Carnegie Mellon

Course OverReview

15-213: Introduction to Computer Systems
26t Lecture, August 2, 2016

Instructor:
Brian Railing

The course that gives CMU its “Zip”!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Overview

m Course theme

m Five realities

m How the course fits into the CS/ECE curriculum
m Academic integrity

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Course Theme:

Abstraction Is Good But Don’t Forget Reality

m Most CS and CE courses emphasize abstraction
= Abstract data types
= Asymptotic analysis

m These abstractions have limits

= Especially in the presence of bugs
= Need to understand details of underlying implementations

m Useful outcomes from taking 213
= Become more effective programmers
= Able to find and eliminate bugs efficiently
= Able to understand and tune for program performance
" Prepare for later “systems” classes in CS & ECE

= Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems, Storage Systems, etc.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Great Reality #1:
Ints are not Integers, Floats are not Reals

m Example 1: Is x2 > 0?

looe 2. .. 1,306... 1,307... 0. 32,767...-32,768... |...-32,767...-32,7%6 ...

B,AM A é&%ﬂ ™ Baan
B | i

= 40000 * 40000 --> 1600000000
= 50000 * 50000 -->?

m Example 2:Is(x+y)+z = x+(y + 2)?
= Unsigned & Signed Int’s: Yes!
= Float’s:
. (1e20 +-1e20) +3.14 -->3.14
= 120+ (-1e20 + 3.14) --> ??

" Float’s: Yes!

BAAA

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Source: xked.com/571 5

Carnegie Mellon

Computer Arithmetic

m Does not generate random values
= Arithmetic operations have important mathematical properties

I (] I”

m Cannot assume all “usual” mathematical properties
"= Due to finiteness of representations
" Integer operations satisfy “ring” properties
= Commutativity, associativity, distributivity
" Floating point operations satisfy “ordering” properties
= Monotonicity, values of signs

m Observation

"= Need to understand which abstractions apply in which contexts
" Important issues for compiler writers and serious application programmers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Great Reality #2:

You’'ve Got to Know Assembly

m Chances are, you’ll never write programs in assembly
= Compilers are much better & more patient than you are

m But: Understanding assembly is key to machine-level execution
model
= Behavior of programs in presence of bugs
= High-level language models break down
® Tuning program performance
= Understand optimizations done / not done by the compiler
= Understanding sources of program inefficiency
" Implementing system software
= Compiler has machine code as target
= Operating systems must manage process state
" Creating / fighting malware
= x86 assembly is the language of choice!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Great Reality #3: Memory Matters

Random Access Memory Is an Unphysical Abstraction

m Memory is not unbounded

" |t must be allocated and managed
= Many applications are memory dominated

m Memory referencing bugs especially pernicious
= Effects are distant in both time and space

m Memory performance is not uniform
= Cache and virtual memory effects can greatly affect program performance

= Adapting program to characteristics of memory system can lead to major
speed improvements

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Memory Referencing Errors

m C and C++ do not provide any memory protection
® Qut of bounds array references
" |nvalid pointer values
= Abuses of malloc/free

m Can lead to nasty bugs
= Whether or not bug has any effect depends on system and compiler
= Action at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated

m How can | deal with this?
® Program in Java, Ruby, Python, ML, ...
= Understand what possible interactions may occur
= Use or develop tools to detect referencing errors (e.g. Valgrind)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Great Reality #4: There’s more to

performance than asymptotic complexity

m Constant factors matter too!
m And even exact op count does not predict performance

= Easily see 10:1 performance range depending on how code written
= Must optimize at multiple levels: algorithm, data representations,
procedures, and loops
m Must understand system to optimize performance
" How programs compiled and executed
" How to measure program performance and identify bottlenecks

" How to improve performance without destroying code modularity and
generality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Great Reality #5:

Computers do more than execute programs

m They need to get data in and out

= |/O system critical to program reliability and performance

m They communicate with each other over networks
"= Many system-level issues arise in presence of network
= Concurrent operations by autonomous processes
= Coping with unreliable media
= Cross platform compatibility
= Complex performance issues

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Textbooks

m Randal E. Bryant and David R. O’Hallaron,

= Computer Systems: A Programmer’s Perspective, Third Edition (CS:APP3e),
Pearson, 2016

" http://csapp.cs.cmu.edu
" This book really matters for the course!
= How to solve labs
= Practice problems typical of exam problems

m Brian Kernighan and Dennis Ritchie,

= The C Programming Language, Second Edition, Prentice Hall, 1988
= Still the best book about C, from the originators

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Programs and Data

m Topics
= Bits operations, arithmetic, assembly language programs
= Representation of C control and data structures
" Includes aspects of architecture and compilers

m Assignments
= L1 (datalab): Manipulating bits
= |2 (bomblab): Defusing a binary bomb
= |3 (attacklab): The basics of code injection attacks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

The Memory Hierarchy

m Topics
= Memory technology, memory hierarchy, caches, disks, locality
" Includes aspects of architecture and OS

m Assignments
® L4 (cachelab): Building a cache simulator and optimizing for locality.
= Learn how to exploit locality in your programs.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Exceptional Control Flow

m Topics

= Hardware exceptions, processes, process control, Unix signals,
nonlocal jumps

" Includes aspects of compilers, OS, and architecture

m Assignments

= L5 (tshlab): Writing your own Unix shell.
= A first introduction to concurrency

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Virtual Memory

m Topics
= Virtual memory, address translation, dynamic storage allocation
" Includes aspects of architecture and OS

m Assignments
= L6 (malloclab): Writing your own malloc package
= Get a real feel for systems-level programming

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Networking, and Concurrency

m Topics
= High level and low-level I/O, network programming
" |nternet services, Web servers
® concurrency, concurrent server design, threads

|/0 multiplexing with select
" Includes aspects of networking, OS, and architecture

m Assignments
= L7 (proxylab): Writing your own Web proxy

= Learn network programming and more about concurrency and
synchronization.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Lab Rationale

m Each lab has a well-defined goal such as solving a puzzle or
winning a contest

m Doing the lab should result in new skills and concepts

m We try to use competition in a fun and healthy way
= Set a reasonable threshold for full credit
= Post intermediate results (anonymized) on Autolab scoreboard for glory!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Course Perspective

m Most Systems Courses are Builder-Centric
= Computer Architecture
= Design pipelined processor in Verilog
® Operating Systems
= Implement sample portions of operating system
= Compilers
= Write compiler for simple language
= Networking
= Implement and simulate network protocols

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Course Perspective (Cont.)

m Our Course is Programmer-Centric

= Purpose is to show that by knowing more about the underlying system,
one can be more effective as a programmer

Enable you to
= Write programs that are more reliable and efficient
= [ncorporate features that require hooks into OS

— E.g., concurrency, signal handlers

Cover material in this course that you won’t see elsewhere

Not just a course for dedicated hackers
= We bring out the hidden hacker in everyone!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Role within CS/ECE Curriculum

CS 418 CS 412 ECE 545/549
Parallel OS Practicum Capstone
CS 415 CS 441 s 41.0 CS411 EC.E .340 ECE 447 ECE 349 ECE 348
Operating . Digital . Embedded Embedded
Databases Networks Compilers . Architecture
Systems Computation Systems System Eng.
\ t / / /
Network Processes Machine
Data Reps. . : Execution Model
Memory Model Protocols Mem. Mgmt Code Arithmetic

Memory System

CS 440
Pistributed*——— Network Prog

systems Concurrency \

Foundation of Computer Systems
% Underlying principles for hardware,
software, and networking

CS 122
Imperative
Programming

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Cheating: Consequences

m Penalty for cheating:

Removal from course with failing grade (no exceptions!)
Permanent mark on your record

Your instructors’ personal contempt

If you do cheat — come clean asap!

m Detection of cheating:
= We have sophisticated tools for detecting code plagiarism
= Last Fall, 20 students were caught cheating and failed the course.
= Some were expelled from the University

m Don’t do it!
= Start early
= Ask the staff for help when you get stuck

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

FCEs

Semester: Summer 2016

Course: 15213

Section: A

Course Thtle: INTR OMPUTER SYSTEMS

Instructor(s): BRIAN RAILING

In the case of multiple nstractors, vou will be asked 1o evaluate each Imstructor separately,

Instructor: BRIAN RAILING (PREVIEW MODE NOTE; Ths 10 these guestions are le crty by RAILING)
1-3 46 7.9 112 1815 16-18 - 24 5=
L O average, how pussy hows per w Yo spent on this chisa, soacloding amtending clisses, doug readings, fovwaig o00es
“TING papecs and anmy oOler cours: n
Above Helon
Excellomt Average Acvrmge Average Yoor (1)
o (8l & 2)

2 Does the facoley member display mm mtenest m stadenes’ learmmg?

e i Clear explamation of e comse requiremens”

¢ Does the facelty member provide o clear explananon of the deserung objectives oc goals of the course

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Final Exam

m August 5t
= Pittsburgh 11am — Close
= Silicon Valley
" Qatar

m The focus is on the second half of the course
" |0
= Signals
" Processes

Virtual Memory

Malloc

Threads

Thread Synchronization
= Other

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

24

Carnegie Mellon

In the following code, a parent opens a file twice, then the child
reads a character:

char c;

int fdl = open("foo.txt", O RDONLY) ;

int fd2 = open("foo.txt", O RDONLY) ;

if (!fork()) { read(fdl, &c, 1); }

Clearly, in the child, fd1 now points to the second character of
foo.txt. Which of the following is now true in the parent?

@ fd1l and fd2 both point to the first character.

v fdl and fd2 both point to the second character.

0 fd1 points to the first character while fd2 points to the second character.
) fd2 points to the first character while fd1 points to the second character

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Signals

void sigint handler (int sig)
{
pid t pid = fgpid(job 1list); /* Masking signals */
sigset t mask, prev mask;
Sigfillset (&mask) ;
Sigprocmask (SIG BLOCK, &mask, &prev _mask) ;
if (pid!=0)
{
/* Sending a SIGINT signal for the process group.
* Deleting the job. */
int jid = pid2jid(pid);
kill (-pid, SIGINT) ;
deletejob (job list, pid);
}
/* Unblocking the masked signals */
Sigprocmask (SIG SETMASK, &prev_mask,NULL) ;
return;

Name three bugs in this code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Processes

What strings are possible? Is “15213"?

int main(int argc, char** argv)

{
if (fork() == 0) { printf(“3”); return 0;}
else {printf (“5”);}
1f (fork() == 0) {printf(“27);}
printf (“17);
return 0;
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Virtual Memory

m Virtual addresses are 20 bits wide

m Physical addresses are 18 bits wide

m Page size is 1024 bytes

m TLB is 2-way set associative with 16 total entries

m Label each bit of a virtual address (Virtual Page offset, Virtual
page number, TLB index, TLB tag):

TLB
Index || Tag PPN Valid

0 03 C3 1

m Given virtual address 0x04AA4, what happens? 0L 71 0
1 00 28 1

01 35 1

2 02 68 1

3A Fl 0

3 03 12 1

02 30 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Malloc

m For an implicit allocator, with 16-byte alighment, 8-byte
headers / footers, and prologue / epilogue.
Malloc(3)

Malloc(11)
Malloc(40)
Free (40)

Malloc(10)

m Draw the state of the heap in 8 byte units, label as header /
footer (size, alloc or free), payload:

m What is the utilization for this allocator, versus 54 bytes?
m How much space would be saved by removing footers?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Threads

m What is the range of value(s)
that main will print?

int main(int argc, char** argv)

{

m A programmer proposes pthread t tid[2];
removing i from thread and for (int i = 0; i < 2; i++)
just directly accessing count. pthread create (&tid[i],

Does the answer change? NULL, thread, NURL) 7 |
for (int 1 = 0; 1 < 2; 1i++)
pthread join(tid[1]);
volatile int count = 0; printf (“%d\n”, count);
return O;

void* thread (void* wv) }

count = 1i;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Thread Synchronization

m Make FIFO -> LIFO

int sbuf remove (sbuf t *sp)

{

void sbuf init(sbuf t *sp, int n) int item;

{ P(&sp->items) ;
sp->buf = Calloc(n, sizeof(int)); P (&sp->mutex) ;
sp->n = n; item = sp->buf[(++sp->front) % (sp->n)];
sp->front = sp->rear 0 V (&sp->mutex) ;

Sem init (&sp->mutex, O,
Sem init (&sp->slots, 0,
Sem init (&sp->items, O,

1); V(&sp—->slots);
n); return item;
0);

)

void sbuf insert (sbuf t *sp, int item)
{
P(&sp—->slots);
P(&sp->mutex) ;
sp->buf[(++sp->rear) % (sp->n)] = item;
V(&sp->mutex) ;
V(&sp->items) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

