
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow:
Exceptions and Processes

15-213 : Introduction to Computer Systems
14th Lecture, June 16th, 2016

Instructor:

Brian Railing

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Exceptional Control Flow

 Exceptions

 Processes

 Process Control

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

 Processors do only one thing:
 From startup to shutdown, a CPU simply reads and executes

(interprets) a sequence of instructions, one at a time

 This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Altering the Control Flow

 Up to now: two mechanisms for changing control flow:
 Jumps and branches

 Call and return

React to changes in program state

 Insufficient for a useful system:
Difficult to react to changes in system state
 Data arrives from a disk or a network adapter

 Instruction divides by zero

 User hits Ctrl-C at the keyboard

 System timer expires

 System needs mechanisms for “exceptional control flow”

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow

 Exists at all levels of a computer system

 Low level mechanisms
 1. Exceptions

 Change in control flow in response to a system event
(i.e., change in system state)

 Implemented using combination of hardware and OS software

 Higher level mechanisms
 2. Process context switch

 Implemented by OS software and hardware timer

 3. Signals

 Implemented by OS software

 4. Nonlocal jumps: setjmp() and longjmp()

 Implemented by C runtime library

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Exceptional Control Flow

 Exceptions

 Processes

 Process Control

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptions

 An exception is a transfer of control to the OS kernel in response
to some event (i.e., change in processor state)
 Kernel is the memory-resident part of the OS

 Examples of events: Divide by 0, arithmetic overflow, page fault, I/O
request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0
1

2
...

n-1

Exception Tables

 Each type of event has a
unique exception number k

 k = index into exception table
(a.k.a. interrupt vector)

 Handler k is called each time
exception k occurs

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

(partial) Taxonomy

Asynchronous Synchronous

Interrupts Traps Faults Aborts

ECF

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Asynchronous Exceptions (Interrupts)

 Caused by events external to the processor
 Indicated by setting the processor’s interrupt pin

 Handler returns to “next” instruction

 Examples:
 Timer interrupt

 Every few ms, an external timer chip triggers an interrupt

 Used by the kernel to take back control from user programs

 I/O interrupt from external device

 Hitting Ctrl-C at the keyboard

 Arrival of a packet from a network

 Arrival of data from a disk

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronous Exceptions
 Caused by events that occur as a result of executing an

instruction:
 Traps

 Intentional

 Examples: system calls, breakpoint traps, special instructions

 Returns control to “next” instruction

 Faults

 Unintentional but possibly recoverable

 Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

 Either re-executes faulting (“current”) instruction or aborts

 Aborts

 Unintentional and unrecoverable

 Examples: illegal instruction, parity error, machine check

 Aborts current program

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Calls

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

 Each x86-64 system call has a unique ID number

 Examples:

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Example: Opening File
 User calls: open(filename, options)

 Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2

e5d7e: 0f 05 syscall # Return value in %rax

e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax

...
e5dfa: c3 retq

User code Kernel code

Exception

Open file

Returns

syscall
cmp

 %rax contains syscall number

 Other arguments in %rdi,
%rsi, %rdx, %r10, %r8, %r9

 Return value in %rax

 Negative value is an error
corresponding to negative
errno

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Example: Opening File
 User calls: open(filename, options)

 Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2

e5d7e: 0f 05 syscall # Return value in %rax

e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax

...
e5dfa: c3 retq

User code Kernel code

Exception

Open file

Returns

syscall
cmp

 %rax contains syscall number

 Other arguments in %rdi,
%rsi, %rdx, %r10, %r8, %r9

 Return value in %rax

 Negative value is an error
corresponding to negative
errno

Almost like a function call
• Transfer of control
• On return, executes next instruction
• Passes arguments using calling convention
• Gets result in %rax

One Important exception!
• Executed by Kernel
• Different set of privileges
• And other differences:

• E.g., “address” of “function” is in %rax
• Uses errno
• Etc.

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fault Example: Page Fault
 User writes to memory location

 That portion (page) of user’s memory
is currently on disk

int a[1000];

main ()

{

a[500] = 13;

}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault

Copy page from
disk to memory

Return and
reexecute movl

movl

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fault Example: Invalid Memory Reference

 Sends SIGSEGV signal to user process

 User process exits with “segmentation fault”

int a[1000];

main ()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid address

movl

Signal process

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Exceptional Control Flow

 Exceptions

 Processes

 Process Control

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes

 Definition: A process is an instance of a running
program.
 One of the most profound ideas in computer science

 Not the same as “program” or “processor”

 Process provides each program with two key
abstractions:
 Logical control flow

 Each program seems to have exclusive use of the CPU

 Provided by kernel mechanism called context switching

 Private address space

 Each program seems to have exclusive use of main
memory.

 Provided by kernel mechanism called virtual memory

CPU
Registers

Memory

Stack

Heap

Code

Data

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The Illusion

 Computer runs many processes simultaneously
 Applications for one or more users

 Web browsers, email clients, editors, …

 Background tasks

 Monitoring network & I/O devices

CPU
Registers

Memory

Stack

Heap

Code

Data

CPU
Registers

Memory

Stack

Heap

Code

Data …

CPU
Registers

Memory

Stack

Heap

Code

Data

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing Example

 Running program “top” on Mac
 System has 123 processes, 5 of which are active

 Identified by Process ID (PID)

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Single processor executes multiple processes concurrently
 Process executions interleaved (multitasking)
 Address spaces managed by virtual memory system (later in course)
 Register values for nonexecuting processes saved in memory

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Save current registers in memory

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Schedule next process for execution

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Load saved registers and switch address space (context switch)

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Modern) Reality

 Multicore processors
 Multiple CPUs on single chip

 Share main memory (and some caches)

 Each can execute a separate process

 Scheduling of processors onto cores
done by kernel

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

CPU
Registers

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Processes

 Each process is a logical control flow.

 Two processes run concurrently (are concurrent) if their
flows overlap in time

 Otherwise, they are sequential

 Examples (running on single core):
 Concurrent: A & B, A & C

 Sequential: B & C

Process A Process B Process C

Time

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

User View of Concurrent Processes

 Control flows for concurrent processes are physically
disjoint in time

 However, we can think of concurrent processes as
running in parallel with each other

Time

Process A Process B Process C

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Context Switching

 Processes are managed by a shared chunk of memory-
resident OS code called the kernel
 Important: the kernel is not a separate process, but rather runs as part

of some existing process.

 Control flow passes from one process to another via a
context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Exceptional Control Flow

 Exceptions

 Processes

 Process Control

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Error Handling

 On error, Linux system-level functions typically return -1 and
set global variable errno to indicate cause.

 Hard and fast rule:
 You must check the return status of every system-level function

 Only exception is the handful of functions that return void

 Example:

if ((pid = fork()) < 0) {

fprintf(stderr, "fork error: %s\n", strerror(errno));

exit(-1);
}

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Error-reporting functions

 Can simplify somewhat using an error-reporting function:

void unix_error(char *msg) /* Unix-style error */

{

fprintf(stderr, "%s: %s\n", msg, strerror(errno));

exit(-1);
}

if ((pid = fork()) < 0)
unix_error("fork error");

Note: csapp.c exits with 0.

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Error-handling Wrappers

 We simplify the code we present to you even further by
using Stevens-style error-handling wrappers:

pid_t Fork(void)

{

pid_t pid;

if ((pid = fork()) < 0)

unix_error("Fork error");

return pid;
}

pid = Fork();

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Obtaining Process IDs

 pid_t getpid(void)

 Returns PID of current process

 pid_t getppid(void)

 Returns PID of parent process

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Creating and Terminating Processes

From a programmer’s perspective, we can think of a process
as being in one of three states

 Running
 Process is either executing, or waiting to be executed and will

eventually be scheduled (i.e., chosen to execute) by the kernel

 Stopped
 Process execution is suspended and will not be scheduled until

further notice (next lecture when we study signals)

 Terminated
 Process is stopped permanently

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Terminating Processes

 Process becomes terminated for one of three reasons:
 Receiving a signal whose default action is to terminate (next lecture)

 Returning from the main routine

 Calling the exit function

 void exit(int status)

 Terminates with an exit status of status

 Convention: normal return status is 0, nonzero on error

 Another way to explicitly set the exit status is to return an integer value
from the main routine

 exit is called once but never returns.

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Creating Processes

 Parent process creates a new running child process by
calling fork

 int fork(void)

 Returns 0 to the child process, child’s PID to parent process

 Child is almost identical to parent:

 Child get an identical (but separate) copy of the parent’s virtual
address space.

 Child gets identical copies of the parent’s open file descriptors

 Child has a different PID than the parent

 fork is interesting (and often confusing) because
it is called once but returns twice

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example

int main(int argc, char** argv)

{

pid_t pid;

int x = 1;

pid = Fork();

if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);

exit(0);

}

/* Parent */

printf("parent: x=%d\n", --x);

exit(0);

}

linux> ./fork

parent: x=0

child : x=2

fork.c

 Call once, return twice

 Concurrent execution
 Can’t predict execution

order of parent and child

linux> ./fork

child : x=2

parent: x=0

linux> ./fork

parent: x=0

child : x=2

linux> ./fork

parent: x=0

child : x=2

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example

int main(int argc, char** argv)

{

pid_t pid;

int x = 1;

pid = Fork();

if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);

exit(0);

}

/* Parent */

printf("parent: x=%d\n", --x);

exit(0);

}

linux> ./fork

parent: x=0

child : x=2

fork.c

 Call once, return twice

 Concurrent execution
 Can’t predict execution

order of parent and child

 Duplicate but separate
address space
 x has a value of 1 when

fork returns in parent and
child

 Subsequent changes to x
are independent

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example

int main(int argc, char** argv)

{

pid_t pid;

int x = 1;

pid = Fork();

if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);

printf("child : x=%d\n", ++x);

exit(0);

}

/* Parent */

printf("parent: x=%d\n", --x);

printf("parent: x=%d\n", --x);

exit(0);

}

linux> ./fork

parent: x=0

child : x=2

parent: x=-1

child : x=3

 Call once, return twice

 Concurrent execution
 Can’t predict execution

order of parent and child

 Duplicate but separate
address space
 x has a value of 1 when

fork returns in parent and
child

 Subsequent changes to x
are independent

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example

int main(int argc, char** argv)

{

pid_t pid;

int x = 1;

pid = Fork();

if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);

exit(0);

}

/* Parent */

printf("parent: x=%d\n", --x);

exit(0);

}

linux> ./fork

parent: x=0

child : x=2

fork.c

 Call once, return twice

 Concurrent execution
 Can’t predict execution

order of parent and child

 Duplicate but separate
address space
 x has a value of 1 when

fork returns in parent and
child

 Subsequent changes to x
are independent

 Shared open files
 stdout is the same in

both parent and child

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Modeling fork with Process Graphs

 A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
 Each vertex is the execution of a statement

 a -> b means a happens before b

 Edges can be labeled with current value of variables

 printf vertices can be labeled with output

 Each graph begins with a vertex with no inedges

 Any topological sort of the graph corresponds to a feasible
total ordering.
 Total ordering of vertices where all edges point from left to right

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graph Example

int main(int argc, char** argv)

{

pid_t pid;

int x = 1;

pid = Fork();

if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);

exit(0);

}

/* Parent */

printf("parent: x=%d\n", --x);

exit(0);

}

child: x=2

main for

k

printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Interpreting Process Graphs

 Original graph:

 Relabled graph:

child: x=2

main for

k

printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible total ordering:

a b ecf d

Infeasible total ordering:

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example: Two consecutive forks

void fork2()

{

printf("L0\n");

fork();

printf("L1\n");

fork();

printf("Bye\n");

} printf printf fork

printf

printffor

k

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
L1
Bye
Bye

forks.c

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example: Nested forks in parent

void fork4()

{

printf("L0\n");

if (fork() != 0) {

printf("L1\n");

if (fork() != 0) {

printf("L2\n");

}

}

printf("Bye\n");

}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:
L0
L1
Bye
Bye
L2
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example: Nested forks in children

void fork5()

{

printf("L0\n");

if (fork() == 0) {

printf("L1\n");

if (fork() == 0) {

printf("L2\n");

}

}

printf("Bye\n");

}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf

Bye

Feasible output:
L0
Bye
L1
L2
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reaping Child Processes
 Idea

 When process terminates, it still consumes system resources

 Examples: Exit status, various OS tables

 Called a “zombie”

 Living corpse, half alive and half dead

 Reaping
 Performed by parent on terminated child (using wait or waitpid)

 Parent is given exit status information

 Kernel then deletes zombie child process

 What if parent doesn’t reap?
 If any parent terminates without reaping a child, then the orphaned

child will be reaped by init process (pid == 1)

 So, only need explicit reaping in long-running processes

 e.g., shells and servers

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6639 ttyp9 00:00:03 forks

6640 ttyp9 00:00:00 forks <defunct>

6641 ttyp9 00:00:00 ps

Zombie
Example

forks.c
linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6639 ttyp9 00:00:03 forks

6640 ttyp9 00:00:00 forks <defunct>

6641 ttyp9 00:00:00 ps

linux> kill 6639

[1] Terminated

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6642 ttyp9 00:00:00 ps

 ps shows child process as
“defunct” (i.e., a zombie)

 Killing parent allows child to
be reaped by init

void fork7() {

if (fork() == 0) {

/* Child */

printf("Terminating Child, PID = %d\n", getpid());

exit(0);

} else {

printf("Running Parent, PID = %d\n", getpid());

while (1)

; /* Infinite loop */

}

}

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

linux> ./forks 8

Terminating Parent, PID = 6675

Running Child, PID = 6676

Non-
terminating
Child Example

 Child process still active even
though parent has terminated

 Must kill child explicitly, or else will
keep running indefinitely

forks.clinux> ./forks 8

Terminating Parent, PID = 6675

Running Child, PID = 6676

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6676 ttyp9 00:00:06 forks

6677 ttyp9 00:00:00 ps

linux> ./forks 8

Terminating Parent, PID = 6675

Running Child, PID = 6676

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6676 ttyp9 00:00:06 forks

6677 ttyp9 00:00:00 ps

linux> kill 6676

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6678 ttyp9 00:00:00 ps

void fork8()

{

if (fork() == 0) {

/* Child */

printf("Running Child, PID = %d\n",

getpid());

while (1)

; /* Infinite loop */

} else {

printf("Terminating Parent, PID = %d\n",

getpid());

exit(0);

}

}

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children

 Parent reaps a child by calling the wait function

 int wait(int *child_status)

 Suspends current process until one of its children terminates

Parent Process Kernel code

Exception

Returns

syscall
…

And, potentially other user
processes, including a child
of parent

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children

 Parent reaps a child by calling the wait function

 int wait(int *child_status)

 Suspends current process until one of its children terminates

 Return value is the pid of the child process that terminated

 If child_status != NULL, then the integer it points to will be set
to a value that indicates reason the child terminated and the exit
status:

 Checked using macros defined in wait.h

– WIFEXITED, WEXITSTATUS, WIFSIGNALED,

WTERMSIG, WIFSTOPPED, WSTOPSIG,

WIFCONTINUED

– See textbook for details

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children

void fork9() {

int child_status;

if (fork() == 0) {

printf("HC: hello from child\n");

exit(0);

} else {

printf("HP: hello from parent\n");

wait(&child_status);

printf("CT: child has terminated\n");

}

printf("Bye\n");

}

printf wait printffork

printf

exit

HP

HC

CT

Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

Feasible output(s):
HC HP
HP HC
CT CT
Bye Bye

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another wait Example
 If multiple children completed, will take in arbitrary order

 Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void fork10() {

pid_t pid[N];

int i, child_status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {

exit(100+i); /* Child */

}

for (i = 0; i < N; i++) { /* Parent */

pid_t wpid = wait(&child_status);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminate abnormally\n", wpid);

}

} forks.c

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

waitpid: Waiting for a Specific Process

 pid_t waitpid(pid_t pid, int *status, int options)

 Suspends current process until specific process terminates

 Various options (see textbook)

void fork11() {

pid_t pid[N];

int i;

int child_status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)

exit(100+i); /* Child */

for (i = N-1; i >= 0; i--) {

pid_t wpid = waitpid(pid[i], &child_status, 0);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminate abnormally\n", wpid);

}

} forks.c

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve: Loading and Running Programs

 int execve(char *filename, char *argv[], char *envp[])

 Loads and runs in the current process:
 Executable file filename

 Can be object file or script file beginning with #!interpreter
(e.g., #!/bin/bash)

 …with argument list argv

 By convention argv[0]==filename

 …and environment variable list envp

 “name=value” strings (e.g., USER=droh)

 getenv, putenv, printenv

 Overwrites code, data, and stack
 Retains PID, open files and signal context

 Called once and never returns
 …except if there is an error

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structure of
the stack when
a new program
starts

Null-terminated

environment variable strings

Null-terminated

command-line arg strings

envp[n] == NULL

envp[n-1]

...
envp[0]

argv[argc] = NULL

argv[argc-1]

...
argv[0]

Future stack frame for
main

environ

(global var)

Bottom of stack

Top of stack

argv

(in %rsi)

envp

(in %rdx)

Stack frame for
libc_start_main

argc

(in %rdi)

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve Example

envp[n] = NULL

envp[n-1]

envp[0]

…

“USER=droh”

“PWD=/usr/droh”

environ

if ((pid = Fork()) == 0) { /* Child runs program */

if (execve(myargv[0], myargv, environ) < 0) {

printf("%s: Command not found.\n", myargv[0]);

exit(1);

}

}

 Executes “/bin/ls –lt /usr/include” in child process
using current environment:

myargv[argc] = NULL

myargv[2]

myargv[0]

myargv[1]

“/bin/ls”

“-lt”

“/usr/include”

myargv

(argc == 3)

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 Exceptions
 Events that require nonstandard control flow

 Generated externally (interrupts) or internally (traps and faults)

 Processes
 At any given time, system has multiple active processes

 Only one can execute at a time on any single core

 Each process appears to have total control of
processor + private memory space

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary (cont.)

 Spawning processes
 Call fork

 One call, two returns

 Process completion
 Call exit

 One call, no return

 Reaping and waiting for processes
 Call wait or waitpid

 Loading and running programs
 Call execve (or variant)

 One call, (normally) no return

