
15213 Lecture 9: Advanced aka Security
POGIL Activity Solutions

1 Getting Started

1. The struct is allocated on the stack, as a local variable.

2. Each callq instruction pushes the (correct) return address onto the stack.

3. This function call overwrote the return address for fun() with an address pointing to
some non-program memory, causing attempted execution of either invalid operations
or non-executable operations.

2 Gets

1. We don’t!

2. When it encounters a newline or the end of the user input stream.

3. No, they purely depend on how many characters the user inputs.

4. strcpy(), strcat(), scanf(), puts(), fputs(), etc.

3 Overwriting Stack

1. The input buffer is at most 0x18 (24) bytes long. (Note that the compiler may have
inserted padding to align the stack.) The user may or may not enter a string shorter
than this safe length.

1

2.

+0x00 user string ← $rsp = 0x414140

+0x08 user string

+0x10 user string

+0x18 return address

+0x20 ??

+0x28 ??

...

3. The given solution is using ASCII bytes written left-right (in order of increasing
address).

+0x00 12345678 ← $rsp = 0x414140

+0x08 12345678

+0x10 12345678

+0x18 @AA000001

+0x20 ??

+0x28 ??

...

1Assuming the upper 4 bytes of the original return address was all 0’s

4 Exploit

1. Starting from echo()’s call to gets(), at 0x4006d6:

0x4006d6 -> 0x4006db (mov) -> 0x4006de (puts) -> 0x4006e3 (add) ->

0x4006e7 (retq) -> [USER INPUT] 0x414140 (xor) -> 0x414143 ... etc.

2. When control was going to be returned to echo()’s caller, control was instead trans-
ferred to user input on the stack.

1. movl $decafbad, %eax

2. The instruction bytes would replace the first 1–5 characters of the input string.

1. See footnote 1, question 3.3

5 Defense

1. Execution would jump to an unknown section of memory, almost certainly executing
non-exectuable or invalid code before being terminated by the OS.

2. By randomizing the starting address of the stack at runtime.

1. <...echo()’s code...>

%rax = 0x28;

*(%rsp + 8) = %rax;

%rax = 0;

<...echo()’s code...>

%rax = *(%rsp + 8);

if (%rax != 0x28) stack_chk_fail()

<...echo()’s return...>

2. We would overwrite *(%rsp + 8), causing stack_chk_fail() to be executed and
our program to terminate.

3. This method of defense makes our program slower to compile, as the compiler needs to
determine where and how to insert these ‘canaries,’ slower to execute, as it involves
adding instructions, and makes our program larger (in the given example echo()

grew by 37 bytes).

6 ROP

1. We overwrote the return address for echo()’s caller before executing retq.

2. c3

3. 0x4004d3

4. movq %rax, %rdi

retq

<...instructions starting at the second next stack address

prior to running this code block...>

5. If there is no return instruction at the end of the gadget, excution will never jump
to the next one in the chain. It’s possible to get lucky and find a gadget that is
two instructions that you need lined up, but otherwise you need a return after every
instruction.

	Getting Started
	Gets
	Overwriting Stack
	Exploit
	Defense
	ROP

