Carnegie Mellon

Dynamic Memory Allocation:
Advanced Concepts

15-213: Introduction to Computer Systems
20t Lecture, July 7, 2016

Instructor:
Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Dynamic Memory Allocation

m Programmers use Application
dynamic memory Dynamic Memory Allocator
allocators (such as Heap
malloc) to acquire VM
at run time.

= For data structures whose User stack

size is only known at
runtime.

2 ¥

Top of heap

m Dynamic memory

Heap (viamalloc)

" (brk ptr)

allocators manage an
area of process virtual

Uninitialized data (.bss)

memory known as the

Initialized data (. data)

heap.

Program text (. text)

0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Last Lecture: Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

m Method 2: Explicit list among the free blocks using pointers

/_\

5 4 6 2

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Summary: Implicit Lists

m Implementation: very simple

m Allocate cost:
" [inear time worst case

m Free cost:
= constant time worst case
= even with coalescing

m Memory usage:
= will depend on placement policy
" First-fit, next-fit or best-fit

m Not used in practice formalloc/free because of linear-
time allocation

= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Today

Explicit free lists

N
m Segregated free lists
m Garbage collection

L]

Memory-related perils and pitfalls

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit free list using length—Ilinks all blocks

m Method 2: Explicit free list among the free blocks using pointers

_— .

5| ~ 4 6 2

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Explicit Free Lists

Allocated (as before) Free
Size a Size a
Next
Payload and Prev
padding
Size a Size a

m Maintain list(s) of free blocks, not all blocks
" The “next” free block could be anywhere

= So we need to store forward/back pointers, not just sizes
= Still need boundary tags for coalescing
= Luckily we track only free blocks, so we can use payload area

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Explicit Free Lists

m Logically:

>
J N
\ 4
o)
\ 4
@]

a

m Physically: blocks can be in any order

B
1

/ Forward (next) links
A /Q 5

4 — 4|4 4 6 /7 < 6 4 4 4 4

C \/
‘K Back (prev) links

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Allocating From Explicit Free Lists

conceptual graphic

Before

22

After (with splitting)

W

= malloc(..)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly
freed block?
m LIFO (last-in-first-out) policy
" |nsert freed block at the beginning of the free list
" Pro: simple and constant time

= Con: studies suggest fragmentation is worse than address ordered

m Address-ordered policy

" |nsert freed blocks so that free list blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

= Con: requires search

" Pro: studies suggest fragmentation is lower than LIFO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Freeing With a LIFO Policy (Case 1)

conceptual graphic

Before
free(p)

Root LI o)

m Insert the freed block at the root of the list

After

Root I ‘@

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Freeing With a LIFO Policy (Case 2)

conceptual graphic
Before free (p)

Root ; I % O

m Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

After

Root [l O 4\%?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

-
@

Freeing With a LIFO Policy (Case 3)

conceptual graphic

ao

m Splice out predecessor block, coalesce both memory blocks,
and insert the new block at the root of the list

After

BEfOre free ()

Root 1 I

: |

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Freeing With a LIFO Policy (Case 4)

conceptual graphic

it

m Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

Before free (p)

Root i I

After

L

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Root [

o ¢
h

Explicit List Summary

m Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full

= Slightly more complicated allocate and free since needs to splice blocks
in and out of the list

= Some extra space for the links (2 extra words needed for each block)
= Does this increase internal fragmentation?

m Most common use of linked lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

m Method 2: Explicit list among the free blocks using pointers

/_\

5 4 6 2

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Today

m Explicit free lists

m Segregated free lists
m Garbage collection
L]

Memory-related perils and pitfalls

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Segregated List (Seglist) Allocators

m Each size class of blocks has its own free list

\ 4
\ 4
\ 4

1-2

w
\ 4
\ 4
\ 4
\ 4
l

l

5-8

9-inf .

m Often have separate classes for each small size
m For larger sizes: One class for each two-power size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Seglist Allocator

m Given an array of free lists, each one for some size class

m To allocate a block of size n:
= Search appropriate free list for block of size m >n
= |f an appropriate block is found:
= Split block and place fragment on appropriate list (optional)
" |f no block is found, try next larger class
= Repeat until block is found

m If no block is found:
= Request additional heap memory from OS (using sbrk ())
= Allocate block of n bytes from this new memory
= Place remainder as a single free block in largest size class.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Seglist Allocator (cont.)

m To free a block:

= Coalesce and place on appropriate list

m Advantages of seglist allocators
= Higher throughput
= |og time for power-of-two size classes
= Better memory utilization

= First-fit search of segregated free list approximates a best-fit
search of entire heap.

= Extreme case: Giving each block its own size class is equivalent to
best-fit.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

More Info on Allocators

m D. Knuth, “The Art of Computer Programming”, 2" edition,
Addison Wesley, 1973

"= The classic reference on dynamic storage allocation

m Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.

= Comprehensive survey
= Available from CS:APP student site (csapp.cs.cmu.edu)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Today

m Explicit free lists

m Segregated free lists
m Garbage collection
L

Memory-related perils and pitfalls

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Implicit Memory Management:
Garbage Collection

m Garbage collection: automatic reclamation of heap-allocated
storage—application never has to free

void foo () {
int *p = malloc(128);
return; /* p block is now garbage */

m Common in many dynamic languages:
= Python, Ruby, Java, Perl, ML, Lisp, Mathematica

m Variants (“conservative” garbage collectors) exist for C and C++
= However, cannot necessarily collect all garbage

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Garbage Collection

m How does the memory manager know when memory can be
freed?

" |n general we cannot know what is going to be used in the future since it
depends on conditionals

= But we can tell that certain blocks cannot be used if there are no
pointers to them

m Must make certain assumptions about pointers
= Memory manager can distinguish pointers from non-pointers
= All pointers point to the start of a block

= Cannot hide pointers
(e.g., by coercing them to an int, and then back again)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Classical GC Algorithms

m Mark-and-sweep collection (McCarthy, 1960)
= Does not move blocks (unless you also “compact”)
m Reference counting (Collins, 1960)
= Does not move blocks (not discussed)
m Copying collection (Minsky, 1963)
= Moves blocks (not discussed)
m Generational Collectors (Lieberman and Hewitt, 1983)
= Collection based on lifetimes
= Most allocations become garbage very soon
= So focus reclamation work on zones of memory recently allocated
m For more information:

Jones and Lin, “Garbage Collection: Algorithms for Automatic
Dynamic Memory”, John Wiley & Sons, 1996.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Memory as a Graph

m We view memory as a directed graph
= Each block is a node in the graph
= Each pointer is an edge in the graph

" Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, locations on the stack, global variables)

Root nodes O O
7 \

Heap nodes [O reachable
Not-reachabl
O O forpeachast
e O
O

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Mark and Sweep Collecting

m Can build on top of malloc/free package
" Allocate usingmalloc until you “run out of space”

m When out of space:
= Use extra mark bit in the head of each block
" Mark: Start at roots and set mark bit on each reachable block
= Sweep: Scan all blocks and free blocks that are not marked

Note: arrows
here denote

I memory refs, not
free list ptrs.

Before mark I_ | |

_I Mark bit set

After mark

1

After sweep | | | free | |° free]

Bryant and O’Hallaron, Computer Systems: A ProgramTres rspective, Third Edition

27

Carnegie Mellon

Assumptions For a Simple Implementation

m Application
" new (n): returns pointer to new block with all locations cleared
" read(b, i) : readlocation i of block b into register
" write(b,i,v): write vinto location i of blockb

m Each block will have a header word
=" addressedasb[-1], forablockb

= Used for different purposes in different collectors

m Instructions used by the Garbage Collector
" is ptr(p) : determines whether pis a pointer
= length (b): returns the length of block b, not including the header
" get roots(): returns all the roots

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Mark and Sweep (cont.)

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // do nothing if not pointer
if (markBitSet(p)) return; // check if already marked
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // call mark on all words

mark (p[i]) ; // in the block

return;

}

Sweep using lengths to find next block

ptr sweep (ptr p, ptr end) {
while (p < end) {
if markBitSet (p)
clearMarkBit () ;
else if (allocateBitSet(p))
free(p) ;
p += length(p);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Conservative Mark & Sweep in C

m A “conservative garbage collector” for C programs

" is ptr () determines if a word is a pointer by checking if it points to
an allocated block of memory

= But, in C pointers can point to the middle of a block
ptr

Header 1

m So how to find the beginning of the block?

= Can use a balanced binary tree to keep track of all allocated blocks (key
is start-of-block)

= Balanced-tree pointers can be stored in header (use two additional

words
) Head Data
Size . 3
/ \ Left: smaller addresses
Left Right Right: larger addresses

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Today

m Explicit free lists

m Segregated free lists
m Garbage collection
L]

Memory-related perils and pitfalls

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Memory-Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

C operators

Operators Associativity
() [1 -> . left to right
' ~ ++ -- + - * & (type) sizeof righttoleft
* /0% left to right
+ - left to right
<< >> left to right
< = > >= left to right
= I= left to right
& left to right
A left to right
| left to right
&& left to right
| | left to right
? . right to left
= 4= —= *= [= %= g= ~= = <<= >>= right to left
, left to right

m ->, (),and [] have high precedence, with * and & just below
m Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Pointer Declarations: Test Yourself!

int *p p is a pointer to int

int *p[13] p is an array[13] of pointer to int

int *(p[13]) p is an array[13] of pointer to int

int **p p is a pointer to a pointer to an int

int (*p) [13] p is a pointer to an array[13] of int

int *£() fis a function returning a pointer to int
int (*£f) () fis a pointer to a function returning int
int (*(*£())[13]1) () fis a function returning ptr to an array[13]

of pointers to functions returning int

int (*(*x[3]) ()) [5] X is an'array[.3] of pointers to fur?ctlons
returning pointers to array[5] of ints

Source: K&R Sec 5.12

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Dereferencing Bad Pointers

m The classic scanf bug

int val;

scanf (“%d”, wval);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Reading Uninitialized Memory

m Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec(int **A, int *x) {
int *y = malloc (N*sizeof (int));
int i, j;

for (i=0; i<N; i++)
for (j=0; IJ<N; jJ++)
yl[i] += A[i][J]1*x[]];
return y;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Overwriting Memory

m Allocating the (possibly) wrong sized object

int **p;
p = malloc (N*sizeof (lnt)) ’

for (i=0; i<N; i++) {
pl[i] = malloc (M*sizeof (int)) ;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Overwriting Memory

m Off-by-one error

int **p;
p = malloc (N*sizeof (int *)) ;

for (i=0; i<=N; i++) {
pl[i] = malloc(M*sizeof (int)) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Overwriting Memory

m Not checking the max string size

char s[8];
int 1i;

gets(s); /* reads “123456789” from stdin */

m Basis for classic buffer overflow attacks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Overwriting Memory

m Misunderstanding pointer arithmetic

int *search(int *p, int wval) {

while (*p && *p != wval)
p += sizeof (int);

return p;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Overwriting Memory

m Referencing a pointer instead of the object it points to

int *packet;
packet = binheap[O0];

*size--;

return (packet) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int *BinheapDelete (int **binheap, int *size) {

binheap[0] = binheap|[*size - 1];

Heapify (binheap, *size, 0);

Operators
2k =
I~ ++@ + —@& (type) sizeof
*x /%

= ~—
<< >>
< <=
== fe=
&

A

I
&&

.
== == k= = f=bA= 0= 1= <<= DO=

> >=

r

Associativity

left to right
right to left
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
right to left
right to left
left to right

41

Carnegie Mellon

Referencing Nonexistent Variables

m Forgetting that local variables disappear when a function
returns

int *foo () {
int wval;

return &val;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Freeing Blocks Multiple Times

m Nasty!

X = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int));
<manipulate y>
free (x) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Referencing Freed Blocks

m Evil!

x = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int));
for (i=0; i<M; i++)
y[i] = x[i]++;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Failing to Free Blocks (Memory Leaks)

m Slow, long-term killer!

foo() {
int *x = malloc(N*sizeof (int)) ;

return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Failing to Free Blocks (Memory Leaks)

m Freeing only part of a data structure

struct list {
int wval;
struct list *next;

};

foo () {
struct list *head = malloc(sizeof (struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Dealing With Memory Bugs
m Debugger: gdb

® Good for finding bad pointer dereferences
= Hard to detect the other memory bugs

m Data structure consistency checker
= Runs silently, prints message only on error
= Use as a probe to zero in on error
m Binary translator: valgrind
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
= Checks each individual reference at runtime
= Bad pointers, overwrites, refs outside of allocated block

m glibc malloc contains checking code
" setenv MALLOC CHECK 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

