
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine-Level Programming IV: Data

15-213: Introduction to Computer Systems
8th Lecture, June 5, 2019

Instructors:

Sol Boucher

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Announcements

⬛This is the last lecture needed for bomblab!
▪ Friday’s will be more relevant to attacklab.

⬛No lecture tomorrow.
▪ TAs will hold office hours in this room instead.

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

⬛Arrays

⬛Structures
▪ Nested arrays and structures

⬛Nested arrays
▪ Multi-dimensional

▪ Multi-level

⬛Endianness

Activity: r integer and
r array ONLY

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Array Allocation
⬛Basic Principle

T A[L];

▪ Array of data type T and length L

▪ Contiguously allocated region of L * sizeof(T) bytes in memory

char string[12];

x x + 12

int val[5];

x x + 4 x + 8 x + 12 x + 16 x + 20

double a[3];

x + 24x x + 8 x + 16

char *p[3];

x x + 8 x + 16 x + 24

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Array Access
⬛Basic Principle

T A[L];

▪ Array of data type T and length L

▪ Identifier A can be used as a pointer to array element 0: Type T*

⬛Reference Type Value
val int * x
*val int 1
val + 4 int * x + 16
*(val + 4) int 3
val[4] int 3
&val[4] int * x + 16
val + i int * x + 4 * i // &val[i]
val[5] int ???

int val[5]; 1 5 2 1 3

x x + 4 x + 8 x + 12 x + 16 x + 20

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Array Accessing Example

■Register %rdi contains
starting address of array

■Register %rsi contains
array index

■Desired digit at
%rdi + 4*%rsi

■Use memory reference
(%rdi,%rsi,4)

int getNth
 (int *z, size_t digit)
{
 return z[digit];
}

 # %rdi = z
 # %rsi = digit
movl (%rdi,%rsi,4), %eax # z[digit]

x86-64

int val[5]; 1 5 2 1 3

16 20 24 28 32 36

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Pointers & Arrays #1

⬛Cmp: Compiles (Y/N)

⬛Bad: Possible bad pointer reference (Y/N)

⬛Size: Value returned by sizeof

Decl An *An

Cmp Bad Size Cmp Bad Size

int A1[3];

int *A2;

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Pointers & Arrays #1

⬛Cmp: Compiles (Y/N)

⬛Bad: Possible bad pointer reference (Y/N)

⬛Size: Value returned by sizeof

Decl An *An

Cmp Bad Size Cmp Bad Size

int A1[3]; Y N 12 Y N 4

int *A2; Y N 8 Y Y 4

A1

A2
Allocated int

Unallocated pointer

Allocated pointer

Unallocated int

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

Activity: r struct and
r nested ONLY

⬛Arrays
⬛Structures

▪ Nested arrays and structures

⬛Nested arrays
▪ Multi-dimensional

▪ Multi-level

⬛Endianness

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structure Representation

⬛Structure represented as block of memory
▪ Big enough to hold all of the fields

⬛Fields ordered according to declaration
▪ Even if another ordering could yield a more compact

representation

⬛Compiler determines overall size + positions of fields
▪ Machine-level program has no understanding of the structures

in the source code

a

r

i next

0 16 24 32

struct rec {
 int a[4];
 size_t i;
 struct rec *next;
};

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 # r in %rdi, idx in %rsi
 leaq (%rdi,%rsi,4), %rax
 ret

int *get_ap
 (struct rec *r, size_t idx)
{
 return &r->a[idx];
}

Generating Pointer to Structure Member

⬛Generating Pointer to
Array Element
▪ Offset of each structure

member determined at
compile time

▪ Compute as r + 4*idx

r+4*idx

a

r

i next

0 16 24 32

struct rec {
 int a[4];
 size_t i;
 struct rec *next;
};

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

.L11: # loop:
 movslq 16(%rdi), %rax # i = M[r+16]
 movl %esi, (%rdi,%rax,4) # M[r+4*i] = val
 movq 24(%rdi), %rdi # r = M[r+24]
 testq %rdi, %rdi # Test r
 jne .L11 # if !=0 goto loop

void set_val
 (struct rec *r, int val)
{
 while (r) {
 int i = r->i;
 r->a[i] = val;
 r = r->next;
 }
}

Following Linked List
⬛C Code

Register Value

%rdi r

%rsi val

struct rec {
 int a[4];
 int i;
 struct rec *next;
};

Element i

r

i next

0 16 24 32

a

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alignment Principles

⬛Aligned Data
▪ Primitive data type requires K bytes

▪ Address must be multiple of K

▪ Required on some machines; advised on x86-64

⬛Motivation for Aligning Data
▪ Memory accessed by (aligned) chunks of 4 or 8 bytes (system

dependent)

▪ Inefficient to load or store datum that spans quad word
boundaries

▪ Virtual memory trickier when datum spans 2 pages

⬛Compiler
▪ Inserts gaps in structure to ensure correct alignment of fields

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Specific Cases of Alignment (x86-64)

⬛1 byte: char, …
▪ no restrictions on address

⬛2 bytes: short, …

▪ lowest 1 bit of address must be 02

⬛4 bytes: int, float, …

▪ lowest 2 bits of address must be 002

⬛8 bytes: double, long, char *, …

▪ lowest 3 bits of address must be 0002

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structures & Alignment
⬛Unaligned Data

⬛Aligned Data
▪ Address must be multiple of K

▪ Here K = 8, due to double element

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

c i[0] i[1] v

p p+1 p+5 p+9 p+17

struct S1 {
 char c;
 int i[2];
 double v;
} *p;

struct S1 {
 char c;
 int i[2];
 double v;
} *p;

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Meeting Overall Alignment Requirement

⬛For largest alignment requirement K

⬛Overall structure must be multiple of K
struct S2 {
 double v;
 int i[2];
 char c;
} *p;

struct S2 {
 double v;
 int i[2];
 char c;
} *p;

v i[0] i[1] c 7 bytes

p+0 p+8 p+16 p+24

Multiple of K=8

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arrays of Structures

⬛Overall structure length
multiple of K

⬛Satisfy alignment requirement
for every element

struct S2 {
 double v;
 int i[2];
 char c;
} a[10];

struct S2 {
 double v;
 int i[2];
 char c;
} a[10];

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Accessing Array Elements

⬛Compute array offset 12*idx
▪ sizeof(S3), including alignment spacers

⬛Element j is at offset 8 within structure

⬛Assembler gives offset a+8
▪ Resolved during linking

struct S3 {
 short i;
 float v;
 short j;
} a[10];

struct S3 {
 short i;
 float v;
 short j;
} a[10];

short get_j(int idx)
{
 return a[idx].j;
}

short get_j(int idx)
{
 return a[idx].j;
}

%rdi = idx
leaq (%rdi,%rdi,2),%rax # 3*idx
movzwl a+8(,%rax,4),%eax

%rdi = idx
leaq (%rdi,%rdi,2),%rax # 3*idx
movzwl a+8(,%rax,4),%eax

 a[0] • • • a[idx] • • •
a+0 a+12 a+12*idx

i 2 bytes v j 2 bytes

a+12*idx a+12*idx+8

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Saving Space

⬛Put large data types first

⬛Effect (K=4)

struct S4 {
 char c;
 int i;
 char d;
} *p;

struct S4 {
 char c;
 int i;
 char d;
} *p;

struct S5 {
 int i;
 char c;
 char d;
} *p;

struct S5 {
 int i;
 char c;
 char d;
} *p;

c i3 bytes d 3 bytes

ci d 2 bytes

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Struct Exam Question

http://www.cs.cmu.edu/~213/oldexams/exam1-f12.pdf

See appendix!

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

Activity: r 2d ONLY
and quiz!

⬛Arrays

⬛Structures
▪ Nested arrays and structures

⬛Nested arrays
▪ Multi-dimensional

▪ Multi-level

⬛Endianness

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multidimensional (Nested) Arrays
⬛Declaration

T A[R][C];

▪ 2D array of data type T

▪ R rows, C columns

▪ Type T element requires K bytes

⬛Array Size
▪ R * C * K bytes

⬛Arrangement
▪ Row-Major Ordering

A[0][0] A[0][C-1]

A[R-1][0]

• • •

• • • A[R-1][C-1]

•
•
•

•
•
•

int A[R][C];

• • •
A
[0]
[0]

A
[0]

[C-1]
• • •

A
[1]
[0]

A
[1]

[C-1]
• • •

A
[R-1]
[0]

A
[R-1]
[C-1]

• • •

4*R*C
Bytes

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nested Array Example

⬛“Row-Major” ordering of all elements in memory

▪ Variable pgh: array of 4 elements, allocated contiguously

▪ Each element is an array of 5 int’s, allocated contiguously

#define PCOUNT 4
int pgh[PCOUNT][5] =
 {{1, 5, 2, 0, 6},
 {1, 5, 2, 1, 3 },
 {1, 5, 2, 1, 7 },
 {1, 5, 2, 2, 1 }};

int pgh[4][5];

76 96 116 136 156

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nested Array Element Access Code

⬛Array Elements
▪ pgh[index][dig] is int

▪ Address: pgh + 20*index + 4*dig
= pgh + 4*(5*index + dig)

int get_pgh_digit(size_t index, size_t dig)
{
 return pgh[index][dig];
}

leaq (%rdi,%rdi,4), %rax # 5*index
addl %rax, %rsi # 5*index+dig
movl pgh(,%rsi,4), %eax # M[pgh + 4*(5*index+dig)]

pgh

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

pgh[1][1]

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Pointers & Arrays #2

⬛Cmp: Compiles (Y/N)

⬛Bad: Possible bad pointer reference (Y/N)

⬛Size: Value returned by sizeof

Decl An *An **An

Cmp Bad Size Cmp Bad Size Cmp Bad Size

int A1[15];

int A2[3][5];

int (*A3)[5];

int *A4[3];

int (*A5[3]);

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Pointers & Arrays #2
Decl An *An **An

Cmp Bad Size Cmp Bad Size Cmp Bad Size

int A1[15]; Y N 60 Y N 4 N - -

int A2[3][5]; Y N 60 Y N 20 Y N 4

int (*A3)[5]; Y N 8 Y Y 20 Y Y 4

int *A4[3]; Y N 24 Y N 8 Y Y 4

int (*A5[3]); Y N 24 Y N 8 Y Y 4

A1

A4/A5

Allocated int

Unallocated pointer

Allocated pointer

Unallocated int

A3

A1/A2

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multi-Level Array Example

⬛ Variable univ denotes
array of 3 elements

⬛ Each element is a pointer

▪ 8 bytes

⬛ Each pointer points to array
of int’s

int cmu[5] = { 1, 5, 2, 1, 3 };
int mit[5] = { 0, 2, 1, 3, 9 };
int ucb[5] = { 9, 4, 7, 2, 0 };

#define UCOUNT 3
int *univ[UCOUNT] = {mit, cmu, ucb};

36160

16

56

168

176

univ

cmu

mit

ucb

1 5 2 1 3

16 20 24 28 32 36

0 2 1 3 9

36 40 44 48 52 56

9 4 7 2 0

56 60 64 68 72 76

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Element Access in Multi-Level Array

⬛Computation
▪ Element access Mem[Mem[univ+8*index]+4*digit]

▪ Must do two memory reads

▪ First get pointer to row array

▪ Then access element within array

 salq $2, %rsi # 4*digit
 addq univ(,%rdi,8), %rsi # p = univ[index] + 4*digit
 movl (%rsi), %eax # return *p
 ret

int get_univ_digit
 (size_t index, size_t digit)
{
 return univ[index][digit];
}

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Array Element Accesses

int get_pgh_digit
 (size_t index, size_t digit)
{
 return pgh[index][digit];
}

int get_univ_digit
 (size_t index, size_t digit)
{
 return univ[index][digit];
}

Nested array Multi-level array

Accesses looks similar in C, but address computations very different:

Mem[pgh+20*index+4*digit] Mem[Mem[univ+8*index]+4*digit]

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

Activity: r endianness

⬛Arrays

⬛Structures
▪ Nested arrays and structures

⬛Nested arrays
▪ Multi-dimensional

▪ Multi-level

⬛Endianness

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte-Addressable Memory

⬛Programs refer to data by address
▪ For now, imagine memory as a large array of bytes

▪ An address is like an index into that array

▪ A pointer variable stores an address

• • •
00
••
•0

FF
••
•F

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Word-Oriented Memory Organization

⬛Addresses Specify Byte
Locations
▪ Address of first byte in word

▪ Addresses of successive words differ
by 4 (32-bit) or 8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr

Addr

Addr

Addr

Addr

Addr

0000

0004

0008

0012

0000

0008

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering

⬛So, how are the bytes within a multi-byte word ordered in
memory?

⬛Conventions
▪ Big Endian: Sun, PPC Mac, Internet

▪ Least significant byte has highest address

▪ Little Endian: x86, ARM processors running Android, iOS, and
Windows

▪ Least significant byte has lowest address

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering Example

⬛Example
▪ Variable x has 4-byte value of 0x01234567

▪ Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Examining Data Representations

⬛Code to Print Byte Representation of Data
▪ Casting pointer to unsigned char * allows use as a byte array

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
 size_t i;
 for (i = 0; i < len; i++)
 printf(”%p\t0x%.2x\n", start+i, start[i]);
 printf("\n");
}

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
 size_t i;
 for (i = 0; i < len; i++)
 printf(”%p\t0x%.2x\n", start+i, start[i]);
 printf("\n");
}

Non-portable C code!

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

show_bytes Execution Example

int a = 15213; // 0x3b6d
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(a));

int a = 15213; // 0x3b6d
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(a));

Result (Linux x86-64):

int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00

int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Representing Pointers

Different compilers & machines assign different locations to objects

Even get different results each time run program

int B = -15213;
int *P = &B;
int B = -15213;
int *P = &B;

x86-64Sun IA32

EF

FF

FB

2C

AC

28

F5

FF

3C

1B

FE

82

FD

7F

00

00

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

char S[6] = "18213";char S[6] = "18213";

Representing Strings

⬛Strings in C
▪ Represented by array of characters

▪ Each character encoded in ASCII format

▪ Standard 7-bit encoding of character set

▪ Character “0” has code 0x30
– Digit i has code 0x30+i

▪ String should be NUL-terminated

▪ Final character = 0

⬛Compatibility
▪ Byte ordering not an issue

IA32 Sun

31

38

32

31

33

00

31

38

32

31

33

00

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Address Instruction Code Assembly Rendition
 8048365: 5b pop %ebx
 8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx
 804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Reading Byte-Reversed Listings

⬛Disassembly
▪ Text representation of binary machine code

▪ Generated by program that reads the machine code

⬛Example Fragment

⬛Deciphering Numbers
▪ Value: 0x12ab

▪ Pad to 32 bits: 0x000012ab

▪ Split into bytes: 00 00 12 ab

▪ Reverse:ab 12 00 00

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

⬛Arrays
▪ Elements packed into contiguous region of memory

▪ Use index arithmetic to locate individual elements

⬛Structures
▪ Elements packed into single region of memory

▪ Access using offsets determined by compiler

▪ Possible require internal and external padding to ensure alignment

⬛Combinations
▪ Can nest structure and array code arbitrarily

⬛Endianness
▪ Byte-addressable mem. introduces ordering within multibyte types

⬛Floating Point (see appendix!)
▪ Data held and operated on in XMM registers

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Appendix

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Array Example

⬛ Declaration “zip_dig cmu” equivalent to “int cmu[5]”

⬛ Example arrays were allocated in successive 20 byte blocks

▪ Not guaranteed to happen in general

#define ZLEN 5
typedef int zip_dig[ZLEN];

zip_dig cmu = { 1, 5, 2, 1, 3 };
zip_dig mit = { 0, 2, 1, 3, 9 };
zip_dig ucb = { 9, 4, 7, 2, 0 };

zip_dig cmu; 1 5 2 1 3

16 20 24 28 32 36

zip_dig mit; 0 2 1 3 9

36 40 44 48 52 56

zip_dig ucb; 9 4 7 2 0

56 60 64 68 72 76

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Array Accessing Example

■Register %rdi contains
starting address of array

■Register %rsi contains
array index

■Desired digit at
%rdi + 4*%rsi

■Use memory reference
(%rdi,%rsi,4)

int get_digit
 (zip_dig z, int digit)
{
 return z[digit];
}

 # %rdi = z
 # %rsi = digit
movl (%rdi,%rsi,4), %eax # z[digit]

x86-64

zip_dig cmu; 1 5 2 1 3

16 20 24 28 32 36

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 # %rdi = z
 movl $0, %eax # i = 0
 jmp .L3 # goto middle
.L4: # loop:
 addl $1, (%rdi,%rax,4) # z[i]++
 addq $1, %rax # i++
.L3: # middle
 cmpq $4, %rax # i:4
 jbe .L4 # if <=, goto loop
 rep; ret

Array Loop Example

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 # %rdi = z
 movl $0, %eax # i = 0
 jmp .L3 # goto middle
.L4: # loop:
 addl $1, (%rdi,%rax,4) # z[i]++
 addq $1, %rax # i++
.L3: # middle
 cmpq $4, %rax # i:4
 jbe .L4 # if <=, goto loop
 rep; ret

Array Loop Example

void zincr(zip_dig z) {
 size_t i;
 for (i = 0; i < ZLEN; i++)
 z[i]++;
}

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Struct Exam Question

http://www.cs.cmu.edu/~213/oldexams/exam1-f12.pdf

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Struct Exam Question

http://www.cs.cmu.edu/~213/oldexams/exam1-f12.pdf

a X X X X X X X b b b b b b b b

c c c c d d d X e e e e e e e e

f f f f f f f f

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Struct Exam Question (Cont’d)

http://www.cs.cmu.edu/~213/oldexams/exam1-f12.pdf

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Struct Exam Question (Cont’d)

a d d d c c c c b b b b b b b b

e e e e e e e e f f f f f f f f

http://www.cs.cmu.edu/~213/oldexams/exam1-f12.pdf

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

• • •

Nested Array Row Access

⬛Row Vectors
▪ A[i] is array of C elements

▪ Each element of type T requires K bytes

▪ Starting address A + i * (C * K)

• • •
A

[i]
[0]

A
[i]

[C-1]

A[i]

• • •
A

[R-1]
[0]

A
[R-1]
[C-1]

A[R-1]

• • •

A

• • •
A

[0]
[0]

A
[0]

[C-1]

A[0]

A+(i*C*4) A+((R-1)*C*4)

int A[R][C];

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nested Array Row Access Code

⬛Row Vector
▪ pgh[index] is array of 5 int’s

▪ Starting address pgh+20*index

⬛Machine Code
▪ Computes and returns address

▪ Compute as pgh + 4*(index+4*index)

int *get_pgh_zip(size_t index)
{
 return pgh[index];
}

 # %rdi = index
leaq (%rdi,%rdi,4),%rax # 5 * index
leaq pgh(,%rax,4),%rax # pgh + (20 * index)

pgh

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

pgh[2]

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

• • •

Nested Array Element Access

⬛Array Elements
▪ A[i][j] is element of type T, which requires K bytes

▪ Address A + i * (C * K) + j * K
 = A + (i * C + j) * K

 • • • • • •
A
[i]
[j]

A[i]

• • •

A
[R-
1]
[0]

A
[R-
1]
[C-
1]

A[R-
1]

• • •

A

• • •
A

[0]
[0]

A
[0]
[C-
1]

A[0]

A+(i*C*4) A+((R-1)*C*4)

int A[R][C];

A+(i*C*4)+(j*4)

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nested Array Element Access Code

⬛Array Elements
▪ pgh[index][dig] is int

▪ Address: pgh + 20*index + 4*dig
= pgh + 4*(5*index + dig)

int get_pgh_digit(size_t index, size_t dig)
{
 return pgh[index][dig];
}

leaq (%rdi,%rdi,4), %rax # 5*index
addl %rax, %rsi # 5*index+dig
movl pgh(,%rsi,4), %eax # M[pgh + 4*(5*index+dig)]

pgh

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

pgh[1][1]

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

N X N Matrix
Code
⬛Fixed dimensions

▪ Know value of N at
compile time

⬛Variable dimensions,
explicit indexing
▪ Traditional way to

implement dynamic
arrays

⬛Variable dimensions,
implicit indexing
▪ Now supported by gcc

#define N 16
typedef int fix_matrix[N][N];
/* Get element A[i][j] */
int fix_ele(fix_matrix A,
 size_t i, size_t j)
{
 return A[i][j];
}

#define IDX(n, i, j) ((i)*(n)+(j))
/* Get element A[i][j] */
int vec_ele(size_t n, int *A,
 size_t i, size_t j)
{
 return A[IDX(n,i,j)];
}

/* Get element a[i][j] */
int var_ele(size_t n, int A[n][n],
 size_t i, size_t j) {
 return A[i][j];
}

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

16 X 16 Matrix Access

/* Get element A[i][j] */
int fix_ele(fix_matrix A, size_t i, size_t j) {
 return A[i][j];
}

 # A in %rdi, i in %rsi, j in %rdx
 salq $6, %rsi # 64*i
 addq %rsi, %rdi # A + 64*i
 movl (%rdi,%rdx,4), %eax # M[A + 64*i + 4*j]
 ret

⬛Array Elements
▪ int A[16][16];

▪ Address A + i * (C * K) + j * K

▪ C = 16, K = 4

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

n X n Matrix Access

/* Get element A[i][j] */
int var_ele(size_t n, int A[n][n], size_t i, size_t j)
{
 return A[i][j];
}

 # n in %rdi, A in %rsi, i in %rdx, j in %rcx
 imulq %rdx, %rdi # n*i
 leaq (%rsi,%rdi,4), %rax # A + 4*n*i
 movl (%rax,%rcx,4), %eax # A + 4*n*i + 4*j
 ret

⬛Array Elements
▪ size_t n;

▪ int A[n][n];

▪ Address A + i * (C * K) + j * K

▪ C = n, K = 4

▪ Must perform integer multiplication

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Array Access
#include <stdio.h>
#define ZLEN 5
#define PCOUNT 4
typedef int zip_dig[ZLEN];

int main(int argc, char** argv) {
zip_dig pgh[PCOUNT] =
 {{1, 5, 2, 0, 6},
 {1, 5, 2, 1, 3 },
 {1, 5, 2, 1, 7 },
 {1, 5, 2, 2, 1 }};
 int *linear_zip = (int *) pgh;
 int *zip2 = (int *) pgh[2];
 int result =
 pgh[0][0] +
 linear_zip[7] +
 *(linear_zip + 8) +
 zip2[1];
 printf("result: %d\n", result);
 return 0;
}

linux> ./array
result: 9

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Array Access
#include <stdio.h>
#define ZLEN 5
#define PCOUNT 4
typedef int zip_dig[ZLEN];

int main(int argc, char** argv) {
zip_dig pgh[PCOUNT] =
 {{1, 5, 2, 0, 6},
 {1, 5, 2, 1, 3 },
 {1, 5, 2, 1, 7 },
 {1, 5, 2, 2, 1 }};
 int *linear_zip = (int *) pgh;
 int *zip2 = (int *) pgh[2];
 int result =
 pgh[0][0] +
 linear_zip[7] +
 *(linear_zip + 8) +
 zip2[1];
 printf("result: %d\n", result);
 return 0;
}

linux> ./array
result: 9

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Pointers & Arrays #3

⬛Cmp: Compiles (Y/N)

⬛Bad: Possible bad
pointer reference (Y/N)

⬛Size: Value returned by
sizeof

Decl An *An **An

Cmp Bad Size Cmp Bad Size Cmp Bad Size

int A1[3][5]

int *A2[3][5]

int (*A3)[3][5]

int *(A4[3][5])

int (*A5[3])[5]

Decl ***An

Cmp Bad Size

int A1[3][5]

int *A2[3][5]

int (*A3)[3][5]

int *(A4[3][5])

int (*A5[3])[5]

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Declaration

int A1[3][5]

int *A2[3][5]

int (*A3)[3][5]

int *(A4[3][5])

int (*A5[3])[5]

A2/A4

A5

Allocated int

Unallocated pointer

Allocated pointer

Unallocated int

Allocated pointer to unallocated int

A1

A3

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Pointers & Arrays #3

⬛Cmp: Compiles (Y/N)

⬛Bad: Possible bad
pointer reference (Y/N)

⬛Size: Value returned by
sizeof

Decl An *An **An

Cmp Bad Size Cmp Bad Size Cmp Bad Size

int A1[3][5] Y N 60 Y N 20 Y N 4

int *A2[3][5] Y N 120 Y N 40 Y N 8

int (*A3)[3][5] Y N 8 Y Y 60 Y Y 20

int *(A4[3][5]) Y N 120 Y N 40 Y N 8

int (*A5[3])[5] Y N 24 Y N 8 Y Y 20

Decl ***An

Cmp Bad Size

int A1[3][5] N - -

int *A2[3][5] Y Y 4

int (*A3)[3][5] Y Y 4

int *(A4[3][5]) Y Y 4

int (*A5[3])[5] Y Y 4

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Floating Point Background

⬛History
▪ x87 FP

▪ Legacy, very ugly

▪ SSE FP

▪ Supported by Shark machines

▪ Special case use of vector instructions

▪ AVX FP

▪ Newest version

▪ Similar to SSE

▪ Documented in book

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Programming with SSE3
XMM Registers

■ 16 total, each 16 bytes

■ 16 single-byte integers

■ 8 16-bit integers

■ 4 32-bit integers

■ 4 single-precision floats

■ 2 double-precision floats

■ 1 single-precision float

■ 1 double-precision float

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scalar & SIMD Operations
■ Scalar Operations: Single Precision

■ SIMD Operations: Single Precision

■ Scalar Operations: Double Precision

+

%xmm
0

%xmm
1

addss
%xmm0,%xmm1

+ + + +

%xmm
0

%xmm
1

addps
%xmm0,%xmm1

+

%xmm
0

%xmm
1

addsd
%xmm0,%xmm1

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

FP Basics

⬛Arguments passed in %xmm0, %xmm1, ...

⬛Result returned in %xmm0

⬛All XMM registers caller-saved

float fadd(float x, float y)
{
 return x + y;
}

double dadd(double x, double y)
{
 return x + y;
}

 # x in %xmm0, y in %xmm1
 addss %xmm1, %xmm0
 ret

 # x in %xmm0, y in %xmm1
 addsd %xmm1, %xmm0
 ret

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

FP Memory Referencing

⬛ Integer (and pointer) arguments passed in regular registers

⬛FP values passed in XMM registers

⬛Different mov instructions to move between XMM registers,
and between memory and XMM registers

double dincr(double *p, double v)
{
 double x = *p;
 *p = x + v;
 return x;
}

 # p in %rdi, v in %xmm0
 movapd %xmm0, %xmm1 # Copy v
 movsd (%rdi), %xmm0 # x = *p
 addsd %xmm0, %xmm1 # t = x + v
 movsd %xmm1, (%rdi) # *p = t
 ret

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Other Aspects of FP Code

⬛Lots of instructions
▪ Different operations, different formats, ...

⬛Floating-point comparisons
▪ Instructions ucomiss and ucomisd

▪ Set condition codes CF, ZF, and PF

⬛Using constant values
▪ Set XMM0 register to 0 with instruction xorpd %xmm0, %xmm0

▪ Others loaded from memory

	Slide 1
	Slide 2
	Today
	Array Allocation
	Array Access
	Slide 6
	Understanding Pointers & Arrays #1
	Understanding Pointers & Arrays #1
	Today_clipboard0
	Structure Representation
	Generating Pointer to Structure Member
	Following Linked List
	Alignment Principles
	Specific Cases of Alignment (x86-64)
	Structures & Alignment
	Meeting Overall Alignment Requirement
	Arrays of Structures
	Accessing Array Elements
	Saving Space
	Example Struct Exam Question_clipboard0
	Slide 21
	Multidimensional (Nested) Arrays
	Nested Array Example
	Nested Array Element Access Code
	Understanding Pointers & Arrays #2_clipboard0
	Understanding Pointers & Arrays #2
	Multi-Level Array Example
	Element Access in Multi-Level Array
	Array Element Accesses
	Slide 30
	Byte-Oriented Memory Organization
	Example Data Representations
	Word-Oriented Memory Organization
	Byte Ordering
	Byte Ordering Example
	Examining Data Representations
	show_bytes Execution Example
	Representing Pointers
	Representing Strings
	Reading Byte-Reversed Listings
	Summary
	Slide 42
	Array Example
	Array Accessing Example
	Array Loop Example_clipboard0
	Array Loop Example
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	N X N Matrix Code
	16 X 16 Matrix Access
	n X n Matrix Access
	Example: Array Access_clipboard1
	Example: Array Access
	Understanding Pointers & Arrays #3_clipboard2
	Slide 61
	Understanding Pointers & Arrays #3
	Background
	Programming with SSE3
	Scalar & SIMD Operations
	FP Basics
	FP Memory Referencing
	Other Aspects of FP Code

