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Today

 Storage technologies and trends
 Locality of reference
 Caching in the memory hierarchy
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Random-Access Memory (RAM)

 Key features
 RAM is traditionally packaged as a chip.

 Basic storage unit is normally a cell (one bit per cell).

 Multiple RAM chips form a memory.

 RAM comes in two varieties:
 SRAM (Static RAM)

 DRAM (Dynamic RAM)
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SRAM vs DRAM Summary

Trans. Access Needs Needs

per bit time refresh? EDC? Cost Applications

SRAM 4 or 6 1X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,

frame buffers
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Nonvolatile Memories

 DRAM and SRAM are volatile memories
 Lose information if powered off.

 Nonvolatile memories retain value even if powered off
 Read-only memory (ROM): programmed during production

 Programmable ROM (PROM): can be programmed once

 Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)

 Electrically eraseable PROM (EEPROM): electronic erase capability

 Flash memory: EEPROMs. with partial (block-level) erase capability

 Wears out after about 100,000 erasings

 Uses for Nonvolatile Memories
 Firmware programs stored in a ROM (BIOS, controllers for disks, 

network cards, graphics accelerators, security subsystems,…)

 Solid state disks (replace rotating disks in thumb drives, smart 
phones, mp3 players, tablets, laptops,…)

 Disk caches
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Traditional Bus Structure Connecting 
CPU and Memory

 A bus is a collection of parallel wires that carry address, 
data, and control signals.

 Buses are typically shared by multiple devices.

Main
memory

I/O 
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus
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Memory Read Transaction (1)

 CPU places address A on the memory bus.

ALU

Register file

Bus interface

A
0

Ax

Main memory
I/O bridge

%rax

Load operation: movq A, %rax
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Memory Read Transaction (2)

 Main memory reads A from the memory bus, retrieves 
word x, and places it on the bus.

ALU

Register file

Bus interface

x 0

Ax

Main 
memory

%rax

I/O bridge

Load operation: movq A, %rax
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Memory Read Transaction (3)

 CPU read word x from the bus and copies it into register 
%rax.

x
ALU

Register file

Bus interface x

Main memory
0

A

%rax

I/O bridge

Load operation: movq A, %rax
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Memory Write Transaction (1)

 CPU places address A on bus. Main memory reads it and 
waits for the corresponding data word to arrive.

y
ALU

Register file

Bus interface

A

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A
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Memory Write Transaction (2)

 CPU places data word y on the bus.

y
ALU

Register file

Bus interface

y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A
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Memory Write Transaction (3)

 Main memory reads data word y from the bus and stores 
it at address A.

y
ALU

Register file

Bus interface y

main memory

0

A

%rax

I/O bridge

Store operation: movq %rax, A
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What’s Inside A Disk Drive?
SpindleArm

Actuator

Platters

Electronics
(including a 
processor 
and memory!)SCSI

connector

Image courtesy of Seagate Technology
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Disk Geometry

 Disks consist of platters, each with two surfaces.

 Each surface consists of concentric rings called tracks.

 Each track consists of sectors separated by gaps.

Spindle

Surface
Tracks

Track k

Sectors

Gaps
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Disk Geometry (Muliple-Platter View)

 Aligned tracks form a cylinder.

Surface 0

Surface 1
Surface 2

Surface 3
Surface 4

Surface 5

Cylinder k

Spindle

Platter 0

Platter 1

Platter 2
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Disk Capacity

 Capacity: maximum number of bits that can be stored.
 Vendors express capacity in units of gigabytes (GB),  where

1 GB = 109 Bytes. 

 Capacity is determined by these technology factors:
 Recording density (bits/in): number of bits that can be squeezed 

into a 1 inch segment of a track.

 Track density (tracks/in): number of tracks that can be squeezed 
into a 1 inch radial segment.

 Areal density (bits/in2): product of recording and track density.
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Recording zones

 Modern disks partition tracks 
into disjoint subsets called 
recording zones
 Each track in a zone has the same 

number of sectors, determined 
by the circumference of 
innermost track.

 Each zone has a different number 
of sectors/track, outer zones 
have more sectors/track than 
inner zones.

 So we use average number of 
sectors/track when computing 
capacity. 

Spindle

…
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Computing Disk Capacity

Capacity =  (# bytes/sector) x (avg. # sectors/track) x

(# tracks/surface) x (# surfaces/platter) x

(# platters/disk)

Example:

 512 bytes/sector

 300 sectors/track (on average)

 20,000 tracks/surface

 2 surfaces/platter

 5 platters/disk

Capacity = 512 x 300 x 20,000 x 2 x 5

= 30,720,000,000

= 30.72 GB 
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Disk Operation (Single-Platter View)

The disk surface 
spins at a fixed
rotational rate

By moving radially, the arm can 
position the read/write head 
over any track.

The read/write head
is attached to the end
of the arm and flies over
the disk surface on
a thin cushion of air.

sp
in

d
le

spindle

sp
in

d
le

spindlespindle
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Disk Operation (Multi-Platter View)

Arm

Read/write heads 
move in unison
from cylinder to 
cylinder

Spindle
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Tracks divided into sectors

Disk Structure - top view of single platter

Surface organized into tracks
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Disk Access

Head in position above a track
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Disk Access

Rotation is counter-clockwise
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Disk Access – Read

About to read blue sector
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Disk Access – Read

After BLUE read

After reading blue sector
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Disk Access – Read

After BLUE read

Red request scheduled next
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Disk Access – Seek

After BLUE read Seek for RED

Seek to red’s track
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Disk Access – Rotational Latency

After BLUE read Seek for RED Rotational latency

Wait for red sector to rotate around
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Disk Access – Read

After BLUE read Seek for RED Rotational latency After RED read

Complete read of red
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Disk Access – Service Time Components

After BLUE read Seek for RED Rotational latency After RED read

Data transfer Seek Rotational 
latency

Data transfer
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Disk Access Time

 Average time to access some target sector approximated by:
 Taccess =  Tavg seek +  Tavg rotation + Tavg transfer

 Seek time (Tavg seek)
 Time to position heads over cylinder containing target sector.

 Typical  Tavg seek is 3—9 ms

 Rotational latency (Tavg rotation)
 Time waiting for first bit of target sector to pass under r/w head.

 Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min

 Typical Tavg rotation = 7,200 RPMs

 Transfer time (Tavg transfer)
 Time to read the bits in the target sector.

 Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.
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Disk Access Time Example

 Given:
 Rotational rate = 7,200 RPM

 Average seek time = 9 ms.

 Avg # sectors/track = 400.

 Derived:
 Tavg rotation =

 Tavg transfer =

 Taccess =
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Disk Access Time Example

 Given:
 Rotational rate = 7,200 RPM

 Average seek time = 9 ms.

 Avg # sectors/track = 400.

 Derived:
 Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.

 Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms

 Taccess = 9 ms + 4 ms + 0.02 ms

 Important points:
 Access time dominated by seek time and rotational latency.

 First bit in a sector is the most expensive, the rest are free.

 SRAM access time is about  4 ns/doubleword, DRAM about  60 ns

 Disk is about 40,000 times slower than SRAM, 

 2,500 times slower then DRAM.
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Logical Disk Blocks

 Modern disks present a simpler abstract view of the 
complex sector geometry:
 The set of available sectors is modeled as a sequence of b-sized 

logical blocks (0, 1, 2, ...)

 Mapping between logical blocks and actual (physical) 
sectors
 Maintained by hardware/firmware device called disk controller.

 Converts requests for logical blocks into (surface,track,sector) 
triples.

 Allows controller to set aside spare cylinders for each 
zone.
 Accounts for the difference in “formatted capacity” and “maximum 

capacity”. 
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I/O Bus

Main
memory

I/O 
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Disk 
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus Expansion slots for
other devices such
as network adapters.
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Reading a Disk Sector (1)

Main
memory

ALU

Register file

CPU chip

Disk 
controller

Graphics
adapter

USB
controller

mouse keyboard Monitor

Disk

I/O bus

Bus interface

CPU initiates a disk read by writing a 
command, logical block number, and 
destination memory address to a port
(address) associated with disk 
controller.
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Reading a Disk Sector (2)

Main
memory

ALU

Register file

CPU chip

Disk 
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus

Bus interface

Disk controller reads the sector 
and performs a direct memory 
access (DMA) transfer into main 
memory.
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Reading a Disk Sector (3)

Main
memory

ALU

Register file

CPU chip

Disk 
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus

Bus interface

When the DMA transfer completes, 
the disk controller notifies the CPU 
with an interrupt (i.e., asserts a 
special “interrupt” pin on the CPU)
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Solid State Disks (SSDs)

 Pages: 512KB to 4KB, Blocks: 32 to 128 pages

 Data read/written in units of pages. 

 Page can be written only after its block has been erased

 A block wears out after about 100,000 repeated writes.

Flash 
translation layer

I/O bus

Page 0 Page 1 Page P-1…
Block 0

… Page 0 Page 1 Page P-1…
Block  B-1

Flash memory

Solid State Disk (SSD)

Requests to read and 
write logical disk blocks
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SSD Performance Characteristics

 Sequential access faster than random access
 Common theme in the memory hierarchy

 Random writes are somewhat slower
 Erasing a block takes a long time (~1 ms)

 Modifying a block page requires all other pages to be copied to 
new block

 In earlier SSDs, the read/write gap was much larger.

Sequential read tput 550 MB/s Sequential write tput 470 MB/s
Random read tput 365 MB/s Random write tput 303 MB/s
Avg seq read time 50 us Avg seq write time 60 us

Source: Intel SSD 730 product specification.
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SSD Tradeoffs vs Rotating Disks

 Advantages 
 No moving parts  faster, less power, more rugged

 Disadvantages
 Have the potential to wear out 

 Mitigated by “wear leveling logic” in flash translation layer

 E.g. Intel SSD 730 guarantees 128 petabyte (128 x 1015 bytes) of 
writes before they wear out

 In 2015, about 30 times more expensive per byte

 Applications
 MP3 players, smart phones, laptops

 Beginning to appear in desktops and servers
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The CPU-Memory Gap
The gap between DRAM, disk, and CPU speeds. 

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

T
im

e
 (

n
s

)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

DRAM

CPU

SSD

Disk



Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental 
property of computer programs known as locality
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Today

 Storage technologies and trends
 Locality of reference
 Caching in the memory hierarchy
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Locality

 Principle of Locality: Programs tend to use data and 
instructions with addresses near or equal to those they 
have used recently

 Temporal locality:  
 Recently referenced items are likely 

to be referenced again in the near future

 Spatial locality:  
 Items with nearby addresses tend 

to be referenced close together in time
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Locality Example

 Data references
 Reference array elements in succession 

(stride-1 reference pattern).

 Reference variable sum each iteration.

 Instruction references
 Reference instructions in sequence.

 Cycle through loop repeatedly. 

sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

return sum;

Spatial locality

Temporal locality

Spatial locality

Temporal locality
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Qualitative Estimates of Locality

 Claim: Being able to look at code and get a qualitative 
sense of its locality is a key skill for a professional 
programmer.

 Question: Does this function have good locality with 
respect to array a?

int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

}
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Locality Example

 Question: Does this function have good locality with 
respect to array a?

int sum_array_cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}
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Locality Example

 Question: Can you permute the loops so that the function 
scans the 3-d array a with a stride-1 reference pattern 
(and thus has good spatial locality)?

int sum_array_3d(int a[M][N][N])

{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

for (k = 0; k < M; k++)

sum += a[k][i][j];

return sum;

}
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Memory Hierarchies

 Some fundamental and enduring properties of hardware 
and software:
 Fast storage technologies cost more per byte, have less capacity, 

and require more power (heat!). 

 The gap between CPU and main memory speed is widening.

 Well-written programs tend to exhibit good locality.

 These fundamental properties complement each other 
beautifully.

 They suggest an approach for organizing memory and 
storage systems known as a memory hierarchy.
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Today

 Storage technologies and trends
 Locality of reference
 Caching in the memory hierarchy
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Example Memory 
Hierarchy Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files 
retrieved from disks 
on remote servers

L2 cache 
(SRAM)

L1 cache holds cache lines retrieved 
from the L2 cache.

CPU registers hold words retrieved 
from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 
costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds disk 
blocks retrieved from local 
disks.
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Caches

 Cache: A smaller, faster storage device that acts as a staging 
area for a subset of the data in a larger, slower device.

 Fundamental idea of a memory hierarchy:
 For each k, the faster, smaller device at level k serves as a cache for the 

larger, slower device at level k+1.

 Why do memory hierarchies work?
 Because of locality, programs tend to access the data at level k more 

often than they access the data at level k+1. 

 Thus, the storage at level k+1 can be slower, and thus larger and 
cheaper per bit.

 Big Idea:  The memory hierarchy creates a large pool of 
storage that costs as much as the cheap storage near the 
bottom, but that serves data to programs at the rate of the 
fast storage near the top.
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General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

Smaller, faster, more expensive
memory caches a  subset of
the blocks

4

4

4

10

10

10
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General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!
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General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)
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General Caching Concepts: 
Types of Cache Misses

 Cold (compulsory) miss
 Cold misses occur because the cache is empty.

 Conflict miss
 Most caches limit blocks at level k+1 to a small subset (sometimes a 

singleton) of the block positions at level k.

 E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

 Conflict misses occur when the level k cache is large enough, but multiple 
data objects all map to the same level k block.

 E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

 Capacity miss
 Occurs when the set of active cache blocks (working set) is larger than 

the cache.
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Examples of Caching in the Mem. Hierarchy

Hardware 
MMU

0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer 
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB pages

64-byte blocks

64-byte blocks

4-8 bytes words

What is Cached?

Web proxy 
server

1,000,000,000Remote server disks

OS100Main memory

Hardware4On-Chip L1

Hardware10On-Chip L2

NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware
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Summary

 The speed gap between CPU, memory and mass storage 
continues to widen.

 Well-written programs exhibit a property called locality.

 Memory hierarchies based on caching close the gap by 
exploiting locality.
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Supplemental slides
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Conventional DRAM Organization

 d x w DRAM:
 dw total bits organized as d supercells of size w bits

cols

rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

supercell

(2,1)

2 bits

/

8 bits

/

Memory

controller
(to/from CPU)
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Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

Cols

Rows

RAS = 2
0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2

/

8

/

Memory

controller
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Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually 
back to the CPU.

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2

/

8

/

Memory

controller

supercell

(2,1)

supercell

(2,1)

To CPU



Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Modules

: supercell (i,j)

64 MB  

memory module

consisting of

eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory

controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit word main memory address A

bits

0-7

bits

8-15

bits

16-23

bits

24-31

bits

32-39

bits

40-47

bits

48-55

bits

56-63

64-bit word

031 78151623243263 394047485556
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Enhanced DRAMs

 Basic DRAM cell has not changed since its invention in 1966.
 Commercialized by Intel in 1970. 

 DRAM cores with better interface logic and faster I/O :
 Synchronous DRAM (SDRAM)

 Uses a conventional clock signal instead of asynchronous control

 Allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)

 Double data-rate synchronous DRAM (DDR SDRAM)

 Double edge clocking sends two bits per cycle per pin

 Different types distinguished by size of small prefetch buffer:

– DDR (2 bits), DDR2 (4 bits), DDR3 (8 bits)

 By 2010, standard for most server and desktop systems

 Intel Core i7 supports only DDR3 SDRAM
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Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB 880 100 30 1 0.1 0.06 0.02 44,000

access (ns) 200 100 70 60 50 40 20 10

typical size (MB) 0.256 4 16 64 2,000 8,000 16.000 62,500

Storage Trends

DRAM

SRAM

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/GB 100,000 8,000 300 10 5 0.3 0.03 3,333,333

access (ms) 75 28 10 8 5 3 3 25

typical size (GB) 0.01 0.16 1 20 160 1,500 3,000 300,000

Disk

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB 2,900 320 256 100 75 60 320 116

access (ns) 150 35 15 3 2 1.5 200 115
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CPU Clock Rates

1985 1990 1995 2003 2005 2010 2015 2015:1985

CPU 80286 80386 Pentium P-4 Core 2 Core i7(n) Core i7(h)

Clock 

rate (MHz) 6 20 150 3,300 2,000 2,500 3,000 500

Cycle 

time (ns) 166 50 6 0.30 0.50 0.4 0.33 500

Cores 1  1 1 1 2 4 4 4

Effective

cycle 166 50 6 0.30 0.25 0.10 0.08 2,075

time (ns)

Inflection point in computer history
when designers hit the “Power Wall”

(n) Nehalem processor
(h) Haswell processor


