Generated by program that reads the machine code

⬛Example Fragment

⬛Deciphering Numbers
▪ Value: 0x12ab

▪ Pad to 32 bits: 0x000012ab

▪ Split into bytes: 00 00 12 ab

▪ Reverse:ab 12 00 00
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Summary

⬛Arrays
▪ Elements packed into contiguous region of memory

▪ Use index arithmetic to locate individual elements

⬛Structures
▪ Elements packed into single region of memory

▪ Access using offsets determined by compiler

▪ Possible require internal and external padding to ensure alignment

⬛Combinations
▪ Can nest structure and array code arbitrarily

⬛Endianness
▪ Byte-addressable mem. introduces ordering within multibyte types

⬛Floating Point (see appendix!)
▪ Data held and operated on in XMM registers
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Appendix
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Array Example

⬛ Declaration “zip_dig cmu” equivalent to “int cmu[5]”

⬛ Example arrays were allocated in successive 20 byte blocks

▪ Not guaranteed to happen in general

#define ZLEN 5
typedef int zip_dig[ZLEN];

zip_dig cmu = { 1, 5, 2, 1, 3 };
zip_dig mit = { 0, 2, 1, 3, 9 };
zip_dig ucb = { 9, 4, 7, 2, 0 };

zip_dig cmu; 1 5 2 1 3

16 20 24 28 32 36

zip_dig mit; 0 2 1 3 9

36 40 44 48 52 56

zip_dig ucb; 9 4 7 2 0

56 60 64 68 72 76
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Array Accessing Example

■Register %rdi contains 
starting address of array

■Register %rsi contains 
array index

■Desired digit at 
%rdi + 4*%rsi

■Use memory reference 
(%rdi,%rsi,4)

int get_digit
  (zip_dig z, int digit)
{
  return z[digit];
}

  # %rdi = z
  # %rsi = digit
movl (%rdi,%rsi,4), %eax  # z[digit]

x86-64

zip_dig cmu; 1 5 2 1 3

16 20 24 28 32 36
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  # %rdi = z
  movl    $0, %eax          #   i = 0
  jmp     .L3               #   goto middle
.L4:                        # loop:
  addl    $1, (%rdi,%rax,4) #   z[i]++
  addq    $1, %rax          #   i++
.L3:                        # middle
  cmpq    $4, %rax          #   i:4
  jbe     .L4               #   if <=, goto loop
  rep; ret

Array Loop Example
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  # %rdi = z
  movl    $0, %eax          #   i = 0
  jmp     .L3               #   goto middle
.L4:                        # loop:
  addl    $1, (%rdi,%rax,4) #   z[i]++
  addq    $1, %rax          #   i++
.L3:                        # middle
  cmpq    $4, %rax          #   i:4
  jbe     .L4               #   if <=, goto loop
  rep; ret

Array Loop Example

void zincr(zip_dig z) {
  size_t i;
  for (i = 0; i < ZLEN; i++)
    z[i]++;
}
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Example Struct Exam Question

http://www.cs.cmu.edu/~213/oldexams/exam1-f12.pdf
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Example Struct Exam Question

http://www.cs.cmu.edu/~213/oldexams/exam1-f12.pdf

a X X X X X X X b b b b b b b b

c c c c d d d X e e e e e e e e

f f f f f f f f
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Example Struct Exam Question (Cont’d)

http://www.cs.cmu.edu/~213/oldexams/exam1-f12.pdf
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Example Struct Exam Question (Cont’d)

a d d d c c c c b b b b b b b b

e e e e e e e e f f f f f f f f

http://www.cs.cmu.edu/~213/oldexams/exam1-f12.pdf
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•  •  •

Nested Array Row Access

⬛Row Vectors
▪  A[i] is array of C elements

▪ Each element of type T requires K bytes

▪ Starting address A + i * (C * K)

• • •
A

[i]
[0]

A
[i]

[C-1]

A[i]

• • •
A

[R-1]
[0]

A
[R-1]
[C-1]

A[R-1]

•  •  •

A

• • •
A

[0]
[0]

A
[0]

[C-1]

A[0]

A+(i*C*4) A+((R-1)*C*4)

int A[R][C];
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Nested Array Row Access Code

⬛Row Vector
▪  pgh[index] is array of 5 int’s

▪ Starting address pgh+20*index

⬛Machine Code
▪ Computes and returns address

▪ Compute as pgh + 4*(index+4*index)

int *get_pgh_zip(size_t index)
{
  return pgh[index];
}

  # %rdi = index
leaq (%rdi,%rdi,4),%rax # 5 * index
leaq pgh(,%rax,4),%rax # pgh + (20 * index)

pgh

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

pgh[2]
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•  •  •

Nested Array Element Access

⬛Array Elements 
▪  A[i][j] is element of type T, which requires K bytes

▪ Address  A + i * (C * K) +  j * K 
        = A + (i * C + j) * K

 • • •                      • • •
A
[i]
[j]

A[i]

• • •

A
[R-
1]
[0]

A
[R-
1]
[C-
1]

A[R-
1]

•  •  •

A

• • •
A

[0]
[0]

A
[0]
[C-
1]

A[0]

A+(i*C*4) A+((R-1)*C*4)

int A[R][C];

A+(i*C*4)+(j*4)
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Nested Array Element Access Code

⬛Array Elements 
▪  pgh[index][dig] is int

▪ Address: pgh + 20*index + 4*dig
=   pgh + 4*(5*index + dig)

int get_pgh_digit(size_t index, size_t dig)
{
  return pgh[index][dig];
}

leaq (%rdi,%rdi,4), %rax # 5*index
addl %rax, %rsi # 5*index+dig
movl pgh(,%rsi,4), %eax # M[pgh + 4*(5*index+dig)]

pgh

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

pgh[1][1]
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N X N Matrix 
Code
⬛Fixed dimensions

▪ Know value of N at 
compile time

⬛Variable dimensions, 
explicit indexing
▪ Traditional way to 

implement dynamic 
arrays

⬛Variable dimensions, 
implicit indexing
▪ Now supported by gcc

#define N 16
typedef int fix_matrix[N][N];
/* Get element A[i][j] */
int fix_ele(fix_matrix A, 
            size_t i, size_t j)
{
  return A[i][j];
}

#define IDX(n, i, j) ((i)*(n)+(j))
/* Get element A[i][j] */
int vec_ele(size_t n, int *A,
            size_t i, size_t j)
{
  return A[IDX(n,i,j)];
}

/* Get element a[i][j] */
int var_ele(size_t n, int A[n][n],
            size_t i, size_t j) {
  return A[i][j];
}
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16 X 16 Matrix Access

/* Get element A[i][j] */
int fix_ele(fix_matrix A, size_t i, size_t j) {
  return A[i][j];
}

  # A in %rdi, i in %rsi, j in %rdx
  salq    $6, %rsi             # 64*i
  addq    %rsi, %rdi           # A + 64*i
  movl    (%rdi,%rdx,4), %eax  # M[A + 64*i + 4*j]
  ret

⬛Array Elements 
▪ int A[16][16];

▪ Address  A + i * (C * K) +  j * K

▪ C = 16, K = 4
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n X n Matrix Access

/* Get element A[i][j] */
int var_ele(size_t n, int A[n][n], size_t i, size_t j) 
{
  return A[i][j];
}

  # n in %rdi, A in %rsi, i in %rdx, j in %rcx
  imulq   %rdx, %rdi           # n*i
  leaq    (%rsi,%rdi,4), %rax  # A + 4*n*i
  movl    (%rax,%rcx,4), %eax  # A + 4*n*i + 4*j
  ret

⬛Array Elements 
▪ size_t n;

▪ int A[n][n];

▪ Address  A + i * (C * K) +  j * K

▪ C = n, K = 4

▪ Must perform integer multiplication
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Example: Array Access
#include <stdio.h>
#define ZLEN 5
#define PCOUNT 4
typedef int zip_dig[ZLEN];

int main(int argc, char** argv) {
zip_dig pgh[PCOUNT] = 
    {{1, 5, 2, 0, 6},
     {1, 5, 2, 1, 3 },
     {1, 5, 2, 1, 7 },
     {1, 5, 2, 2, 1 }};
    int *linear_zip = (int *) pgh;
    int *zip2 = (int *) pgh[2];
    int result = 
        pgh[0][0] +
        linear_zip[7] +
        *(linear_zip + 8) +
        zip2[1];
    printf("result: %d\n", result);
    return 0;
}

linux> ./array
result: 9
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Example: Array Access
#include <stdio.h>
#define ZLEN 5
#define PCOUNT 4
typedef int zip_dig[ZLEN];

int main(int argc, char** argv) {
zip_dig pgh[PCOUNT] = 
    {{1, 5, 2, 0, 6},
     {1, 5, 2, 1, 3 },
     {1, 5, 2, 1, 7 },
     {1, 5, 2, 2, 1 }};
    int *linear_zip = (int *) pgh;
    int *zip2 = (int *) pgh[2];
    int result = 
        pgh[0][0] +
        linear_zip[7] +
        *(linear_zip + 8) +
        zip2[1];
    printf("result: %d\n", result);
    return 0;
}

linux> ./array
result: 9
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Understanding Pointers & Arrays #3

⬛Cmp: Compiles (Y/N)

⬛Bad: Possible bad 
pointer reference (Y/N)

⬛Size: Value returned by 
sizeof

Decl An *An **An

Cmp Bad Size Cmp Bad Size Cmp Bad Size

int A1[3][5]

int *A2[3][5]

int (*A3)[3][5]

int *(A4[3][5])

int (*A5[3])[5]

Decl ***An

Cmp Bad Size

int A1[3][5]

int *A2[3][5]

int (*A3)[3][5]

int *(A4[3][5])

int (*A5[3])[5]
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Declaration

int A1[3][5]

int *A2[3][5]

int (*A3)[3][5]

int *(A4[3][5])

int (*A5[3])[5]

A2/A4

A5

Allocated  int

Unallocated pointer

Allocated  pointer

Unallocated  int

Allocated  pointer to unallocated int

A1

A3
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Understanding Pointers & Arrays #3

⬛Cmp: Compiles (Y/N)

⬛Bad: Possible bad 
pointer reference (Y/N)

⬛Size: Value returned by 
sizeof

Decl An *An **An

Cmp Bad Size Cmp Bad Size Cmp Bad Size

int A1[3][5] Y N 60 Y N 20 Y N 4

int *A2[3][5] Y N 120 Y N 40 Y N 8

int (*A3)[3][5] Y N 8 Y Y 60 Y Y 20

int *(A4[3][5]) Y N 120 Y N 40 Y N 8

int (*A5[3])[5] Y N 24 Y N 8 Y Y 20

Decl ***An

Cmp Bad Size

int A1[3][5] N - -

int *A2[3][5] Y Y 4

int (*A3)[3][5] Y Y 4

int *(A4[3][5]) Y Y 4

int (*A5[3])[5] Y Y 4
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Floating Point Background

⬛History
▪ x87 FP

▪ Legacy, very ugly

▪ SSE FP

▪ Supported by Shark machines

▪ Special case use of vector instructions

▪ AVX FP

▪ Newest version

▪ Similar to SSE

▪ Documented in book
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Programming with SSE3
XMM Registers

■ 16 total, each 16 bytes

■ 16 single-byte integers

■ 8 16-bit integers

■ 4 32-bit integers

■ 4 single-precision floats

■ 2 double-precision floats

■ 1 single-precision float

■ 1 double-precision float
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Scalar & SIMD Operations
■ Scalar Operations: Single Precision

■ SIMD Operations: Single Precision

■ Scalar Operations: Double Precision

+

%xmm
0

%xmm
1

addss 
%xmm0,%xmm1

+ + + +

%xmm
0

%xmm
1

addps 
%xmm0,%xmm1

+

%xmm
0

%xmm
1

addsd 
%xmm0,%xmm1
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FP Basics

⬛Arguments passed in %xmm0, %xmm1, ...

⬛Result returned in %xmm0

⬛All XMM registers caller-saved

float fadd(float x, float y)
{
    return x + y;
}

double dadd(double x, double y)
{
    return x + y;
}

  # x in %xmm0, y in %xmm1
  addss   %xmm1, %xmm0
  ret

 # x in %xmm0, y in %xmm1   
  addsd   %xmm1, %xmm0
  ret
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FP Memory Referencing

⬛ Integer (and pointer) arguments passed in regular registers

⬛FP values passed in XMM registers

⬛Different mov instructions to move between XMM registers, 
and between memory and XMM registers

double dincr(double *p, double v)
{
    double x = *p;
    *p = x + v;
    return x;
}

  # p in %rdi, v in %xmm0
  movapd  %xmm0, %xmm1   # Copy v
  movsd   (%rdi), %xmm0  # x = *p
  addsd   %xmm0, %xmm1   # t = x + v
  movsd   %xmm1, (%rdi)  # *p = t
  ret
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Other Aspects of FP Code

⬛Lots of instructions
▪ Different operations, different formats, ...

⬛Floating-point comparisons
▪ Instructions ucomiss and ucomisd

▪ Set condition codes CF, ZF, and PF

⬛Using constant values
▪ Set XMM0 register to 0 with instruction xorpd %xmm0, %xmm0

▪ Others loaded from memory
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