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Dynamic Memory Allocation

m Programmers use Application
dynamic memory Dynamic Memory Allocator
allocators (such as Heap
malloc) to acquire VM
at run time.
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Last Lecture: Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

m Method 2: Explicit list among the free blocks using pointers

/_\

5 4 6 2

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key
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Summary: Implicit Lists

m Implementation: very simple

m Allocate cost:
" [inear time worst case

m Free cost:
= constant time worst case
= even with coalescing

m Memory usage:
= will depend on placement policy
" First-fit, next-fit or best-fit

m Not used in practice formalloc/free because of linear-
time allocation

= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators
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Today

Explicit free lists

N
m Segregated free lists
m Garbage collection

L]

Memory-related perils and pitfalls
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Keeping Track of Free Blocks

m Method 1: Implicit free list using length—Ilinks all blocks

m Method 2: Explicit free list among the free blocks using pointers
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m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key
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Explicit Free Lists

Allocated (as before) Free
Size a Size a
Next
Payload and Prev
padding
Size a Size a

m Maintain list(s) of free blocks, not all blocks
" The “next” free block could be anywhere

= So we need to store forward/back pointers, not just sizes
= Still need boundary tags for coalescing
= Luckily we track only free blocks, so we can use payload area
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Explicit Free Lists

m Logically:
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m Physically: blocks can be in any order
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Allocating From Explicit Free Lists

conceptual graphic

Before

22

After (with splitting)

W

= malloc(..)
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Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly
freed block?
m LIFO (last-in-first-out) policy
" |nsert freed block at the beginning of the free list
" Pro: simple and constant time

= Con: studies suggest fragmentation is worse than address ordered

m Address-ordered policy

" |nsert freed blocks so that free list blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

= Con: requires search

"  Pro: studies suggest fragmentation is lower than LIFO
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Freeing With a LIFO Policy (Case 1)

conceptual graphic

Before
free(p)

Root LI o)

m Insert the freed block at the root of the list

After

Root I ‘@
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Freeing With a LIFO Policy (Case 2)

conceptual graphic
Before free (p)

Root ; I % O

m Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

After

Root [l O 4\%?
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Freeing With a LIFO Policy (Case 3)

conceptual graphic

ao

m Splice out predecessor block, coalesce both memory blocks,
and insert the new block at the root of the list

After

BEfOre free ( )

Root 1 I

: |
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Freeing With a LIFO Policy (Case 4)

conceptual graphic

it

m Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

Before free (p)

Root i I

After

L
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Explicit List Summary

m Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full

= Slightly more complicated allocate and free since needs to splice blocks
in and out of the list

= Some extra space for the links (2 extra words needed for each block)
= Does this increase internal fragmentation?

m Most common use of linked lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects
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Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

m Method 2: Explicit list among the free blocks using pointers

/_\

5 4 6 2

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key
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Today

m Explicit free lists

m Segregated free lists
m Garbage collection
L]

Memory-related perils and pitfalls
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Segregated List (Seglist) Allocators

m Each size class of blocks has its own free list

\ 4
\ 4
\ 4
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5-8

9-inf .

m Often have separate classes for each small size
m For larger sizes: One class for each two-power size
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Seglist Allocator

m Given an array of free lists, each one for some size class

m To allocate a block of size n:
= Search appropriate free list for block of size m >n
= |f an appropriate block is found:
= Split block and place fragment on appropriate list (optional)
" |f no block is found, try next larger class
= Repeat until block is found

m If no block is found:
= Request additional heap memory from OS (using sbrk ())
= Allocate block of n bytes from this new memory
= Place remainder as a single free block in largest size class.
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Seglist Allocator (cont.)

m To free a block:

= Coalesce and place on appropriate list

m Advantages of seglist allocators
= Higher throughput
= |og time for power-of-two size classes
= Better memory utilization

= First-fit search of segregated free list approximates a best-fit
search of entire heap.

= Extreme case: Giving each block its own size class is equivalent to
best-fit.
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More Info on Allocators

m D. Knuth, “The Art of Computer Programming”, 2" edition,
Addison Wesley, 1973

"= The classic reference on dynamic storage allocation

m Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.

= Comprehensive survey
= Available from CS:APP student site (csapp.cs.cmu.edu)
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Today

m Explicit free lists

m Segregated free lists
m Garbage collection
L

Memory-related perils and pitfalls
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Implicit Memory Management:
Garbage Collection

m Garbage collection: automatic reclamation of heap-allocated
storage—application never has to free

void foo () {
int *p = malloc(128);
return; /* p block is now garbage */

m Common in many dynamic languages:
= Python, Ruby, Java, Perl, ML, Lisp, Mathematica

m Variants (“conservative” garbage collectors) exist for C and C++
= However, cannot necessarily collect all garbage
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Garbage Collection

m How does the memory manager know when memory can be
freed?

" |n general we cannot know what is going to be used in the future since it
depends on conditionals

= But we can tell that certain blocks cannot be used if there are no
pointers to them

m Must make certain assumptions about pointers
= Memory manager can distinguish pointers from non-pointers
= All pointers point to the start of a block

= Cannot hide pointers
(e.g., by coercing them to an int, and then back again)
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Classical GC Algorithms

m Mark-and-sweep collection (McCarthy, 1960)
= Does not move blocks (unless you also “compact”)
m Reference counting (Collins, 1960)
= Does not move blocks (not discussed)
m Copying collection (Minsky, 1963)
= Moves blocks (not discussed)
m Generational Collectors (Lieberman and Hewitt, 1983)
= Collection based on lifetimes
= Most allocations become garbage very soon
= So focus reclamation work on zones of memory recently allocated
m For more information:

Jones and Lin, “Garbage Collection: Algorithms for Automatic
Dynamic Memory”, John Wiley & Sons, 1996.
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Memory as a Graph

m We view memory as a directed graph
= Each block is a node in the graph
= Each pointer is an edge in the graph

" Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, locations on the stack, global variables)

Root nodes O O
7 \

Heap nodes [ O reachable
Not-reachabl
O O forpeachast
e O
O

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)
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Mark and Sweep Collecting

m Can build on top of malloc/free package
" Allocate usingmalloc until you “run out of space”

m When out of space:
= Use extra mark bit in the head of each block
" Mark: Start at roots and set mark bit on each reachable block
= Sweep: Scan all blocks and free blocks that are not marked

Note: arrows
here denote

I memory refs, not
free list ptrs.

Before mark I_ | |

_I Mark bit set

After mark

1

After sweep | | | free | |° free ]
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Assumptions For a Simple Implementation

m Application
" new (n): returns pointer to new block with all locations cleared
" read(b, i) : readlocation i of block b into register
" write(b,i,v): write vinto location i of blockb

m Each block will have a header word
=" addressedasb[-1], forablockb

= Used for different purposes in different collectors

m Instructions used by the Garbage Collector
" is ptr(p) : determines whether pis a pointer
= length (b): returns the length of block b, not including the header
" get roots(): returns all the roots
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Mark and Sweep (cont.)

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // do nothing if not pointer
if (markBitSet(p)) return; // check if already marked
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // call mark on all words

mark (p[i]) ; // in the block

return;

}

Sweep using lengths to find next block

ptr sweep (ptr p, ptr end) {
while (p < end) {
if markBitSet (p)
clearMarkBit () ;
else if (allocateBitSet(p))
free(p) ;
p += length(p);
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Conservative Mark & Sweep in C

m A “conservative garbage collector” for C programs

" is ptr () determines if a word is a pointer by checking if it points to
an allocated block of memory

= But, in C pointers can point to the middle of a block
ptr

Header 1

m So how to find the beginning of the block?

= Can use a balanced binary tree to keep track of all allocated blocks (key
is start-of-block)

= Balanced-tree pointers can be stored in header (use two additional

words
) Head Data
Size . 3
/ \ Left: smaller addresses
Left Right Right: larger addresses

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30



Today

m Explicit free lists

m Segregated free lists
m Garbage collection
L]

Memory-related perils and pitfalls
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Memory-Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks
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C operators

Operators Associativity
() [1 -> . left to right
' ~ ++ -- + - * & (type) sizeof righttoleft
* /0% left to right
+ - left to right
<< >> left to right
< = > >= left to right
= I= left to right
& left to right
A left to right
| left to right
&& left to right
| | left to right
? . right to left
= 4= —= *= [= %= g= ~= = <<= >>= right to left
, left to right

m ->, (),and [] have high precedence, with * and & just below
m Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53
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C Pointer Declarations: Test Yourself!

int *p p is a pointer to int

int *p[13] p is an array[13] of pointer to int

int *(p[13]) p is an array[13] of pointer to int

int **p p is a pointer to a pointer to an int

int (*p) [13] p is a pointer to an array[13] of int

int *£() fis a function returning a pointer to int
int (*£f) () fis a pointer to a function returning int
int (*(*£())[13]1) () fis a function returning ptr to an array[13]

of pointers to functions returning int

int (*(*x[3]) ()) [5] X is an'array[.3] of pointers to fur?ctlons
returning pointers to array[5] of ints

Source: K&R Sec 5.12
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Dereferencing Bad Pointers

m The classic scanf bug

int val;

scanf (“%d”, wval);
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Reading Uninitialized Memory

m Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec(int **A, int *x) {
int *y = malloc (N*sizeof (int));
int i, j;

for (i=0; i<N; i++)
for (j=0; IJ<N; jJ++)
yl[i] += A[i][J]1*x[]];
return y;
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Overwriting Memory

m Allocating the (possibly) wrong sized object

int **p;
p = malloc (N*sizeof (lnt) ) ’

for (i=0; i<N; i++) {
pl[i] = malloc (M*sizeof (int)) ;

}
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Overwriting Memory

m Off-by-one error

int **p;
p = malloc (N*sizeof (int *)) ;

for (i=0; i<=N; i++) {
pl[i] = malloc(M*sizeof (int)) ;
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Overwriting Memory

m Not checking the max string size

char s[8];
int 1i;

gets(s); /* reads “123456789” from stdin */

m Basis for classic buffer overflow attacks
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Overwriting Memory

m Misunderstanding pointer arithmetic

int *search(int *p, int wval) {

while (*p && *p != wval)
p += sizeof (int);

return p;
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Overwriting Memory

m Referencing a pointer instead of the object it points to

int *packet;
packet = binheap[O0];

*size--;

return (packet) ;
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int *BinheapDelete (int **binheap, int *size) {

binheap[0] = binheap|[*size - 1];

Heapify (binheap, *size, 0);

Operators
2k =
I~ ++@ + —@& (type) sizeof
*x /%

= ~—
<< >>
< <=
== fe=
&

A

I
&&

.
== == k= = f=bA= 0= 1= <<= DO=

> >=

r

Associativity

left to right
right to left
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
right to left
right to left
left to right
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Referencing Nonexistent Variables

m Forgetting that local variables disappear when a function
returns

int *foo () {
int wval;

return &val;
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Freeing Blocks Multiple Times

m Nasty!

X = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int));
<manipulate y>
free (x) ;
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Referencing Freed Blocks

m Evil!

x = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int));
for (i=0; i<M; i++)
y[i] = x[i]++;
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Failing to Free Blocks (Memory Leaks)

m Slow, long-term killer!

foo() {
int *x = malloc(N*sizeof (int)) ;

return;
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Failing to Free Blocks (Memory Leaks)

m Freeing only part of a data structure

struct list {
int wval;
struct list *next;

};

foo () {
struct list *head = malloc(sizeof (struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return;
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Dealing With Memory Bugs
m Debugger: gdb

® Good for finding bad pointer dereferences
= Hard to detect the other memory bugs

m Data structure consistency checker
= Runs silently, prints message only on error
= Use as a probe to zero in on error
m Binary translator: valgrind
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
= Checks each individual reference at runtime
= Bad pointers, overwrites, refs outside of allocated block

m glibc malloc contains checking code
" setenv MALLOC CHECK 3
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