
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation:
Basic Concepts

15-213: Introduction to Computer Systems
19th Lecture, July 6, 2016

Instructor:

Brian Railing

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Basic concepts

 Implicit free lists

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation

 Programmers use
dynamic memory
allocators (such as
malloc) to acquire VM
at run time.
 For data structures whose

size is only known at
runtime.

 Dynamic memory
allocators manage an
area of process virtual
memory known as the
heap.

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Top of heap
(brk ptr)

Application

Dynamic Memory Allocator

Heap

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation

 Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free

 Types of allocators
 Explicit allocator: application allocates and frees space

 E.g., malloc and free in C

 Implicit allocator: application allocates, but does not free space

 E.g. garbage collection in Java, ML, and Lisp

 Will discuss simple explicit memory allocation today

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The malloc Package
#include <stdlib.h>

void *malloc(size_t size)

 Successful:

 Returns a pointer to a memory block of at least size bytes
aligned to an 16-byte boundary (on x86-64)

 If size == 0, returns NULL

 Unsuccessful: returns NULL (0) and sets errno

void free(void *p)

 Returns the block pointed at by p to pool of available memory

 p must come from a previous call to malloc or realloc

Other functions

 calloc: Version of malloc that initializes allocated block to zero.

 realloc: Changes the size of a previously allocated block.

 sbrk: Used internally by allocators to grow or shrink the heap

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

malloc Example
#include <stdio.h>

#include <stdlib.h>

void foo(int n) {

int i, *p;

/* Allocate a block of n ints */

p = (int *) malloc(n * sizeof(int));

if (p == NULL) {

perror("malloc");

exit(0);

}

/* Initialize allocated block */

for (i=0; i<n; i++)

p[i] = i;

/* Return allocated block to the heap */

free(p);

}

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assumptions Made in This Lecture

 Memory is word addressed.

 Words are int-sized.

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constraints

 Applications
 Can issue arbitrary sequence of malloc and free requests

 free request must be to a malloc’d block

 Allocators
 Can’t control number or size of allocated blocks

 Must respond immediately to malloc requests

 i.e., can’t reorder or buffer requests

 Must allocate blocks from free memory

 i.e., can only place allocated blocks in free memory

 Must align blocks so they satisfy all alignment requirements

 16-byte (x86-64) alignment on Linux boxes

 Can manipulate and modify only free memory

 Can’t move the allocated blocks once they are malloc’d

 i.e., compaction is not allowed

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Goal: Throughput

 Given some sequence of malloc and free requests:

 R0, R1, ..., Rk, ... , Rn-1

 Goals: maximize throughput and peak memory utilization
 These goals are often conflicting

 Throughput:
 Number of completed requests per unit time

 Example:

 5,000 malloc calls and 5,000 free calls in 10 seconds

 Throughput is 1,000 operations/second

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Goal: Peak Memory Utilization

 Given some sequence of malloc and free requests:
 R0, R1, ..., Rk, ... , Rn-1

 Def: Aggregate payload Pk

 malloc(p) results in a block with a payload of p bytes

 After request Rk has completed, the aggregate payload Pk is the sum of
currently allocated payloads

 Def: Current heap size Hk

 Assume Hk is monotonically nondecreasing

 i.e., heap only grows when allocator uses sbrk

 Def: Peak memory utilization after k+1 requests
 Uk = (maxi≤k Pi) / Hk

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fragmentation

 Poor memory utilization caused by fragmentation
 internal fragmentation

 external fragmentation

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Internal Fragmentation

 For a given block, internal fragmentation occurs if payload is
smaller than block size

 Caused by

 Overhead of maintaining heap data structures

 Padding for alignment purposes

 Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

 Depends only on the pattern of previous requests

 Thus, easy to measure

Payload
Internal
fragmentation

Block

Internal
fragmentation

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

External Fragmentation

 Occurs when there is enough aggregate heap memory,
but no single free block is large enough

 Depends on the pattern of future requests
 Thus, difficult to measure

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation Issues

 How do we know how much memory to free given just a
pointer?

 How do we keep track of the free blocks?

 What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

 How do we pick a block to use for allocation -- many
might fit?

 How do we reinsert freed block?

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Knowing How Much to Free

 Standard method
 Keep the length of a block in the word preceding the block.

 This word is often called the header field or header

 Requires an extra word for every allocated block

p0 = malloc(4)

p0

free(p0)

block size payload

5

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Keeping Track of Free Blocks

 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 26

5 4 26

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Basic concepts

 Implicit free lists

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Method 1: Implicit List

 For each block we need both size and allocation status
 Could store this information in two words: wasteful!

 Standard trick
 If blocks are aligned, some low-order address bits are always 0

 Instead of storing an always-0 bit, use it as a allocated/free flag

 When reading size word, must mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Detailed Implicit Free List Example

Start
of

heap

Double-word
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Finding a Free Block
 First fit:

 Search list from beginning, choose first free block that fits:

 Can take linear time in total number of blocks (allocated and free)

 In practice it can cause “splinters” at beginning of list

 Next fit:

 Like first fit, but search list starting where previous search finished

 Should often be faster than first fit: avoids re-scanning unhelpful blocks

 Some research suggests that fragmentation is worse

 Best fit:

 Search the list, choose the best free block: fits, with fewest bytes left over

 Keeps fragments small—usually improves memory utilization

 Will typically run slower than first fit

p = start;

while ((p < end) && \\ not passed end

((*p & 1) || \\ already allocated

(*p <= len))) \\ too small

p = p + (*p & (~0x1)); \\ goto next block (word addressed)

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Allocating in Free Block

 Allocating in a free block: splitting
 Since allocated space might be smaller than free space, we might want

to split the block

void addblock(ptr p, int len) {

int newsize = ((len + 1) >> 1) << 1; // round up to even

int oldsize = *p & (~0x1); // mask out low bit

*p = newsize | 1; // set new length

if (newsize < oldsize)

*(p+newsize) = oldsize - newsize; // set length in remaining

} // part of block

4 4 26

4 24

p

24

addblock(p, 4)

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Freeing a Block

 Simplest implementation:
 Need only clear the “allocated” flag

void free_block(ptr p) { *p = *p & (~0x1) }

 But can lead to “false fragmentation”

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Coalescing

 Join (coalesce) with next/previous blocks, if they are free
 Coalescing with next block

 But how do we coalesce with previous block?

void free_block(ptr p) {

*p = *p & (~0x1); // clear allocated flag

next = p + *p; // find next block

if ((*next & 1) == 0)

*p = *p + *next; // add to this block if

} // not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Bidirectional Coalescing
 Boundary tags [Knuth73]

 Replicate size/allocated word at “bottom” (end) of free blocks

 Allows us to traverse the “list” backwards, but requires extra space

 Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 1

Constant Time Coalescing (Case 1)

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant Time Coalescing (Case 2)

m1 1

m1 1

n 1

n 1

m2 0

m2 0

m1 1

m1 1

n+m2 0

n+m2 0

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 0

Constant Time Coalescing (Case 3)

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 0

Constant Time Coalescing (Case 4)

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disadvantages of Boundary Tags

 Internal fragmentation

 Can it be optimized?
 Which blocks need the footer tag?

 What does that mean?

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks (1)

m1 11

n 11

m2 ?1

m1 01

n 10

n 10

m2 ?1

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks (2)

m1 11

n 01

m2 ?0

m2 ?0

m1 01

n+m2 ?0

n+m2 ?0

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Key Allocator Policies
 Placement policy:

 First-fit, next-fit, best-fit, etc.

 Trades off lower throughput for less fragmentation

 Interesting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search
entire free list

 Splitting policy:
 When do we go ahead and split free blocks?

 How much internal fragmentation are we willing to tolerate?

 Coalescing policy:
 Immediate coalescing: coalesce each time free is called

 Deferred coalescing: try to improve performance of free by deferring
coalescing until needed. Examples:

 Coalesce as you scan the free list for malloc

 Coalesce when the amount of external fragmentation reaches
some threshold

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit Lists: Summary
 Implementation: very simple

 Allocate cost:
 linear time worst case

 Free cost:
 constant time worst case

 even with coalescing

 Memory usage:
 will depend on placement policy

 First-fit, next-fit or best-fit

 Not used in practice for malloc/free because of linear-
time allocation
 used in many special purpose applications

 However, the concepts of splitting and boundary tag
coalescing are general to all allocators

