Carnegie Mellon

Cache Memories

15-213: Introduction to Computer Systems
12t Lecture, June 14th, 2016

Instructor:
Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Today

m Cache memory organization and operation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Locality

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

m Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

C /

m Spatial locality:

" |tems with nearby addresses tend
to be referenced close together in time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Example Memory

Hierarchy 10/ ens
CPU registers hold words retrieved
Smaller, from the L1 cache.
faster, L1: L1 cache
and (SRAM) L1 cache holds cache lines retrieved
Costlier from the L2 cache.
(per byte] L2: L2 cache
(SRAM) _
storage L2 cache holds cache lines
devices retrieved from L3 cache
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger,
slower, L4: Main memory
and (DRAM) Main memory holds disk
cheaper blocks retrieved from local
(per byte) disks.
storage |g. Local secondary storage
devices (local disks)
Local disks hold files
retrieved from disks
on remote servers
L6: Remote secondary storage

(e.g., Web servers)

Bryant anfl Q’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

General Cache Concepts

Smaller, faster, more expensive
Cache 4 9 10 3 memory caches a subset of
the blocks

Data is copied in block-sized

10 transfer units
Larger, slower, cheaper memory
Memory 0 1 2 3 viewed as partitioned into “blocks”
4 5 6 7
8 9 10 11
12 13 14 15
0 0000000000000 0O0CO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Cach 2 5 T 3 Block b is in cache:
ache Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
0000000000 O0COCOGOOGOS OO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

General Cache Concepts: Miss

Request: 12 Data in block b is needed
Cach 2 5 12 3 Block b is not in cache:
ache Miss!
Block b is fetched from
12 Request: 12
memory
Block b is stored in cache
Memory 0 1 2 3 * Placement policy:
4 5 6 7 determines where b goes
* Replacement policy:
8 9 10 11
determines which block
12 13 14 15 gets evicted (victim)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

General Caching Concepts:

Types of Cache Misses

m Cold (compulsory) miss
= Cold misses occur because the cache is empty.

m Conflict miss

= Most caches limit blocks at level k+1 to a small subset (sometimes a
singleton) of the block positions at level k.

= E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

= Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.

= E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
m Capacity miss

= Occurs when the set of active cache blocks (working set) is larger than
the cache.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware
= Hold frequently accessed blocks of main memory

m CPU looks first for data in cache
m Typical system structure:

CPU chip

Register file

Cache <—> |:> ALU
memory <":|
l E System bus Memory bus
Bus interface < > I./O <::> ain
bridge memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Recap from Lecture 10:

Modern CPU Design

Instruction Control

Address
Fuamaas >
Register . _Instructions
> File D
Operations
Register Updates Prediction OK?
\ 4

1 | | | | | | | | 1

v v v v v v
Functional
Units

7y 7y 7y 7y Y 7y

\ 4 \ 4 \ 4 \ 4 \ 4 \ 4

Operation Results
Addr. Addr.
Data Data

Execution

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

How it Really Looks Like

CPU chip
Desktop PC Iﬁeuzlz'-tne-rﬂII-z::>
Cache
memory <:::> AL

@ }stem bus Memory bus
T | _

. I/o Main

Bus interfoce Q;_/J‘\ o T ain

CPU (Intel Core i7) Main memory (DRAM)

Source: Dell

Source: Dell 4th Gen
1 Inted” Core”™ 1)

n. L] =‘-‘.-i“-'. -FE

Source: techreport. com

Source: Dell

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj93_aDlf_KAhVCXR4KHbAiDIoQjRwIBw&url=http://www.pcmag.com/article2/0,2817,2419884,00.asp&psig=AFQjCNHi1OjG5ApxQhqv_dyCgDMiSF66ZA&ust=1455811067509630

Carnegie Mellon

General Cache Organization (S, E, B)

E = 2¢ lines per set
A

'd N\

4 «—
eooe —
eooe

S=ZSSEtS< eoceoe

000
\
Cache size:
v tag ol1l2[------ B-1 C =S x E x B data bytes
1 = —
- ~
valid bit B = 2° bytes per cache block (the data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

caChe Read * Locate set

* Check if any line in set
has matching tag

E = 2¢ lines per set * Yes + line valid: hit
e A ~ * Locate data starting
4 at offset
o0 00

Address of word:
t bits s bits | b bits
= 25 R/_/\/-/\/J
S = 25 sets < R tag set block
index offset

data begins at this offset

Vv tag O1112] cccce- B-1

valid bit S~
B = 2® bytes per cache block (the data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

4 - Tilalalal=1cl5 Address of int:
i a8 tbits | 0..01 | 100

\'} ta 0111213415167 -
g find set

S$=25 sets<

v tag 0]1]1]12)1314]|5]|6]7

'} tag 0j112|3|4]|5]|6]|7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes = hit

vl | tag | [o]1]2]3]4]5]6]7

block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes = hit

'} tag 0|1]2|3]14|5]|6]7

block offset

int (4 Bytes) is here

If tag doesn’t match: old line is evicted and replaced

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Direct-Mapped Cache Simulation

t=1 s=2 b=l M=16 bytes (4-bit addresses), B=2 bytes/block,
X XX X S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit

7 [0111,], miss
8 [1000,], miss
0 [0000,] miss

v Tag Block

Set0 | 1 0 M[0-1]
Set 1l
Set 2
set3| 1 | 0 M[6-7]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

2 lines per set t bits 0..01 | 100
_A
p
(
vl [(tag | [o[2[2[3Tals[6[7|l I[V] [tag | [o[2[2]3]a[5][6]7
vl [tag | [o[2][2]3Tals[e[7 1 |[v] [tag | [o[2][2]3]a[5[6[7]| — find set
< vl [tag | [o[1]23Tals[6[71l I[Vv] [tag | [o[z[2]3Ta[5[6]7
O 0000000000 0000000000000 00000 OCOOCO®O®O®EOOLOLOEOEOOOOOIOO
vl [tag | [o[1]23Tals[6[71l I[Vv] [tag | [o[z[2]3Ta[5[6]7
\.
S sets

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| | tag | [0o]1]2]|3]4a]5]6]7 v| | tag | |o]1]2]3]4a]5]6]7]] —

block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| [tag | [0]1]2]3]a]5]6[7]| [[v] [tag | [0o]2[2]3]a]5[6]7]|] —

block offset

short int (2 Bytes) is here

No match:
* Onelinein set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

2-Way Set Associative Cache Simulation

t=2 s=1 b=1
XX X X

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit

v Tag Block
1 00 | M[O-1]
1 10 | M[8-9]

Set O

Set 1 1 01 M[6-7]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

What about writes?

m Multiple copies of data exist:
= L1, L2, L3, Main Memory, Disk

m What to do on a write-hit?

= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Need a dirty bit (line different from memory or not)

m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow
= No-write-allocate (writes straight to memory, does not load into cache)

m Typical
= Write-through + No-write-allocate
" Write-back + Write-allocate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Intel Core i7 Cache Hierarchy

Processor package

Core 0 Core 3 L1 i-cache and d-cache:
R R 32 KB, 8-way,
€8s €gs Access: 4 cycles
L1 L1 L1 L1 L2 unified cache:
d-cache| |i-cache d-cache| |i-cache 256 KB, 8-way,
oo Access: 10 cycles
L2 unified cache L2 unified cache L3 unified cache:
8 MB, 16-way,

Access: 40-75 cycles

L3 unified cache _
(shared by all cores) Block size: 64 bytes for
all caches.

Main memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Example: Core i7 L1 Data Cache

>
& 0
. . E = 2° lines per set Q\d’. 000\6\00
32 kB 8-way set associative e A ~ 0 [0 [0000
64 bytes/block I | oo . S L
47 bit address range | | seee 1] 2 3 82(1)3
5=I"SEE< I II Il-illu: 5 5 0101
B= 6 | 6 | 0110
S_ s_ [E AR RN EE N ENEEENEEEENENEEENENENN] 7 7 0111
= ,8= oo [8 | 8 | 1000
E= e= - l I ! 9 [9 |1001
’ A [10] 1010
C= Cache size: B |11 1011
El (e | [o]a]z] [o1] C =5 x E x B data bytes C |12 1100
D (13| 1101
“Jh_ —_— E |14 | 1110
valid bit F |15 1111
Address of word:
| thits | shbits | bbits |
—
tag set block Stack Add . Block offset: 0x??
index offset tack Address: O(E DI Xos
0x00007f£7262ale010 Set index: 0x?7?
Block offset: . bits Tag: 0x??
Set index: . bits
Tag: . bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Example: Core i7 L1 Data Cache .

&
E =2°lines per set ‘2\0+ 000\6\00
32 kB 8-way set associative e A ~ 0 [0 [0000
64 bytes/block I | | SR I :12 ; 88%
47 bit address range | | T — 2 3 32(1)3
S=I"sets< | || |----: 5 5 0101
B=64 6 | 6 | 0110
S=64’S=6 [E AR RN EE N ENEEENEEEENENEEENENENN] 7 7 0111
8 | 8 | 1000
E=8,e=3 %) [\ — 9 |9 [1001
C=64x64x8=32,768 S S RIS
EI we | [o]1]2] =1 C =5 x E x B data bytes C |12 1100
| D |13 | 1101
b —_— E |14 | 1110
F |15 1111
Address of word:
| thits | shbits | bbits |
R
tag set block
index offset Stack Address: Block offset: 0x10
0x00007£f7262al1le010 Set index: 0x0
Block offset: 6 bits Tag: 0x7£7262ale
Set index: 6 bits
Tag: 35 bits 0000 0001 0000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Cache Performance Metrics

m Miss Rate

" Fraction of memory references not found in cache (misses / accesses)
=1 - hitrate
= Typical numbers (in percentages):
= 3-10% for L1

= can be quite small (e.g., < 1%) for L2, depending on size, etc.
m Hit Time
"= Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 4 clock cycle for L1
= 10 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Let’s think about those numbers

m Huge difference between a hit and a miss

= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:

97% hits: 1 cycle + 0.03 x 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Writing Cache Friendly Code

m Make the common case go fast

= Focus on the inner loops of the core functions

m Minimize the misses in the inner loops

= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Today

m Performance impact of caches

= The memory mountain

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Memory Mountain Test Function

long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of

& array '"data" with stride of "stride", using Call test () with many
* using 4x4 loop unrolling. combinations of elems
*/

int test(int elems, int stride) { and stride.

long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long accO = 0, acel = 0, ace2 = 0, ace3 = 0; For each elems and
long length = elems, limit = length - sx4; stride:

/* Combine 4 elements at a time */
for (1 = 0; i < limit; i += sx4) {

1. Call test() onceto

el = feal 4 debafiad - warm up the caches.
accl = accl + data[i+stride];
acc2 = acc2 + data[i+sx2]; 2. Call test() again and
acc3 = acc3 + data[i+sx3]; measure the read

: throughput(MB/s)

/* Finish any remaining elements */
for (; i < length; i++) {
acc0 = accO0 + datal[i];

}

return ((accO0 + accl) + (acc2 + acc3));

} mountain/mountain.c

31

Carnegie Mellon

Core i7 Haswell

The Memory Mountain 2.1 GHz

32 KB L1 d-cache
256 KB L2 cache

Aggressive 8 MB L3 cache
prefetching T~ —64 B block size
16000 +
[
_. 14000 -
&
m |
S 12000 -
5
2 10000 -
(@)
g 8000~ A Ridges
| -of temporal
8 6000 - Zd P
i B ~___ locality
4000
2000 + A
Slopes =
of spatial 3k
locality ' 128k
~7 512k
: I e 8m _
Stride (x8 bytes) s9 L Size (bytes)
: 32m
s11
128m

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Today

= Rearranging loops to improve spatial locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Matrix Multiplication Example

m Description:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiply N x N matrices

Matrix elements are
doubles (8 bytes)

O(N3) total operations

N reads per source
element

N values summed per
destination

= but may be able to
hold in register

Variable sum

/* ijk */ held in register
for (i=0; i<n; i++)
for (j=0; j<n; j++) { //
sum = 0.0; <
for (k=0; k<n; k++)
sum += a[i] [k] * b[k]l[]j];
c[i][J] = sum;

matmult/mm.c

34

Carnegie Mellon

Miss Rate Analysis for Matrix Multiply

m Assume:
= Block size = 32B (big enough for four doubles)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows

m Analysis Method:

= Look at access pattern of inner loop

C A B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
" for (1 = 0; 1 < N; 1i++)
sum += a[0] [i];
" accesses successive elements
= if block size (B) > sizeof(a;) bytes, exploit spatial locality
= miss rate = sizeof(a;) / B
m Stepping through rows in one column:
" for (i = 0; i < n; i++)
sum += a[i][0];
= accesses distant elements
" no spatial locality!

= miss rate =1 (i.e. 100%)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {

sum += a[i][k] * b[k][7j];

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

for (j=0; j<n; j++) { *
sum = 0.0; gl - QJ)
for (k=0; k<n; k++) (%)
A B

Carnegie Mellon

Inner loop:

c[i][j] = sum; | |
}
} matmult/mm.c Row-wise Column- Fixed
wise

37

Carnegie Mellon

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {

for (i=0; i<n; i++) { * i
sum = 0.0; E;;;‘ Qﬂ
HEE
for (k=0; k<n; k++) (i,%)
A B

sum += a[i] [k] * b[k][]];

c[i][§] = sum | | ‘
}

Inner loop:

matmult/mm.c Row-wise Column- Fixed
wise
Misses per inner loop iteration:
A B c
0.25 1.0 0.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Matrix Multiplication (ki)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i.k) E(k'*)g
r = a[i] [k]; 0 (i,*)
B C

for (j=0; j<n; j++) A
c[i][3J] += r * Db[k][]]’ | |

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B ¢
0.0 0.25 0.25

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (i,k) Ii(k’*)gl
r = a[i] [k]; 0 (i,*)
B C

for (j=0; j<n; j++) A
c[i][]J] += r * b[k][]]; | | |

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B ¢
0.0 0.25 0.25

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Matrix Multiplication (jki)

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/* ki */ Inner loop:
for (j=0; j<n; j++) { (*,k) (*,j)
for (k=0; k<n; k++) { (k,j)

r = b[k][j]; ” n [

for (i=0; i<n; i++) A B C

c[i][j] += alil[k] * r; ‘ ‘
e . Column- Fixed Column-

wise wise

41

Carnegie Mellon

Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {

for (j=0; j<n; j++) { * k) *
r = b[k][j]; (I:,J')

for (i=0; i<n; i++)

Inner loop:

A . A B C
c[i][j] += a[i]l[k] * r; | | |
matmult/mm.c
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Summary of Matrix Multiplication

Bryant and O’Hallaron,

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i] [k] * b[k][]j];
c[i][]J] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k];
for (j=0; j<n; j++)
c[i]l[3] += r * b[k][]];
}
}

for (3=0; j<n; j++) {

for (k=0; k<n; k++) {
r = b[k][]j];
for (i=0; i<n; i++)
c[i][]j] += a[i]l [k] * r;

ijk (& jik):
e 2 loads, O stores
* misses/iter = 1.25

kij (& ikj):
e 2 |loads, 1 store
* misses/iter = 0.5

jki (& kji):
e 2 |loads, 1 store
* misses/iter = 2.0

43

Carnegie Mellon

Core i7 Matrix Multiply Performance

Cycles per inner loop iteration
100

jki /kji

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Today

= Using blocking to improve temporal locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Example: Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

I
X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
® Cache size C << n (much smaller than n)

m First iteration: r ~
" n/8+n=9n/8 misses

I
X

= Afterwards in cache:
(schematic) . e

Il
X

8 wide
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
® Cache size C << n (much smaller than n)

n
m Second iteration: —N
= Again: :
n/8 + n =9n/8 misses _ X

8 wide

m Total misses:
= 9n/8 n*=(9/8) n3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {

int i, j, k;

for (1 = 0; i < n; i+=B)

for (J = 0; jJ < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = i; il < i+B; il++)
for (31 = j; jl < j+B; jl++)
for (k1 = k; k1l < k+B; kl++)
c[il*n+jl] += a[il*n + k1l]*b[kl*n + jl];

} matmult/bmm. c

jl

c a b c

= X +
[sl | [[| |
A
Block size B x B 49

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

.]) n/B blocks
m First (block) iteration: A
= B2/8 misses for each block B BEEEE B
= 2n/BxB?/8=nB/4 - =
(omitting matrix c) - X]

Block size B x B

= Afterwards in cache [EEEEE

(schematic)

X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

. . n/B blocks
m Second (block) iteration: A
= Same as first iteration [] BEEEE
= 2n/BxB2/8 =nB/4 _ X
m Total misses: Block size B x B

= nB/4 * (n/B)?=n3/(4B)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Blocking Summary

m No blocking: (9/8) n3
m Blocking: 1/(4B) n3

m Suggest largest possible block size B, but limit 3B2 < C!

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Cache Summary

m Cache memories can have significant performance impact

m You can write your programs to exploit this!
= Focus on the inner loops, where bulk of computations and memory
accesses occur.
= Try to maximize spatial locality by reading data objects with
sequentially with stride 1.

= Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

