Carnegie Mellon

Exceptional Control Flow:
Exceptions and Processes

15-213 : Introduction to Computer Systems
14t Lecture, June 16th, 2016

Instructor:
Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

[
[
m Processes
L

Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Control Flow

m Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,
) inst
Time o2
inst;
inst,
<shutdown>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Altering the Control Flow

m Up to now: two mechanisms for changing control flow:
" Jumps and branches
= Call and return
React to changes in program state

m Insufficient for a useful system:
Difficult to react to changes in system state
= Data arrives from a disk or a network adapter
" |nstruction divides by zero
= User hits Ctrl-C at the keyboard
= System timer expires

m System needs mechanisms for “exceptional control flow”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Exceptional Control Flow

m Exists at all levels of a computer system

m Low level mechanisms

= 1. Exceptions

= Change in control flow in response to a system event
(i.e., change in system state)

= Implemented using combination of hardware and OS software

m Higher level mechanisms
= 2. Process context switch
= Implemented by OS software and hardware timer

= 3, Signals
= Implemented by OS software

= 4. Nonlocal jumps: setjmp () and Longjmp ()
= Implemented by C runtime library

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

[
[
m Processes
L

Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Exceptions

m An exception is a transfer of control to the OS kernel in response
to some event (i.e., change in processor state)
= Kernel is the memory-resident part of the OS

= Examples of events: Divide by 0, arithmetic overflow, page fault, I/0
request completes, typing Ctrl-C

User code Kernel code
Event —— | _current ¥, Exception R
|_next Exception processing

by exception handler
* Return to |_current
* Return to |_next
* Abort

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Exception Tables

Exception

numbers
Code for m Each type of event has a
exception handler 0 unique exception number k

¢,Exception Code for

Table .

exception handler 1 — . .

0 re e m k =index into exception table

1 o Code for (a.k.a. interrupt vector)

2 C exception handler 2

n-1 Ly m Handler k is called each time

exception k occurs

Code for
exception handler n-1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

(partial) Taxonomy

ECF

Asynchronous

Interrupts

Synchronous

Carnegie Mellon

T

Traps

Faults

Aborts

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor
" |ndicated by setting the processor’s interrupt pin
= Handler returns to “next” instruction

m Examples:
" Timer interrupt
= Every few ms, an external timer chip triggers an interrupt
= Used by the kernel to take back control from user programs
= |/O interrupt from external device
= Hitting Ctrl-C at the keyboard
= Arrival of a packet from a network
= Arrival of data from a disk

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:

" Traps
= |[ntentional
= Examples: system calls, breakpoint traps, special instructions
= Returns control to “next” instruction

" Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= Unintentional and unrecoverable

= Examples: illegal instruction, parity error, machine check

= Aborts current program

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

System Calls

m Each x86-64 system call has a unique ID number
m Examples:

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

System Call Example: Opening File

m Usercalls: open (filename, options)
m Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

e5d79: b802000000 mov $0x2,%eax # open is syscall #2
ebd7e: 0Of 05 syscall # Return value in %rax
e5d80: 48 3d 01 fO ff ff cmp $OxfFfffffffffffO01,%rax

éédfa: c3 retq
User code Kernel code m 2rax contains syscall number
m Otherargumentsin $rdi,
Exception %rsi, $rdx, $r10, $r8, 3r9

«

syscall

cmp : m Returnvaluein $rax
Open file
Returns m Negative value is an error

corresponding to negative
errno

A 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

System Call | Aimost like a function call

a User calls: open (£ Transfer of control

* On return, executes next instruction

* Passes arguments using calling convention
00000000000e5d70 < © Gets resultin $rax

m Calls __open functi

é.5d79: b8 02 00 00 00

e5d7e: Of 05 - One Important exception!
e5d80: 48 3d 01 fO ff fl e Executed by Kernel
esdfa: c3 e * Different set of privileges

 And other differences:
* E.g., “address” of “function” is in $rax
e Uses errno

* Etc.
syscally Except

cmp g . o
Returns m Negative value is an error

| corresponding to negative
errno

«

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Fault Example: Page Fault

int a[1000];
m User writes to memory location ‘;‘ain 0
m That portion (page) of user’s memory a[500] = 13;
is currently on disk }
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
User code Kernel code

Exception: page fault

»

mov| % >
\l COpy page_from
Return and disk to memory

reexecute movl

v

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Fault Example: Invalid Memory Reference

int a[1000];
main ()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360

User code Kernel code

l Exception: page fault

movl >

Detect invalid address

A 4

» Signal process

m Sends SIGSEGV signal to user process

m User process exits with “segmentation fault”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

|
|
m Processes
|

Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Processes

m Definition: A process is an instance of a running
program.
" One of the most profound ideas in computer science
"= Not the same as “program” or “processor”

m Process provides each program with two key
; Memory
abstractions:

" |ogical control flow Stack

= Each program seems to have exclusive use of the CPU Ige;tl:

= Provided by kernel mechanism called context switching Code

" Private address space

= Each program seems to have exclusive use of main CPU

memory. Registers

= Provided by kernel mechanism called virtual memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data oee Data
Code Code Code
CPU CPU CPU

Registers Registers Registers

m Computer runs many processes simultaneously
= Applications for one or more users
= Web browsers, email clients, editors, ...
= Background tasks
= Monitoring network & I/O devices

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Multiprocessing Example

x| xXterm
Proceszes: 123 total, 5 running, 3 stuck, 103 sleeping, 611 threads 1147207
Load Awg: 1,03, 1,13, 1,14 CPU usage: 3.27E uzer, 5,158 =sys, 91.56% idle
SharedLibz: 576K resident, OB data, OB linkedit,
MemReqionz: 27958 total, 1127YM resident,. 35 private, 494M shared,
PhysMem: 1039M wired, 1974M active, 10B2M inactiwve, 407VEM uszed, 18M free,
YH: 280G wsize, 1091H framework wsize, 23079213(1) pageins, B843367(0) pageouts,
Metworks: packets: 41046228/1106 in, BROS309G6/77G out, [

Disk=; 17674331/3490 read, 12847373/93406 written, F
FII COMMAND ZCPU TIME #TH #l #PORT #MREG EPRWT RSHRD RSIZE WPRMT WSIZE
93217- Wicrosoft OF 0,0 02323,34 4 1 202 418 Z21M 24H 21H BEH 7E3H
33051 usbmuzxd 0,0 00:04,10 3 1 47 BE 436k 216K 480K BOM 2422H
93006 iTunesHelper 0,0 00301,23 2 1 55 78 f28k 3124k 1124k 43H 2429
54286 bash 0.0 00:00,11 1 0 20 24 224k A2 484k 17M 2378
84280 xterm 0,0 00:00,535 1 0 32 73 BoEk 872K B9k 9728k ZEEZH
55933- Microsoft Ex 0,3 21:58,97 10 3 360 954 1EM B5M 4EM 114K 1057M
54701 =zleep 0,0 000,00 1 0 17 20 32k 212K 3B0K 9E32K ZE70M
24723 launchdadd 0,0 000000 2 1 33 al 488k 220K 173EK 4oM 24034
S47E7 top 6.5 000253 171 0 30 29 1416k 216K 2124k 17H 2378
54713 automountd 0,0 Q000,02 7 1 03 B4 aB0k 21EK 2184k DaM 2413H
94701 ocspd 0,0 00:00,05 4 1 Bl 04 1268k ZB44k 3132k DOM 242EH
S4EE1 Grab 0,6 0002,75 B 3 222+ 389+ 18M+ ZEM+ 40M+ FhM+ 25EREM+
54653 cookied 0,0 000,15 2 1 40 Bl 2316k 224K 4088k 42H 2411H
E2HE el s A Anstl B7 A 1 57 =y FEOAK 741 1EM AAH 2420

m Running program “top” on Mac

= System has 123 processes, 5 of which are active
= |dentified by Process ID (PID)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap : Heap Heap
Data : Data cee Data
Code : Code Code
Saved : Saved Saved
registers : registers registers
CPU
Registers

m Single processor executes multiple processes concurrently
" Process executions interleaved (multitasking)
= Address spaces managed by virtual memory system (later in course)
= Register values for nonexecuting processes saved in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap : Heap Heap
Data : Data cee Data
Code : Code Code
Saved : Saved Saved
reg%srters : registers registers
CPU
Registers

m Save current registers in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data cee Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

m Schedule next process for execution

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data cee Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

m Load saved registers and switch address space (context switch)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Multiprocessing: The (Modern) Reality

Memory

Stack : Stack : Stack

Heap : : Heap : Heap

Data L Data ees Data

Code o Code ; Code

Saved :: | Saved : Saved
registers | : - | registers : registers

CPU | CPU [w Multicore processors
Registers | |. Registers | |: = Multiple CPUs on single chip

T Cara e . .] Share main memory (and some Caches)
u EaCh can execute a Separate process

= Scheduling of processors onto cores
done by kernel

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Concurrent Processes

m Each process is a logical control flow.

m Two processes run concurrently (are concurrent) if their
flows overlap in time

m Otherwise, they are sequential

m Examples (running on single core):
" Concurrent: A&B,A&C
= Sequential: B& C

Process A Process B Process C

Time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

User View of Concurrent Processes

m Control flows for concurrent processes are physically
disjoint in time

m However, we can think of concurrent processes as
running in parallel with each other

Process A Process B Process C

Time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Context Switching

m Processes are managed by a shared chunk of memory-
resident OS code called the kernel

" |mportant: the kernel is not a separate process, but rather runs as part
of some existing process.

m Control flow passes from one process to another via a

context switch
Process A : Process B
|
: user code
: kernel code } context switch
Time : user code

| kernel code } context switch
I
I user code
I

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspectiv'e, Third Edition 28

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

[
[
m Processes
L

Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

System Call Error Handling

m On error, Linux system-level functions typically return -1 and
set global variable errno to indicate cause.

m Hard and fast rule:

" You must check the return status of every system-level function
= Only exception is the handful of functions that return void

m Example:

If ((pid =fork()) <0){
fprintf(stderr, "fork error: %s\n", strerror(errno));
exit(-1);

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Error-reporting functions

m Can simplify somewhat using an error-reporting function:

void unix_error(char *msg) /* Unix-style error */

{

fprintf(stderr, "%s: %s\n", msg, strerror(errno));

exit(-1)x
}
. . \ Note: csapp.c exits with 0.
If ((pid =fork()) <0)

unix_error("fork error");

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Error-handling Wrappers

m We simplify the code we present to you even further by
using Stevens-style error-handling wrappers:

pid_t Fork(void)
{
pid_t pid;

If ((pid =fork()) <0)
unix_error("Fork error");
return pid;

}

pid = Fork();

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Obtaining Process IDs

m pid t getpid(void)

= Returns PID of current process

m pid t getppid(void)

= Returns PID of parent process

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Creating and Terminating Processes

From a programmer’s perspective, we can think of a process
as being in one of three states

m Running

" Process is either executing, or waiting to be executed and will
eventually be scheduled (i.e., chosen to execute) by the kernel

m Stopped

" Process execution is suspended and will not be scheduled until
further notice (next lecture when we study signals)

m Terminated
" Process is stopped permanently

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Terminating Processes

m Process becomes terminated for one of three reasons:

= Receiving a signal whose default action is to terminate (next lecture)
= Returning from the main routine
= (Calling the exit function

m void exit(int status)
" Terminates with an exit status of status
® Convention: normal return status is O, nonzero on error

= Another way to explicitly set the exit status is to return an integer value
from the main routine

m exitis called once but never returns.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Creating Processes

m Parent process creates a new running child process by
calling fork

m int fork (void)
= Returns 0 to the child process, child’s PID to parent process
= Child is almost identical to parent:

= Child get an identical (but separate) copy of the parent’s virtual
address space.

= Child gets identical copies of the parent’s open file descriptors
= Child has a different PID than the parent

m fork is interesting (and often confusing) because
it is called once but returns twice

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

fork Example

int main(int argc, char** argv) m Call once, return twice

{ 6 A m Concurrent execution
int x = 1. = Can’t predict execution

d = Fork() order of parent and child

pid = Fork();

if (pid == 0) { /* Child */
printf("child : x=%d\n", ++x);

exit(0);
}

[* Parent */
printf(" parent: x=%d\n", --x);
exit(0);
} fork.c

linux> ./fork linux> ./fork linux> ./fork linux> ./fork
parent: x=0 child : x=2 parent: x=0 parent: x=0
child : x=2 parent: x=0 child : x=2 child : x=2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

fork Example

int main(int argc, char** argv) m Call once, return twice

Lt m Concurrent execution

pid_t pid;

int x = 1; = Can’t predict execution

_ order of parent and child
pid = Fork(); .
if (pid == 0) { /* Child */ m Duplicate but separate
printf("child : x=%d\n", ++x);
exit(0); address space
} = x has a value of 1 when
fork returns in parent and

[* Parent */ hild

printf(" parent: x=%d\n", --x); chi

exit(0); = Subsequent changes to x
} fork.c are independent

linux> ./fork
parent: x=0
child : x=2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

fork Example

Carnegie Mellon

m Call once, return twice

m Concurrent execution
= Can’t predict execution
order of parent and child
m Duplicate but separate
address space

" x has a value of 1 when

fork returns in parent and
child

= Subsequent changes to x

Int main(int argc, char** argv)
{
pid_t pid;
int x =1;
pid = Fork();
if (pid ==0) { /* Child */
printf("child : x=%d\n", ++x);
printf("child : x=%d\n", ++Xx);
exit(0);
}
[* Parent */
printf(" parent: x=%d\n", --x); :
printf("parent: x=%d\n", --x); l:.nuxz. .
exi(0) B
J parent:
child :

are independent

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

39

fork Example

int main(int argc, char** argv) m Call once, return twice

Lt m Concurrent execution

pid_t pid;

int x = 1; = Can’t predict execution

_ order of parent and child
pid = Fork(); .
if (pid == 0) { /* Child */ m Duplicate but separate
printf("child : x=%d\n", ++x);
exit(0); address space
} = x has a value of 1 when
fork returns in parent and

[* Parent */ hild

printf(" parent: x=%d\n", --x); chi

exit(0); = Subsequent changes to x
} fork.c are independent

m Shared open files
linux> ./fork

parent: x=0 " stdoutis the samein
child : x=2 both parent and child

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Modeling £fork with Process Graphs

m A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:

= Each vertex is the execution of a statement
" a->b means a happens before b

= Edges can be labeled with current value of variables
" printf vertices can be labeled with output
= Each graph begins with a vertex with no inedges

m Any topological sort of the graph corresponds to a feasible
total ordering.

= Total ordering of vertices where all edges point from left to right

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Process Graph Example

iInt main(int argc, char** argv)
{
pid_t pid;
int x =1;
pid = Fork();
if (pid ==0) { /* Child */
printf("child : x=%d\n", ++x);
exit(0);
}
[* Parent */
printf("parent: x=%d\n", --x);
exit(0);
}

fork.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

child: x=2 _
o >0 Child
printf exit
X== parent: x=0

® >® >® Parent

main for printf exit
k
42

Carnegie Mellon

Interpreting Process Graphs

m Original graph:

child: x=2
>® >»®
printf exit
x==1=J parent: x=0
® >@ >»®
main for printf exit
k
= Relabled graph: Feasible total ordering:
. 22220
® e > o a b e C f d
a c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

fork Example: Two consecutive forks

void fork2()

{
printf("LO\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");

forks.c

Bye
°
printf
Ll Bye
>0— > >®
printf fork printf
Bye
.0
printf
L0 Ll ‘ Bye
o— >® >0— > »®
printf for printf fork printf

k

Feasible output:
LO

L1

Bye

Bye

L1

Bye

Bye

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Infeasible output:
LO

Bye

L1

Bye

L1

Bye

Bye

44

Carnegie Mellon

fork Example: Nested forks in parent

void fork4()
{
printf("LO\n");
If (fork() '=0){
printf("L1\n");
If (fork() '=0) {
printf("L2\n");
}

}
printf("Bye\n");

}

forks.c

Bye
printf

LO

Bye

pr?Lntf
L2 B
> >Q— #ye

@ » >@—

printf fork printf f%rk printf printf

Feasible output:
LO

L1

Bye

Bye

L2

Bye

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Infeasible output:
LO

Bye

L1

Bye

Bye

L2

45

Carnegie Mellon

fork Example: Nested £orks in children

void fork5()
{
printf("LO\n");
If (fork() ==0){
printf("L1\n");
If (fork() ==0){
printf("L2\n");
}

}
printf("Bye\n");

}

forks.c

L1l

L2 Bye
pig.ntf pr’.ntf

Bye

g
printf

L0 Bye
- > 2a J
printf fork printf

Feasible output:
LO

Bye

L1

L2

Bye

Bye

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork printf

Infeasible output:
LO

Bye

L1

Bye

Bye

L2

46

Carnegie Mellon

Reaping Child Processes

m Ildea
= When process terminates, it still consumes system resources
= Examples: Exit status, various OS tables
= Called a “zombie”
= Living corpse, half alive and half dead
m Reaping
= Performed by parent on terminated child (using wait orwaitpid)
= Parent is given exit status information
= Kernel then deletes zombie child process

m What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then the orphaned
child will be reaped by init process (pid == 1)

= So, only need explicit reaping in long-running processes
= e.g., shells and servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

void fork7() {
if (fork() == 0) {
/* Child */

Zombie
Example

exit(0);
} else{

while (1)

; I* Infinite loop */
linux> ./forks 7 & !}
[1] 6639 }

printf(" Terminating Child, PID = %d\n",

printf("Running Parent, PID = %d\n",

getpid());

getpid());

Running Parent, PID = 6639

Terminating Child, PID = 6640
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct></
6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated u
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh}
6642 ttyp9 00:00:00 ps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ps shows child process as
“defunct” (i.e., a zombie)

Killing parent allows child to
be reaped by init

48

Carnegie Mellon

Non_ }/oid fork8()
. . if (fork(_) ==0) {
terminating /* Child

printf("Running Child, PID = %d\n",
: tpid());
Child Example e

; [* Infinite loop */

} else {
printf(" Terminating Parent, PID = %d\n",
getpid());
exit(0);
}
linux> ./forks 8 }
Terminating Parent, PID = 6675
Running Child, PID = 6676 m Child process still active even
linux> ps though parent has terminated
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9d 00:00:06 fork m Must kill child explicitly, or else will
S s S sl keep running indefinitely
linux> kill 6676
linux> ps
PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

wait: Synchronizing with Children

m Parent reaps a child by calling the wait function

m int wait(int *child status)

= Suspends current process until one of its children terminates

Parent Process Kernel code

«

Exception And, potentially other user

‘w processes, including a child
Returns

of parent

syscall

A 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

wait: Synchronizing with Children

m Parent reaps a child by calling the wait function

m int wait(int *child status)
= Suspends current process until one of its children terminates
= Return value is the pid of the child process that terminated

" Ifchild status != NULL, then the integer it points to will be set
to avalue that indicates reason the child terminated and the exit
status:

= Checked using macros defined inwait.h

— WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

— See textbook for details

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

wait: Synchronizing with Children

void fork9() {
int child_status;

if (fork() == 0) {

exit(0);
} else {

wait(&child_status);

}
printf("Bye\n");

}

printf("HC: hello from child\n");

printf("HP: hello from parent\n”);

printf("CT: child has terminated\n");

forks.c

Feasible output(s):

HC HP
HP HC
CT CT
Bye Bye

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

HC exit
>0— >0
printf
CT
Bye
HP Y
— >0— > >0

fork printf wait printf

Infeasible output:
HP

CcT

Bye

HC

52

Another wait Example

m If multiple children completed, will take in arbitrary order

m Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void fork10() {
pid_t pid[N];
Int i, child_status;

for (i=0; i <N;i++)
it ((pid[i] = fork()) == 0) {
exit(100+i); /* Child */
}
for (i =0; 1 <N; i++) { /* Parent */
pid twpid = wait(&child_status);
If (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf(" Child %d terminate abnormally\n", wpid);
}

} forks.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

waitpid: Waiting for a Specific Process

m pid t waitpid(pid t pid, int *status, int options)
= Suspends current process until specific process terminates
= Various options (see textbook)

void fork11() {
pid_t pid[N];
int i;
int child_status;

for (i =0; 1 <N; i++)
If ((pid[i] = fork()) ==0)
exit(100+i); /* Child */
for i =N-1;1>=0; i--) {
pid t wpid = waitpid(pid[i], &child_status, 0);
If (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminate abnormally\n", wpid);
}

} forks.c

Bryant na U Aanaron, COmpuUter Systems: A PTOgrammer S PErspective, Tnira earton 54

execve: Loading and Running Programs

m int execve(char *filename, char *argv[], char *envp[])

m Loads and runs in the current process:
= Executable file £filename

= Can be object file or script file beginning with # ! interpreter
(e.g., #! /bin/bash)

= _.with argument list argv
= By convention argv[0]==filename
= ..and environment variable list envp
= “name=value” strings (e.g., USER=droh)
» getenv, putenv, printenv
m Overwrites code, data, and stack

= Retains PID, open files and signal context

m Called once and never returns

= .exceptif thereis an error

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Bottom of stack

Null-terminated

Structure of environment variable strings |, ___
Null-terminated i
the StaCk When ___,| command-line arg strings i
anew program .
Sta rtS i envp (B] i environ
i . | (global var)
! envp [0] - <
i argvlargc] = NULL 1 envp
E argv[argc-1] (In $rdx)
argv _______:'_'_'_""‘ argV[O]
(in $rsi)
argc Stack frame for
(in $rdi) libc start main Top of stack

Future stack frame for
main

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

execve Example

m Executes “/bin/ls -1t /usr/include” in child process
using current environment:

envp[n] = NULL
envp [n-1] —> “PWD=/usr/droh”
: envp [0] ——> “USER=droh”
environ >
myargv [argc] = NULL
(argc == 3) myargv [2] ——> “/usr/include”
myargv [1] 3 W_ 1t~
myargv =————> ayarey D] —> “/bin/1s”

If ((pid = Fork()) ==0){ /* Child runs program */

If (execve(myargv[0], myargv, environ) < 0) {
printf("%s: Command not found.\n", myargv|[0]);
exit(1);

}

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

57

Carnegie Mellon

Summary

m Exceptions
= Events that require nonstandard control flow
= Generated externally (interrupts) or internally (traps and faults)

m Processes

= At any given time, system has multiple active processes
®= Only one can execute at a time on any single core

= Each process appears to have total control of
processor + private memory space

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Summary (cont.)

m Spawning processes
= Call fork

® One call, two returns

m Process completion
" Callexit

® One call, no return

m Reaping and waiting for processes
" Callwait orwaitpid

m Loading and running programs
" Call execve (or variant)

" One call, (normally) no return

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

