Carnegie Mellon

Virtual Memory: Concepts

15-213: Introduction to Computer Systems
17t% Lecture, June 28th, 2016

Instructor:
Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Hmmm, How Does This Work?!

00007FFFFFFFFFFF

400000
000000

Process 1

Stack

Process 2

l

Stack

1

Shared
Libraries

Shared
Libraries

Heap

Data

Heap

Text

Data

Text

00007FFFFFFFFFFF
e o o

400000

000000

Solution: Virtual Memory (today and next lecture)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process n

Stack

l

Shared
Libraries

Heap

Data

Text

Carnegie Mellon

Today

Address spaces
VM as a tool for caching

M
M
m VM as a tool for memory management
m VM as a tool for memory protection

M

Address translation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

A System Using Physical Addressing

Main memory
0:
1:
Physical address 2:

(PA) 3:
CPU 7 —> 4.
5.

NS

Data word

m Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

A System Using Virtual Addressing

Main memory

0:
CPUC%#J 1:
Virtual address Physical address :
(VA) (PA) '
CPU > MMU 7 —> 4:
4100 5:
A
6:
7:
8:
M-1
Data word

m Used in all modern servers, laptops, and smart phones
m One of the great ideas in computer science

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Address Spaces

m Linear address space: Ordered set of contiguous non-negative integer
addresses:
{0,1,2,3 ...}

m Virtual address space: Set of N = 2" virtual addresses
{0,1,2,3,.. N-1}

m Physical address space: Set of M = 2™ physical addresses
{0,1,2,3,.. M-1}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Why Virtual Memory (VM)?

m Uses main memory efficiently
= Use DRAM as a cache for parts of a virtual address space

m Simplifies memory management
® Each process gets the same uniform linear address space

m Isolates address spaces

" One process can’t interfere with another’s memory
= User program cannot access privileged kernel information and code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Today

Address spaces
VM as a tool for caching

M
M
m VM as a tool for memory management
m VM as a tool for memory protection

M

Address translation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

VM as a Tool for Caching

m Conceptually, virtual memory is an array of N contiguous
bytes stored on disk.

m The contents of the array on disk are cached in physical
memory (DRAM cache)

= These cache blocks are called pages (size is P = 2P bytes)

Virtual memory Physical memory

0
VP 0 | Unallocated
0

VP 1 | Cached \ Empty PPO
Uncached PP1

Unallocated Empty

Cached
Uncached >< Empty
Cached PP 2m-p-1

o M-1
VP 2n-P-1 | Uncached N
Virtual pages (VPs) Physical pages (PPs)
stored on disk cached in DRAM

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

DRAM Cache Organization

m DRAM cache organization driven by the enormous miss penalty
= DRAM is about 10x slower than SRAM
= Disk is about 10,000x slower than DRAM

m Consequences
= Large page (block) size: typically 4 KB, sometimes 4 MB
= Fully associative
= Any VP can be placed in any PP
= Requires a “large” mapping function — different from cache memories
= Highly sophisticated, expensive replacement algorithms
= Too complicated and open-ended to be implemented in hardware
= Write-back rather than write-through

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Enabling Data Structure: Page Table

m A page table is an array of page table entries (PTEs) that
maps virtual pages to physical pages.
= Per-process kernel data structure in DRAM
Physical memory

Physical page (DRAM)
number or
VP1 PPO

Valid disk address /

null ~ VP 7
./4 VP4 PP 3

Virtual memory

=|lololr|lOo]|r |~
y)
y
/
/|

null P
~

PTE 7 o« -~ . T

. S o ~
Memory resident ~.. S~ VP 2

page table S Sa
~ VP 3
(DRAM) ~.

~

RS VP 4
~
VP 6
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition vP7 11

Page Hit

Carnegie Mellon

m Page hit: reference to VM word that is in physical memory

(DRAM cache hit)

Physical memory

Virtual address Physical page (DRAM)
number or T
Valid disk address / v
> 1
0 e
0 null S Virtual memory
0 o« ~ | <. (disk)
PTE711 « . AN VP 1
Memory resident ~~ _ . VP 2
page table Na
(DRAM) vP3
o VP4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PP O

PP 3

12

Carnegie Mellon

Page Fault

m Page fault: reference to VM word that is not in physical
memory (DRAM cache miss)

. Physical memory
Physical page (DRAM)
Virtual address number or

Valid disk address VP1 PP O

VP 2
PTEO [0 null /
= VP 7
1

./4 VP4 PP 3

1
> 0 Q.
1 o/?{/
0 null S > Virtual memory
0 o~ ~ (disk)
PTE711 « . N VP 1
Memory resident ‘\\ \\\ VP2
page table S Sa —
(DRAM) ~oo
\\\ VP4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Handling Page Fault

m Page miss causes page fault (an exception)

Virtual address

PTEO

PTE 7

Carnegie Mellon

Physical memory

Physical page (DRAM)
number or T
id disk add
VaI(:)d isk a IIress /: T
nu
 — VP 7
1 = VP 4
1
0 e
0 null S Virtual memory
0 o~ ~ \\ (disk)
1 « - RN VP 1
Memory resident ~~ _ VP 2
page table Sa
(DRAM) vP3
- VP 4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PP O

PP 3

14

Handling Page Fault

m Page miss causes page fault (an exception)

Carnegie Mellon

m Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE 7

Physical memory

Physical page (DRAM)
number or T
id disk add
VaI(:)d isk a IIress /: T
nu
 — VP 7
1 = VP 4
1
0 e
0 null S Virtual memory
0 o~ ~ \\ (disk)
1 « - RN VP 1
Memory resident ~~ _ VP 2
page table Sa
(DRAM) vP3
- VP 4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PP O

PP 3

15

Handling Page Fault

m Page miss causes page fault (an exception)

Carnegie Mellon

m Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE 7

Physical memory

Physical page (DRAM)
number or T
id disk add
VaI(l)d isk a IIress / o5
nu
— VP 7
: = VP3
1
1 — |
0 e
0 null "~ Virtual memory
0 o« ~ 4. (disk)
1 LA NN VP 1
Memory re;lident h VP 2
page table
(DRAM) vP3
VP 4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PP O

PP 3

16

Carnegie Mellon

Handling Page Fault

m Page miss causes page fault (an exception)
m Page fault handler selects a victim to be evicted (here VP 4)

m Offending instruction is restarted: page hit!
Physical memory

Physical page
Virtual address number or (DRAM)
Valid disk address / x:; ; PPO
. = VP 3 PP 3
1
0 e
0 null "~ Virtual memory
0 o ~ . (disk)
PTE7]1L “ - IS VP 1
Memory resident ‘\\ RSN VP 2
page table So Nl
(DRAM) oo s VP3
: s . . RN VP 4
Key point: Waiting until the miss to copy the page to Y
DRAM is known as demand paging
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Allocating Pages

Carnegie Mellon

m Allocating a new page (VP 5) of virtual memory.

Physical memory

PTEO

PTE 7

Physical page (DRAM)
number or ol PP O
id disk add
VaI(;d isk a IIress % VP2
nu
VP 7
1 ; VP 3 PP 3
1
1 — |
0 .
0 « "~ Virtual memory
0 ‘Q‘ ~ \\\\ (diSk)
1 /\\\\\\ VP 1
Memory re;lident\\ S DN VP 2
page table DRV PN
(DRAM) U VP 3
S VP 4
b VP 5
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18

Locality to the Rescue Again!

m Virtual memory seems terribly inefficient, but it works
because of locality.

m At any point in time, programs tend to access a set of active
virtual pages called the working set

" Programs with better temporal locality will have smaller working sets

m If (working set size < main memory size)
" Good performance for one process after compulsory misses

m If (SUM(working set sizes) > main memory size)

" Thrashing: Performance meltdown where pages are swapped (copied)
in and out continuously

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Today

Address spaces
VM as a tool for caching

H
H
m VM as a tool for memory management
m VM as a tool for memory protection

H

Address translation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

VM as a Tool for Memory Management

m Key idea: each process has its own virtual address space
" |t can view memory as a simple linear array
" Mapping function scatters addresses through physical memory
= Well-chosen mappings can improve locality

Address)
Virtual 0 lati 0 Physical
Address VP 1 translation Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
PP6 library code)
) 0
Virtual —> PPS8
Address VP 1
Space for VP 2
Process 2: oo
N-1 M-1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

VM as a Tool for Memory Management

m Simplifying memory allocation
= Each virtual page can be mapped to any physical page

= A virtual page can be stored in different physical pages at different times
m Sharing code and data among processes
= Map virtual pages to the same physical page (here: PP 6)

Address .
Virtual 0 lati 0 Physical
Address VP 1 transiation Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
PP6 library code)
: 0
Virtual —> PPS8
Address VP 1
Space for VP 2
Process 2:
N-1 M-1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Simplifying Linking and Loading

Memory
. invisible to
Kernel virtual memory user code
H Linking User stack

® Each program has similar virtual (A Bl U, «——3%rsp
address space ' (stack

= Code, data, and heap always start 1 pointer)
at the same addresses. Memory-mapped region for

shared libraries
m Loading T

= execve allocates virtual pages +«— brk
for .text and .data sections & Run-time heap
creates PTEs marked as invalid (created by malloc)

: \

= The .text and .data sections Read/write segment Loaded
are copied, page by page, on (.data, .bss) fL°m
demand by the virtual memory the

Read-only segment executable
system (.init, .text, .rodata) file
0x400000)
Unused

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 0 23

Carnegie Mellon

Today

Address spaces
VM as a tool for caching

H
H
m VM as a tool for memory management
m VM as a tool for memory protection

H

Address translation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

VM as a Tool for Memory Protection

m Extend PTEs with permission bits
m MMU checks these bits on each access

Physical
Processi: SUP READ WRITE EXEC Address Address Space
VP O: No Yes No Yes PP 6
VP 1: No Yes Yes Yes PP 4
VP 2: Yes Yes Yes No PP 2 i
[J
° PP4
o
PP 6
Process j: SUP READ WRITE EXEC Address PP 8
VP 0: No Yes No Yes PP9 PP 9
VP1l:| Yes Yes Yes Yes PP 6
VP2:| No Yes Yes Yes PP 11 PP 11

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

25

Carnegie Mellon

Today

Address spaces
VM as a tool for caching

M
M
m VM as a tool for memory management
m VM as a tool for memory protection

M

Address translation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

VM Address Translation

m Virtual Address Space
= Vv={0 1, .. N-1}
m Physical Address Space
= P={0, 1, .. M-1}
m Address Translation
= MAP: V—> P U {&}
= For virtual address a:
= MAP(a) = a’ if data at virtual address a is at physical address a’in P

= MAP(a) = if data at virtual address a is not in physical memory
— Either invalid or stored on disk

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Summary of Address Translation Symbols

m Basic Parameters
= N =2": Number of addresses in virtual address space
= M=2": Number of addresses in physical address space
= P =2P :Page size (bytes)
m Components of the virtual address (VA)
= TLBI: TLB index
" TLBT: TLB tag
= VPO: Virtual page offset
= VPN: Virtual page number

m Components of the physical address (PA)
= PPO: Physical page offset (same as VPO)
= PPN: Physical page number

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Address Translation With a Page Table

Page table
base register
(PTBR)

Virtual address

n-1

p p-1

Virtual page number (VPN)

Virtual page offset (VPO)

Page table
Valid Physical page number (PPN)

Physical page table
address for the current
process

Valid bit = 0:

Page not in memory €
(page fault)

Valid bit = 1

m-1 v

p p-1 v

0

Physical page number (PPN)

Physical page offset (PPO)

Physical address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

29

Address Translation: Page Hit
(2

CPU Chip
o PTEA Y
PTE
VA €<
>
e L o Cache/
PA Y Memory

Data

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Address Translation: Page Fault

Exception
[m————————- > Page fault handler
| @
I
I
| 2 J\/L
CPU Chip I PTEA Victim page
() = o
CPU B 5 vmu —EF Cache/ g
o e Memory

New page

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Integrating VM and Cache

PTE
CPU Chip pe— PTE
hit
PTEA prea| PTEA
> miss
CPU VA | MmU Memory
A PA PA| PA
miss|
PA « Data
hit
L1
Data cache

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Speeding up Translation with a TLB

m Page table entries (PTEs) are cached in L1 like any other
memory word
"= PTEs may be evicted by other data references
® PTE hit still requires a small L1 delay

m Solution: Translation Lookaside Buffer (TLB)
= Small set-associative hardware cache in MMU
= Maps virtual page numbers to physical page numbers
= Contains complete page table entries for small number of pages

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Accessing the TLB

m MMU uses the VPN portion of the virtual address to
access the TLB:

T =2tsets
VPN
TLBT matchestag — —— —
of line withinset N1 p+t p+t-1 p p-1 0

TLB tag (TLBT) | TLB index (TLBI) VPO

Set O v tdg PTE v tag PTE
TLBI selects the set
\ 4
Set1l v tag PTE v tag PTE <€
[]
]
[]
SetT-1 v tag PTE v tag PTE

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

TLB Hit

CPU Chip
TLB
9 PTE
VPN e
VA PA
> >
CPU MMU a Cache/
Memory
Data

A TLB hit eliminates a memory access

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

TLB Miss

CPU Chip

TLB a

a PTE
VPN

VA PTEA
> >
CPU MMU Cache/
3 s{ Memory

Data

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Multi-Level Page Tables

m Suppose: Level 2
= AKB (21?) page size, 48-bit address space, 8-byte PTE Tables

m Problem:

Level 1
= Would need a 512 GB page table! Table
. 248 % 212 % 23 = 239 hytes]l _—
m Common solution: Multi-level page table :

m Example: 2-level page table

= |level 1 table: each PTE points to a page table (always
memory resident)

= Level 2 table: each PTE points to a page
(paged in and out like any other data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

A Two-Level Page Table Hierarchy

Level 1 Level 2 Virtual
page table page tables memory
0
wvo |)
PTE O — [o
VP 1023 > 2K allocated VM pages
PTE 1 VP 1024 for code and data
PTE 2 (null) PTE 1023
PTE 3 (null)
vP2047 |
PTE 5 (null)
PTE 6 (null) PTE 1023
PTE 7 (null) Gap > 6K unallocated VM pages
PTE 8 >
1023 null
(1K - 9) PTEs J
null PTEs PTE 1023 1023
unallocated 1023 unallocated pages
pages
VP 9215 1 allocated VM page
for the stack

32 bit addresses, 4KB pages, 4-byte PTEs

[]
[]
[]
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Translating with a k-level Page Table

Page table
base register
(PTBR)
N1 VIRTUAL ADDRESS o-1 0
VPN 1 VPN 2 VPN k VPO
Level 1 Level 2 Level k
page table page table page table
> > > s >
: » PPN |}—
m'1 y p'1 4 0
PPN PPO
PHYSICAL ADDRESS

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Summary

m Programmer’s view of virtual memory
= Each process has its own private linear address space
= Cannot be corrupted by other processes

m System view of virtual memory
= Uses memory efficiently by caching virtual memory pages
= Efficient only because of locality
= Simplifies memory management and programming

= Simplifies protection by providing a convenient interpositioning point
to check permissions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

