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Announcements

I This is the last lecture needed for bomblab!

m Friday’s will be more relevant to attacklab.

I No lecture tomorrow.
m TAs will hold office hours in this room instead.
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Today

Activity: r integer and

M Arrays r array ONLY
) Structures

m Nested arrays and structures

I Nested arrays

B Multi-dimensional

m Multi-level
I Endianness
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Array Allocation

Jl Basic Principle
T A[L];
m Array of data type T and length L
m Contiguously allocated region of L * sizeof (T) bytes in memory

char string[1l2];

X x+12
int val[5];
W W W W W
X x+4 x+8 x+ 12 x+ 16 x+ 20
double a[3];
1 | 1
X x+8 x+16 X+ 24
char *p[3];
X x+8 x+ 16 X+ 24
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Array Access

PBasic Principle
T A[L];
m Array of data type T and length L
m Identifier A can be used as a pointer to array element O: Type T*

! 2 1 3

F 3 F 3 F 3 F 3 F 3

int val[5];

x x+4 x+8 x+ 12 x + 16 x + 20

PReference Type Value

val int * X

*val int 1

val + 4 int * x + 16

*(val + 4) int 3

val[4] int 3

&val[4] int * x + 16

val + i int * x + 4 * i // &val[i]

val[5] int 227
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Array Accessing Example

=
jon
o
=
fo

int val[5];

16 20 24 28 32 36

int getNth
(int *z, size t digit)
{
return z[digit]; B Register $rdi contains
} starting address of array
P Register $rsi contains
Xx86-64 array index
# %rdi = z i Desired digit at
# %rsi = digit $rdi + 4*$rsi
movl (%rdi,%rsi,4), %eax # z[digit]

JUse memory reference
srdi,%$rsi, 4)
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Understanding Pointers & Arrays #1
| Ded | A |  *Am

o e [ [ e [

int Al1[3];

int *A2;

I Cmp: Compiles (Y/N)
I Bad: Possible bad pointer reference (Y/N)
B Size: Value returned by sizeof
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Understanding Pointers & Arrays #1

Coed | an | an
I ) R
N

int Al1[3];
int *A2; Y N 8 Y Y 4
Al Allocated pointer
Unallocated pointer
A2 @ > .
Allocated int
Unallocated int
I Cmp: Compiles (Y/N)

I Bad: Possible bad pointer reference (Y/N)
B Size: Value returned by sizeof
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Today

I Arrays -
I Structures Activity: r struct and
m Nested arrays and structures r nested ONLY

I Nested arrays
m Multi-dimensional
m Multi-level

 Endianness
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Structure Representation

r
struct rec {
int a[4];
size t i; a i next
* c
. struct rec *next; 0 16 o4 39

) Structure represented as block of memory
m Big enough to hold all of the fields

) Fields ordered according to declaration

m Even if another ordering could yield a more compact
representation

Il Compiler determines overall size + positions of fields

m Machine-level program has no understanding of the structures
in the source code
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Generating Pointer to Structure Member

r r+4*idx
struct rec {
int a[4];
size t i; a i next
% .
. struct rec *next; 0 16 24 39
I Generating Pointer to int *get ap
Arrav Element (struct rec *r, size t idx)
y {
m Offset of each structure return &r->a[idx];
member determined at }
compile time
m Computeasr + 4*idx # r in %rdi, idx in %rsi

leaq %$rdi,%$rsi,4), %rax
ret
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Following Linked List

struct rec {
int a[4];
int i;

.CCode . struct rec *next;
r 14
void set val M !
(struct rec *r, int wval) a i next
{ 24 32
while (z) { 0 1 16
int i = r->i; Element i
r->a[i] = val; Register
} r = r->next; o rdi r
} srsi val
.L11: # loop:
movslg 16(%rdi), %$rax # i = M[r+16]
movl %esi, (%rdi,%rax,4) # M[r+4*i] = val
movq 24 (%rdi), %$rdi # r = M[r+24]
testqg $rdi, %rdi # Test r
jne .L11 # if '=0 goto loop
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Alignment Principles

] Alighed Data
m Primitive data type requires K bytes
m Address must be multiple of K
m Required on some machines; advised on x86-64

I Motivation for Aligning Data

m Memory accessed by (aligned) chunks of 4 or 8 bytes (system
dependent)

m Inefficient to load or store datum that spans quad word
boundaries

m Virtual memory trickier when datum spans 2 pages

I Compiler

m Inserts gaps in structure to ensure correct alignment of fields
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Specific Cases of Alighment (x86-64)

B 1 byte: char, ...

m no restrictions on address
B 2 bytes: short, ...

m lowest 1 bit of address must be O,

B 4 bytes: int, float, ...
m lowest 2 bits of address must be 00,

Jl 8 bytes: double, long, char *,..
m lowest 3 bits of address must be 000,
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Structures & Alignment

I Unaligned Data struct S1 {
. . char c;
c| i[O0] i[l] . int i[2];
p p+l p+5 p+9 p+1l7 double v;
} *ps

I Aligned Data

m Address must be multiple of K
m Here K =8, due to double element

o] i[0] i[1] v
p+0 pt+4 p+8 p+16 pt+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8
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Meeting Overall Alignment Requirement

I For largest alignment requirement K struct S2 {

Il Overall structure must be multiple of K double v;
int i[2];
char c¢;

} *ps

v i[0] i[1] C

p+0 p+8 p+16 pt24
/1

Multiple of K=8
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Arrays of Structures

struct S2 {
] Overall structure length double v;
multiple of K e el g
char c;
I Satisfy alighment requirement } a[10];

for every element

al[0] a[l] a[2] e o o

a+0 a+24 a+48 a+72

v i[0] i[1] C
a+24 a+32 a+40 a+48
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Accessing Array Elements siemmeis 59
float v;
I Compute array offset 12*idx short j;
m sizeof (S3), including alignment spacers b allol;

 Element 5 is at offset 8 within structure

B Assembler gives offset a+8
m Resolved during linking

a[o] © o o a[idx] ® oo
a+0 a+l2 at+l2*idx
i v ]
at+l2*idx a+l2*idx+8
short get j(int idx) # 3rdi = idx
{ _ _ leaq (%rdi,%rdi,2),%rax # 3*idx
return a[idx].j; movzwl a+8(,%rax,4),%eax
}
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Saving Space

I Put large data types first

struct S4 { struct S5 {
char c; int 1i;
int 1i; char c;
char d; char d;

} *ps }o*ps

I Effect (K=4)
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Example Struct Exam Question

Problem 5. (8 points):
Struct alignment. Consider the following C struct declaration:

typedef struct {
char a;
long b;

chaz al31; See appendix!

foo;

1. Show how foo would be allocated in memory on an x86-64 Linux system. Label the bytes with the
names of the various fields and clearly mark the end of the struct. Use an X to denote space that is
allocated in the struct as padding.

e S s
I I I I I [ I
e S s
e S s
| I I I I (. I
e S s
e s e S T S
I I I I I [ I
e s e S T S
e s e S T S
I L I L I (. I
e s e S T S

http://www.cs.cmu.edu/~213/oldexams/exam1-f12.pdf

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20



Carnegie Mellon

Today

I Arrays
) Structures

m Nested arrays and structures

I Nested arrays Activity: r 2d ONLY

m Multi-dimensional and quiz!
m Multi-level

 Endianness
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Multidimensional (Nested) Arrays

Declaration

] A[0][0] e e o A[O][C-1]
T A[R] [C];
m 2D array of datatype T * *
m Rrows, Ccolumns . .

m Type T element requires K bytes
I Array Size

m R*C7*Kbytes
I Arrangement

m Row-Major Ordering

A[R-1][0] » ¢ e¢A[R-1][C-1]

int A[R][C];

A A A A A A
[0] o o o [0] [1] o o o [1] ° ° ° [R—l] o o o [R—l]
[0] [C-1]( [O] [C-1] [0] [C-1]
4*R*C
Bytes
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Nested Array Example

#define PCOUNT 4
int pgh[PCOUNT] [5] =
{{11 5! 2! OI 6}1

{1I 5’ 2’ 1’ 3 }I
{1I 5’ 2’ 1’ 7 }I
{1, 5, 2, 2, 1 1}};

int pgh[41(5]1; |1|5|2|0|6|1|5|2|1|3|1|5|2|1|7]|1|5|2|2]|1

2 Wi A A W;
76 96 116 136 156

B “Row-Major” ordering of all elements in memory
m Variable pgh: array of 4 elements, allocated contiguously

m Each elementis an array of 5 int'’s, allocated contiguously
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Nested Array Element Access Code

1/ 5(2(0|6|1|5(2|1|3]|1(5(2|1|7|1(5|2|2]|1

pgh pgh[1] [1]
int get pgh digit(size t index, size t digq)
{

return pgh[index] [dig];
}

leaq ($rdi,%rdi,4), %rax # 5*index
addl S%rax, %rsi # 5*index+dig
movl pgh(,%rsi,4), %eax # M[pgh + 4* (5*index+dig) ]

I Array Elements
m pgh[index] [dig] isint
m Address:pgh + 20*index + 4*dig
= pgh + 4* (5*index + digq)
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Understanding Pointers & Arrays #2
| Ded | A |  *an |  **An

I 0 e K I

int A1[15];
int A2[3][5];
int (*A3) [5];
int *A4[3];

int (*A5[3]):

I Cmp: Compiles (Y/N)
I Bad: Possible bad pointer reference (Y/N)
B Size: Value returned by sizeof
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Understanding Pointers & Arrays #2
| Ded | A |  *An |  *tAn

I < R S N N N

int Al1[15];

int A2[3][5]; Y N 60 Y N 20 Y N 4
int (*A3) [5]; Y N 8 Y Y 20 Y Y 4
int *A4[3]; Y N 24 Y N 8 Y Y 4
int (*A5[3]); Y N 24 Y N 8 Y Y 4
Al/A2
A3 @ >
A4/A5 ? ? ?

Allocated pointer

Unallocated pointer
Allocated int
Unallocated int
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Multi-Level Array Example

int emu[5] = { 1, 5, 2, 1, 3 }; I Variable univ denotes
int mit[5] = { 0, 2, 1, 3, 9 }; array of 3 elements
int ucb[5] = { 9, 4, 7, 2, 0 }; Il Each element is a pointer
#define UCOUNT 3 m 8 bV.teS .
int *univ[UCOUNT] = {mit, cmu, ucb}; | [l Each pointer points to array
of int’s
cmu
1 5 2 1 3
univ
- 't.16 20 24 28 32 36
—p
160 mi | 0 2 1 __ 3 9 ‘
168 — 16 * W W W W
36 40 44 48 52 56
176 —{ 56 ucb
9 4 7 2 0

56 60 64 68 72 76
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Element Access in Multi-Level Array

cmu

int get univ digit 1 5 2 1 3
(size t index, size t digit) ey ///#;:

{ ?‘-..._._---"' 0 2 1 3 9
} return univ|[index] [digit]; t\‘h_:f; . ; . . .
salqg $2, %rsi # 4*digit
addqg univ(,%rdi,8), %rsi # p = univ[index] + 4*digit
movl $rsi), %eax # return *p
ret
I Computation

m Element access Mem[Mem[univ+8*index]+4*digit]
m Must do two memory reads

m First get pointer to row array

m Then access element within array
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Array Element Accesses

Nested array

Multi-level array

int get pgh digit
(size t index, size t digit)

int get univ digit
(size_t index, size t digit)

return pgh[index] [digit]; return univ[index] [digit];
cmu
{1 | s | 2 | 1 | 3 ]
s 0w 4 m
1|5/2|o0|6|1|5]|2|1|3|1|5]|2|1|7|1|5]|2|2|1 ] 4
160 =36 M e T 2 T 1 T 3 T 9 ]
168 —116 I 1 T T 1 1
76 96 116 136 156 176 —56 @ uep 3 40 44 48 5;2 5;6
= 0

Accesses looks similar in C, but address computations very different:

Mem[pgh+20*index+4*digit]

Mem[Mem[univ+8*index]+4*digit]

29
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Today

Il Arrays
) Structures

m Nested arrays and structures

[ Nested arrays
m Multi-dimensional
m Multi-level

B Endianness Activity: r endianness
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Byte-Addressable Memory

] Programs refer to data by address
m For now, imagine memory as a large array of bytes
m An address is like an index into that array
m A pointer variable stores an address
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Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
pointer 4 8 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32



Carnegie Mellon

Word-Oriented Memory Organization

32-bit 64-bit

Il Addresses Specify Byte Words Words BYtes Addr
Locations 0000
m Address of first byte in word Addr 0001
m Addresses of successive words differ 0000 Addr 0002
by 4 (32-bit) or 8 (64-bit) 0003
0000 0004

Addr 0005

0004 0006

0007

0008

Addr 0009

0008 | | 4 4dr 0010

0011

0008 0012

Addr 0013

0012 0014

0015
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Byte Ordering

B So, how are the bytes within a multi-byte word ordered in
memory?

Il Conventions
m Big Endian: Sun, PPC Mac, Internet
m Least significant byte has highest address

m Little Endian: x86, ARM processors running Android, iOS, and
Windows

m Least significant byte has lowest address
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Byte Ordering Example

 Example
m Variable x has 4-byte value of 0x01234567
m Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01l 23 45 67

Little Endian 0x100 0x101 0x102 0x103
67 45 23 01
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Examining Data Representations

I Code to Print Byte Representation of Data

m Casting pointer to unsigned char * allows use as a byte array

typedef unsigned char *pointer;

void show bytes (pointer start, size t 1len) {
size t i;
for (1 = 0; i < len; i++)
printf ("%p\t0x%.2x\n", start+i, start[i]);
printf ("\n") ;

}

Printf directives:

Non-portable C code! /6p: Print pointer
%x: Print Hexadecimal
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show_bytes Execution Example

int a = 15213; // 0x3be6d
printf ("int a = 15213;\n");
show bytes ((pointer) &a, sizeof(a)):;

Result (Linux x86-64):

int a = 15213;

Ox7fffb’7f71dbc 6d
Ox7fffb’7f71dbd 3b
Ox7fffb7f71dbe 00
Ox7f£ffb7£71dbf 00
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Representing Pointers

int B = -15213;
int *P = &B;
Sun 1A32 x86-64
EF AC 3C
FF 28 1B
FB F'5 FE
2C FF 82
FD
TF
00
00

Different compilers & machines assign different locations to objects

Even get different results each time run program
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Representing Strings

char S[6] = "18213";
) Strings in C
m Represented by array of characters
m Each character encoded in ASCII format IA32 Sun
m Standard 7-bit encoding of character set 31 | o 31
m Character “0” has code 0x30 38 | J 38
- Digit i has code Ox30+i 32 | J 32
m String should be NUL-terminated 37 Lk —
m Final character =0
o 33 |t - 33
l Compatibility 50 |k 00

m Byte ordering not an issue
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Reading Byte-Reversed Listings

Jl Disassembly
m Text representation of binary machine code
m Generated by program that reads the machine code

I Example Fragment

Address Instruction Code Assembly Rendition

8048365: 5b pop sebx
8048366: 81 c3 ab 12 00 00 add $0xl12ab, $ebx

804836¢c: 83 bb 28 00

0 00 00 cmpl $0x0, 0x28 (%ebx)

l Deciphering Numbers
m Value: 0x12ab
m Padto 32 bits: 0x000012a
m Splitinto bytes: 00 00 12 a
m Reverse:ab 12 00 00
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Summary

I Arrays
m Elements packed into contiguous region of memory
m Use index arithmetic to locate individual elements

I Structures

m Elements packed into single region of memory
m Access using offsets determined by compiler
m Possible require internal and external padding to ensure alignment

Il Combinations
m Can nest structure and array code arbitrarily

 Endianness
m Byte-addressable mem. introduces ordering within multibyte types

Il Floating Point (see appendix!)
m Data held and operated on in XMM registers
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Appendix
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Array Example

#define ZLEN 5
typedef int zip dig[ZLEN];

zip digemu = { 1, 5, 2, 1, 3 };

zip digmit = { 0, 2, 1, 3, 9 };

zip dig ucb = { 9, 4, 7, 2, 0 };

zip dig cmu; 1 2 2 1 | 3 |
16 20 24 28 32 36

zip dig mit; o | 2 | 1 | 3 | 9 |
36 40 44 48 52 56

zip dig ucb; 2 | 4 | 7 2 | 0
56 60 64 68 72 76

B Declaration “zip dig cmu” equivalentto “int cmu[5]”
I Example arrays were allocated in successive 20 byte blocks
m Not guaranteed to happen in general
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Array Accessing Example

=
jon
o
=
fo

zip dig cmu;

16 20 24 28 32 36

int get digit
(zip dig z, int digit)

{
return z[digit]; B Register $rdi contains
} starting address of array
P Register $rsi contains
Xx86-64 array index
# %rdi = z i Desired digit at
# %rsi = digit $rdi + 4*$rsi
movl (%rdi,%rsi,4), %eax # z[digit]

JUse memory reference
srdi,%$rsi, 4)
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Array Loop Example

# %rdi = z
movl $0, %eax
jmp .L3

.L4:

addl $1, (%rdi,%rax,4)
addqg $1, %rax

.L3:
cmpq S$4, %$rax
jbe .L4
rep; ret
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Array Loop Example

void zincr(zip dig z) {
size t i;
for (1 = 0; i < ZLEN; i++)

z[1i]++;
}
# %rdi = z
movl $0, %eax
jmp .L3

.L4:
addl $1, (%rdi,%rax,4)
addqg $1, %rax

.L3:
cmpqg $4, %rax
jbe .L4
rep; ret
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Example Struct Exam Question

Problem 5. (8 points):
Struct alignment. Consider the following C struct declaration:

typedef struct {
char a;
long b;
fleocat c;
char d[3];
int xe;
short «+£f;
foo;

1. Show how foo would be allocated in memory on an x86-64 Linux system. Label the bytes with the
names of the various fields and clearly mark the end of the struct. Use an X to denote space that is
allocated in the struct as padding.

e S s
I I I I I [ I
e S s
e S s
| I I I I (. I
e S s
e s e S T S
I I I I I [ I
e s e S T S
e s e S T S
I L I L I (. I
e s e S T S

http://www.cs.cmu.edu/~213/oldexams/exam1-f12.pdf
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Example Struct Exam Question

Problem 5. (8 points):
Struct alignment. Consider the following C struct declaration:

typedef struct {
char a;
long b;
fleocat c;
char d[3];
int xe;
short «+£f;
foo;

1. Show how foo would be allocated in memory on an x86-64 Linux system. Label the bytes with the
names of the various fields and clearly mark the end of the struct. Use an X to denote space that is
allocated in the struct as padding.

e Ea e A e e St S S
alXIXIXIXIXIXIX'b'b'b'b'b'blb!b
e Ea e A e e St S S
e Ea e A e e St S S
lclcliclcidldidI X! | lel |

e Ea e A e e St S S
4+ttt —
E1£ £ £ £ £1£ £ | | |

4+ttt —
4+ttt —
| | | | | | |

4+ttt —

http://www.cs.cmu.edu/~213/oldexams/exam1-f12.pdf

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48



Carnegie Mello

Example Struct Exam Question (Cont’d)

Problem 5. (8 points):
Srruct alignmeni. Consider the following C struct declaration:

tyvpedef struct {
char aj
long ki
flocat c;
char 4A[3];
int xe;
short =f;

foo;

1. Show how foo would be allocated in memory on an x86-64 Linux system. Label the bytes with the
names of the various fields and clearly mark the end of the struct. Use an X to denote space that is
allocated in the struct as padding.

2. Rearrange the elements of foo to conserve the most space in memory. Label the bytes with the
names of the various fields and clearly mark the end of the struct. Use an X to denote space that is
allocated in the struct as padding.

ot ot —— et F— b — t——t—— t— b —t—— +——+
I . I I I I I
ot ot —— et F— b — t——t—— t— b —t—— +——+
+——t—— f——t——t—— +——t—— +——t——+—— +——t+—— t——t——t—— +——+
I . I I I I I
ot ot —— et F— b — t——t—— t— b —t—— +——+
ot ot —— et F— b — t——t—— t— b —t—— +——+
I . I I I I I
ot ot —— et F— b — t——t—— t— b —t—— +——+
+——t—— f——t——t—— +——t—— +——t——+—— +——t+—— t——t——t—— +——+
I . I I I I I
ot ot —— et F— b — t——t—— t— b —t—— +——+

http://www.cs.cmu.edu/~213/oldexams/exam1-f12.pdf
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Example Struct Exam Question (Cont’d)

Problem 5. (8 points):

Srruct alignmeni. Consider the following C struct declaration:

tyvpedef struct {
char aj
long ki
float c:,
char df ;
int xe;
short =f;

foo;

1. Show how foo would be allocated in memory on an x86-64 Linux system. Label the bytes with the
names of the various fields and clearly mark the end of the struct. Use an X to denote space that is
allocated in the struct as padding.

2. Rearrange the elements of foo to conserve the most space in memory. Label the bytes with the
names of the various fields and clearly mark the end of the struct. Use an X to denote space that is
allocated in the struct as padding.

_____ +__+_____ N E— P R — SR —— P E—— ___
|adddCCCC|bbbbbbbb
————— +——t——F——F——F——F+——F——F——+——F——F+——F+——F——+——+
+——t—— Fm—t——t—— +——t—— e F——t—— s +——+
l el | | If f f f f f f f
+——+—— +——t——t—— +——t—— t——t——F——F——F——F—F——+—— +——+
S +——t——t—— +——t—— +——t——+—— e +——t——t+—— +——+
| | | | | | | | | |

S +——t——t—— +——t—— +——t——+—— e +——t——t+—— +——+
+——t—— Fm—t——t—— +——t—— e F——t—— s +——+
| | | | | | | | | |

S +——t——t—— +——t—— +——t——+—— e +——t——t+—— +——+

http://www.cs.cmu.edu/~213/oldexams/exam1-f12.pdf
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Nested Array Row Access

I Row Vectors

m A[i] isarray of C elements
m Each element of type T requires K bytes
m StartingaddressA + i * (C * K)

int A[R][C];

A[0] —m < A[i] > < A[R-1]
A A A A A A
[0] coo0 [0] | @ @ [1] coeoo0 [i] |®@ ®© e |[R-1] oo [R-1]
[0] [C-1] [0] [C-1] [0] [C-1]
4 T 4
A A+ (1*C*4) A+ ((R-1) *C*4)
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Nested Array Row Access Code

1/ 5(2(0|6|1(5(2|1|3]|1(5(2|1|7|1(5|2|2]|1

pgh pgh[2] int *get pgh zip(size_ t index)
{

return pgh[index];

}

# %$rdi = index
leaqg (%rdi,%rdi,4) ,%rax# 5 * index
leaq pgh(,%rax,4) ,%rax # pgh + (20 * index)

I Row Vector
m pgh[index] isarray of 5int’s
m Starting address pgh+20*index

I Machine Code

m Computes and returns address
m Compute aspgh + 4* (index+4*index)
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Nested Array Element Access

I Array Elements
m A[i] []j] is element of type T, which requires K bytes

m Address A + i * (C * K) + J * K
=A + (i *C+ j) *K

int A[R][C];

A[0] —s ) A[i] ?][R'

7
o 0 A = [R~
[0] ) o 0 © XX [1] eoe |0 0 o XX 1]
[0] Le- [3] 1] [C-
1] [0] -
L 3 Wn £ |

A A+ (i*C*4) T A+ ((R-1) *C*4)

A+ (i*C*4)+(3*4)
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Nested Array Element Access Code

1/ 5(2(0|6|1|5(2|1|3]|1(5(2|1|7|1(5|2|2]|1

pgh pgh[1] [1]
int get pgh digit(size t index, size t digq)
{

return pgh[index] [dig];
}

leaq ($rdi,%rdi,4), %rax # 5*index
addl S%rax, %rsi # 5*index+dig
movl pgh(,%rsi,4), %eax # M[pgh + 4* (5*index+dig) ]

I Array Elements
m pgh[index] [dig] isint
m Address:pgh + 20*index + 4*dig
= pgh + 4* (5*index + digq)
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N X N MatriX #define N 16

typedef int fix matrix|[N] [N];
Code /* Get element A[i][j] */
int fix ele(fix matrix A,
size t i, size t j)

I Fixed dimensions

m Know value of N at {

compile time return A[i][J];

}
. . . #define IDX(n, i, ] i) *(n)+ (3
.Varl:f\b.le. dlme.n5|ons, T e eleme(nt A[i?)[j]((*)/ (n)+(3))

eXphC't mdexmg int vec ele(size t n, int *A,
m Traditional way to size_t i, size_t j)

implement dynamic {

return A[IDX(n,i,j)];

arrays
}

. . . /* Get element a[i][j] */
.Va”able dimensions, int var ele(size t n, int A[n] [n],

implicit indexing size t i, size t j) {

m Now supported by gcc } return A[1][]];
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16 X 16 Matrix Access

I Array Elements
m int A[l6][16];
m Address A + i * (C * K) + J * K
mC=16,K=4

/* Get element A[i][j] */
int fix ele(fix matrix A, size t i, size t j) {
return A[i] []];

}
# A in %rdi, i in %rsi, j in %rdx
salqg $6, %rsi # 64*i
addg $rsi, %rdi # A + 64*1i
movl $rdi,%rdx,4), %Seax # M[A + 64*i + 4*]]

ret
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n X n Matrix Access
I Array Elements

m size t n;

m int A[n] [n];

m Address A + i * (C * K) + j * K
mC=nK=4

m Must perform integer multiplication

/* Get element A[i][j] */
int var ele(size t n, int A[n][n], size t i, size t j)

{
return A[i] []];
}
# n in %rdi, A in %rsi, i in %rdx, j in %rcx
imulqg $rdx, %rdi # n*i
leaq (%$rsi,%rdi,4), %Srax # A + 4*n*i
movl $rax,%rcx,4), %Seax # A + 4*n*i + 4%*5

ret
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Example: Array Access

#include <stdio.h>
#define ZLEN 5

##define PCOUNT 4

typedef int zip dig[ZLEN];

int main(int argc, char** argv) {
zip dig pgh[PCOUNT] =

{{1, 5, 2, 0, 6},

{1, 5, 2, 1, 3},

{1, 5, 2, 1, 7}, linux> ./array
{1, 5, 2, 2, 1 }}; result: 9
int *linear zip = (int *) pgh;

int *zip2 = (int *) pgh[2];
int result =
pgh[0] [0] +
linear zip[7] +
*(linear zip + 8) +
zip2[1];
printf ("result: %d\n", result);
return O;
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Example: Array Access

#include <stdio.h>
#define ZLEN 5

##define PCOUNT 4

typedef int zip dig[ZLEN];

int main(int argc, char** argv) {
zip dig pgh[PCOUNT] =

{{1, 5, 2, 0, 6},

{1, 5, 2, 1, 31},

{1, 5, 2, 1, 71}, linux> ./array
{1, 5, 2, 2, 1 }}; result: 9
int *linear zip = (int *) pgh;

int *zip2 = (int *) pgh[2];
int result =
pgh[0] [0] +
linear zip[7] +
*(linear zip + 8) +
zip2[1];
printf ("result: %d\n", result);
return O;
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Understanding Pointers & Arrays #3
| Ded | an | *an | **an

I O R I R

int A1[3][5]

int *A2[3][5]

int (*A3) [3][5]
int *(A4[3][5])
int (*A5[3]) [5]

ll Cmp: Compiles (Y/N) - | C T T

] Bad: Possible bad int A1[3][5]
pointer reference (Y/N)  int *a2[3] (5]

i Size: Value returned by  int (*a3) [3][5]
sizeof int *(A4[3][5])
int (*A5[3]) [5]
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Allocated pointer to unallocated int o—> int A1[3][5]
Unallocated pointer

int *A2[3][5]

Allocated int
Unallocated int int (*A3)[3][5]
int *(A4[3][5])
Al int (*A5[3]) [5]
A2/A4
—— o——> — *——> o——
o— o— o—> o— o—
o— o—> o— o—> o—
A3 @ >
A5
R ) )
| I
l ]
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Understanding Pointers & Arrays #3
| Ded | A | A |  x*Am

I 3 8 i ) i

int A1[3][5]

int *A2[3] [5] Y N 120 Y N 40 Y N 8
int (*A3) [3][5] Y N 8 Y Y 60 Y Y 20
int *(A4[3][3]) Y N 120 Y N 40 Y N 8
int (*A5[3]) [3] Y N Y N Y Y

Bl Cmp: Compiles (Y/N) T ———

] Bad: Possible bad t A1[3][5]
pointer reference (Y/N)  int *a2[3]1[5]

i Size: Value returned by  int (*a3) [3][5]
sizeof int *(A4[3][5])
int (*A5[3]) [5]

K K K K
K K K K
SO DD
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Floating Point Background

] History
m x87 FP
m Legacy, very ugly
m SSE FP
m Supported by Shark machines
m Special case use of vector instructions
m AVXFP
m Newest version
m Similar to SSE
m Documented in book
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Programming with SSE3
XMM Registers

J 16 total, each 16 bytes
B 16 single-byte integers

J 8 16-bit integers

H 4 32-bit integers

B 4 single-precision floats

B 2 double-precision floats

%“1 single-precision float

1 double-precision float

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64



Carnegie Mellon

Scalar & SIMD Operations

Bl Scalar Operations: Single Precision addss

Sxmm0 , $xmuad
\p 0
$xmm
1
B SIMD Operations: Single Precision addps
$xmm0 , Yxmmd
N NS N N
$xmm
1
Bl Scalar Operations: Double Precision addsd
Sxmm0 , $xmead
\@ 0
$xmm
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FP Basics

B Arguments passed in $xmm0, $xmml, ...
B Result returned in $xmmO
I All XMM registers caller-saved

float fadd(float x, float y) double dadd(double x, double y)
{ {
return x + y; return x + y;
} }
# x in %xmm0, y in $%xmml # x in %xmm0, y in %xmml
addss $xmml, %xmmO addsd $xmml, %xmmO
ret ret
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FP Memory Referencing

I Integer (and pointer) arguments passed in regular registers
] FP values passed in XMM registers

] Different mov instructions to move between XMM registers,
and between memory and XMM registers

double dincr (double *p, double v)
{

double x = *p;
*P = x + v;
return x;

# p in %rdi, v in %xmmO

movapd $%$xmmO, $xmml # Copy v
movsd rdi), $xmm0 # x = *p
addsd $xmm0O, $%$xmml ¥ t=x+v
movsd gxmml, (%rdi) # *p =t

ret
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Other Aspects of FP Code

[ Lots of instructions
m Different operations, different formats, ...

I Floating-point comparisons
m Instructions ucomiss and ucomisd
m Set condition codes CF, ZF, and PF

I Using constant values
m Set XMMO register to O with instruction xorpd %xmmO, %xmmO
m Others loaded from memory
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