Carnegie Mellon

Dynamic Memory Allocation:
Basic Concepts

15-213: Introduction to Computer Systems
19t Lecture, July 6, 2016

Instructor:
Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

m Basic concepts
m Implicit free lists

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Dynamic Memory Allocation

m Programmers use Application
dynamic memory Dynamic Memory Allocator
allocators (such as Heap
malloc) to acquire VM
at run time.

= For data structures whose User stack

size is only known at
runtime.

2 ¥

Top of heap

m Dynamic memory

Heap (viamalloc)

" (brk ptr)

allocators manage an
area of process virtual

Uninitialized data (.bss)

memory known as the

Initialized data (. data)

heap.

Program text (. text)

0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Dynamic Memory Allocation

m Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free
m Types of allocators

= Explicit allocator: application allocates and frees space
= E.g.,, mallocand freeinC

= Implicit allocator: application allocates, but does not free space
= E.g. garbage collection in Java, ML, and Lisp

m Will discuss simple explicit memory allocation today

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

The malloc Package

#include <stdlib.h>

void *malloc(size t size)
= Successful:

= Returns a pointer to a memory block of at least size bytes
aligned to an 16-byte boundary (on x86-64)

» [fsize == O, returns NULL
= Unsuccessful: returns NULL (0) and sets errno

void free (void *p)
= Returns the block pointed at by p to pool of available memory
= p must come from a previous calltomalloc or realloc

Other functions
" calloc: Version of malloc that initializes allocated block to zero.

"= realloc: Changes the size of a previously allocated block.
= sbrk: Used internally by allocators to grow or shrink the heap

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

malloc Example

#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {
perror ("malloc") ;
exit (0);
}

/* Initialize allocated block */
for (i=0; i<n; i++)
pli] = 1i;

/* Return allocated block to the heap */
free(p) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Assumptions Made in This Lecture

m Memory is word addressed.
m Words are int-sized.

\ v J Q ,_I
Allocated block Free block
(4 words) (3 words) Free word

Allocated word

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Allocation Example

malloc (4)

pl

p2 = malloc(5)

p3 = malloc(6)

free (p2)

p4 = malloc(2)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Constraints

m Applications
= Canissue arbitrary sequence of malloc and £ree requests
= freerequest must betoamalloc’d block

m Allocators

= Can’t control number or size of allocated blocks

" Must respond immediately to malloc requests
= j.e., can’t reorder or buffer requests

" Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory

= Must align blocks so they satisfy all alignment requirements
= 16-byte (x86-64) alignment on Linux boxes

= Can manipulate and modify only free memory

= Can’t move the allocated blocks once they aremalloc’d

= j.e., compaction is not allowed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Performance Goal: Throughput

m Given some sequence of malloc and free requests:
R, R, ..,R, .., R,

m Goals: maximize throughput and peak memory utilization

" These goals are often conflicting

m Throughput:
" Number of completed requests per unit time
= Example:
= 5,000 malloc calls and 5,000 £ree calls in 10 seconds

= Throughput is 1,000 operations/second

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Performance Goal: Peak Memory Utilization

m Given some sequence of malloc and free requests:
" R,R,...Ry...., R,

m Def: Aggregate payload P,
" malloc (p) resultsin a block with a payload of p bytes

= After request R, has completed, the aggregate payload P, is the sum of
currently allocated payloads

m Def: Current heap size H,
= Assume H, is monotonically nondecreasing
= j.e., heap only grows when allocator uses sbrk

m Def: Peak memory utilization after k+1 requests
" U,=(maxP;) / H,

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Fragmentation

m Poor memory utilization caused by fragmentation
" jnternal fragmentation
= external fragmentation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Internal Fragmentation

m For a given block, internal fragmentation occurs if payload is
smaller than block size

Block
AN
'z N
Internal Internal
fragmentation fragmentation

m Caused by
® Qverhead of maintaining heap data structures
= Padding for alignment purposes

= Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

m Depends only on the pattern of previous requests
" Thus, easy to measure

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

pl = malloc (4)

malloc (5)

O
N
I

p3 = malloc(6)

free (p2)

p4 = malloc(6) Oops! (what would happen now?)

m Depends on the pattern of future requests
® Thus, difficult to measure

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Implementation Issues

m How do we know how much memory to free given just a
pointer?

m How do we keep track of the free blocks?

m What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

m How do we pick a block to use for allocation -- many
might fit?

m How do we reinsert freed block?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Knowing How Much to Free

m Standard method
= Keep the length of a block in the word preceding the block.
= This word is often called the header field or header
= Requires an extra word for every allocated block

pO

1

Y

block size payload

pO = malloc(4) 5

free (p0)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

m Method 2: Explicit list among the free blocks using pointers

/_\

5 4 6 2

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Today

m Basic concepts
m Implicit free lists

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Method 1: Implicit List

m For each block we need both size and allocation status

® Could store this information in two words: wasteful!
m Standard trick

= |f blocks are aligned, some low-order address bits are always 0
" |nstead of storing an always-0 bit, use it as a allocated/free flag
" When reading size word, must mask out this bit

1 word
A
- ™~
Size a a = 1: Allocated block
a = 0: Free block
Format of
allocated and Payload Size: block size
free blocks o
Payload: application data
(allocated blocks only)
Optional
padding

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Detailed Implicit Free List Example

f 8/0 15/1 32/0 16/1 ‘ 0/1|
heap : . : L . . i i L :
' Double-word Allocated blocks: shaded
aligned Free blocks: unshaded

Headers: labeled with size in bytes/allocated bit

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Implicit List: Finding a Free Block

m First fit:
= Search list from beginning, choose first free block that fits:

p = start;
while ((p < end) && \\ not passed end
((*p & 1) || \\ already allocated
(*p <= len))) \\ too small
p=pP+ (*p & (~0x1)); \\ goto next block (word addressed)

= Can take linear time in total number of blocks (allocated and free)
® |n practice it can cause “splinters” at beginning of list

m Next fit:
= Like first fit, but search list starting where previous search finished
= Should often be faster than first fit: avoids re-scanning unhelpful blocks
= Some research suggests that fragmentation is worse

m Best fit:
® Search the list, choose the best free block: fits, with fewest bytes left over
= Keeps fragments small—usually improves memory utilization
= Will typically run slower than first fit

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Implicit List: Allocating in Free Block

m Allocating in a free block: splitting

= Since allocated space might be smaller than free space, we might want
to split the block

N~ N

4 4 6 2
t
p

addblock (p, 4)

void addblock (ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even

int oldsize = *p & (~0x1); // mask out low bit
*p = newsize | 1; // set new length
if (newsize < oldsize)
* (p+tnewsize) = oldsize - newsize; // set length in remaining

} // part of block

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Implicit List: Freeing a Block

m Simplest implementation:

= Need only clear the “allocated” flag
void free block(ptr p) { *p = *p & (~0x1) }

= But can lead to “false fragmentation”

TO=> b

free (p)

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Implicit List: Coalescing

m Join (coalesce) with next/previous blocks, if they are free

= Coalescing with next block

4 4 4 2 2 _
t logically
free(p) /\/\f/—% gone
4 4 6 2 2
void free block(ptr p) {
*p = *p & (~0x1); // clear allocated flag
next = p + *p; // find next block
if ((*next & 1) == 0)
*P = *p + *next; // add to this block if
} // not allocated

= But how do we coalesce with previous block?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Implicit List: Bidirectional Coalescing

m Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
= |mportant and general technique!

Header —| e - a = 1: Allocated block

a = 0: Free block

Format of . .

allocated and Payload and Size: Total block size

padding

free blocks Payload: Application data

(allocated blocks only)
Boundary tag > Size a
(footer)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4
] Allocated Allocated Free Free
Block being
freed
Allocated Free Allocated Free

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Constant Time Coalescing (Case 1)

ml 1 ml 1

ml 1 ml 1

n 1 n 0
—)

n 1 n 0

m2 1 m2 1

m2 1 m2 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Constant Time Coalescing (Case 2)

ml 1 ml 1
ml 1 ml 1
n 1 n+m?2 0
—
n 1
m2 0
m2 0 n+m?2 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Constant Time Coalescing (Case 3)

ml 0 n+ml 0
ml 0
n 1
—)
n 1 n+ml 0
m2 1 m2 1
m2 1 m2 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Constant Time Coalescing (Case 4)

ml 0 n+ml+m2 0
ml 0
n 1
—p
n 1
m2 0
m2 0 n+ml+m?2 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Disadvantages of Boundary Tags

m Internal fragmentation

m Can it be optimized?
= Which blocks need the footer tag?
= What does that mean?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

No Boundary Tag for Allocated Blocks (1)

ml 11 ml 01
n 10

—p
n 11 n 10
m2 ?1 m2 ?1

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

No Boundary Tag for Allocated Blocks (2)

m1l 11 ml 01
n+m2 ?0
—
n 01
m2 ?0
m2 ?0 n+m2 ?0

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Summary of Key Allocator Policies

m Placement policy:
= First-fit, next-fit, best-fit, etc.
" Trades off lower throughput for less fragmentation

= |nteresting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search
entire free list

m Splitting policy:
= When do we go ahead and split free blocks?
"= How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
" Immediate coalescing: coalesce each time free is called

= Deferred coalescing: try to improve performance of £ree by deferring
coalescing until needed. Examples:

= Coalesce as you scan the free list formalloc

= Coalesce when the amount of external fragmentation reaches
some threshold

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Implicit Lists: Summary

m Implementation: very simple

m Allocate cost:
" [inear time worst case

m Free cost:
= constant time worst case
= even with coalescing

m Memory usage:
= will depend on placement policy
" First-fit, next-fit or best-fit

m Not used in practice formalloc/free because of linear-
time allocation

= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

