Carnegie Mellon

The Memory Hierarchy

15-213: Introduction to Computer Systems
11t Lecture, June 9th, 2016

Instructor:
Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Today

m Storage technologies and trends
|
|

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Random-Access Memory (RAM)

m Key features
= RAM is traditionally packaged as a chip.
= Basic storage unit is normally a cell (one bit per cell).
= Multiple RAM chips form a memory.

m RAM comes in two varieties:
= SRAM (Static RAM)
= DRAM (Dynamic RAM)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

SRAM vs DRAM Summary

Trans. Access Needs Needs
per bit time refresh? EDC? Cost Applications

SRAM 4o0r6 1X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,
frame buffers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Nonvolatile Memories

m DRAM and SRAM are volatile memories
= Lose information if powered off.

m Nonvolatile memories retain value even if powered off
= Read-only memory (ROM): programmed during production
" Programmable ROM (PROM): can be programmed once
" Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)
= Electrically eraseable PROM (EEPROM): electronic erase capability
= Flash memory: EEPROMs. with partial (block-level) erase capability
= Wears out after about 100,000 erasings

m Uses for Nonvolatile Memories

" Firmware programs stored in a ROM (BIOS, controllers for disks,
network cards, graphics accelerators, security subsystems,...)

= Solid state disks (replace rotating disks in thumb drives, smart
phones, mp3 players, tablets, laptops,...)

= Disk caches

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Traditional Bus Structure Connecting
CPU and Memory

m A bus is a collection of parallel wires that carry address,
data, and control signals.

m Buses are typically shared by multiple devices.

CPU chip

Register file

—
y ALU
\,_

ﬁ System bus Memory bus
§d l

Mai

Bus interface '(0 ain
bridge memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Memory Read Transaction (1)

m CPU places address A on the memory bus.

Register file

$rax <::| ALU

Load operation: movqg A, %$rax

1/0 bridge

Carnegie Mellon

Main memory

iI I

N
Bus interface N /

| A

N—

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0

A

Carnegie Mellon

Memory Read Transaction (2)

m Main memory reads A from the memory bus, retrieves
word x, and places it on the bus.

Register file Load operation: movg A, %rax

ALU
$rax
:Zl Main
iI memory
1/0 bridge X 0

|y N\

Bus interface AN /| |\ / X A

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Memory Read Transaction (3)

m CPU read word x from the bus and copies it into register

%rax.
Register file Load operation: movqg A, %$rax
o : ALU
$rax <:|

Bus interface

X
i i Main memory
1/O bridge 0

X A

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Memory Write Transaction (1)

m CPU places address A on bus. Main memory reads it and
waits for the corresponding data word to arrive.

Register file

$rax

1r

—

—

ALU

Bus interface

RN
N—1

Store operation: movqg %rax, A

Main memory
1/O bridge 0
/I—I\

| A

N—1 A

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Memory Write Transaction (2)

m CPU places data word y on the bus.

Register file

a ALU

y
i i Main memory
I II/O bridge 0

A N | ALY N
Bus interface N\ / N\ / A

Store operation: movqg %rax, A

$rax

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Memory Write Transaction (3)

m Main memory reads data word y from the bus and stores
it at address A.

Register file

$rax

1r

—

=

ALU

Bus interface

Store operation: movg %$rax, A

main memory
1/O bridge 0

="

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

What’s Inside A Disk Drive?
Spindle

Arm Platters

Actuator

Electronics
(including a
processor

SCsl and memory!)

connector

Image courtesy of Seagate Technology

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Disk Geometry

m Disks consist of platters, each with two surfaces.
m Each surface consists of concentric rings called tracks.
m Each track consists of sectors separated by gaps.

Tracks
Surface

Track k Gaps

.\ / "'\//
“\)
N 7

|]

Sectors

Bryant and O’Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 14

Disk Geometry (Muliple-Platter View)

m Aligned tracks form a cylinder.

Cylinder k

e
f~——-—-

Surface 0 r
:Q_’ :

Surface 1
Surface 2

I <_,>> Platter 1
Surface 3
Surface 4

K <_«> = Platter 2
Surface 5

Spindle

Platter O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Disk Capacity

m Capacity: maximum number of bits that can be stored.

= Vendors express capacity in units of gigabytes (GB), where
1 GB = 10° Bytes.
m Capacity is determined by these technology factors:
= Recording density (bits/in): number of bits that can be squeezed
into a 1 inch segment of a track.

= Track density (tracks/in): number of tracks that can be squeezed
into a 1 inch radial segment.

= Areal density (bits/in?): product of recording and track density.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Recording zones

m Modern disks partition tracks
into disjoint subsets called
recording zones

= Each track in a zone has the same
number of sectors, determined
by the circumference of
innermost track.

Spindle
® Each zone has a different number
of sectors/track, outer zones

have more sectors/track than
inner zones.

= So we use average number of
sectors/track when computing
capacity.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Computing Disk Capacity

Capacity = (# bytes/sector) x (avg. # sectors/track) x
(# tracks/surface) x (# surfaces/platter) x
(# platters/disk)
Example:
= 512 bytes/sector
= 300 sectors/track (on average)
= 20,000 tracks/surface
= 2 surfaces/platter
= 5 platters/disk

Capacity =512 x 300 x 20,000 x 2 x 5
= 30,720,000,000
=30.72 GB

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Disk Operation (Single-Platter View)

The disk surface
spins at a fixed
rotational rate

The read/write head

is attached to the end

of the arm and flies over
the disk surface on

a thin cushion of air.

By moving radially, the arm can
position the read/write head
over any track.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Disk Operation (Multi-Platter View)

Read/write heads
move in unison
from cylinder to
cylinder

)

Arm

:
Ll

Spindle

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Disk Structure - top view of single platter

i
&

Surface organized into tracks

Tracks divided into sectors

N

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Disk Access

NS

Head in position above a track

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Disk Access

I
NS

Rotation is counter-clockwise

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Disk Access — Read

NS

About to read blue sector

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Disk Access — Read

NS

After BLUE read

After reading blue sector

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Disk Access — Read

After BLUE read

Red request scheduled next

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Disk Access — Seek

N e

After BLUE read Seek for RED

Seek to red’s track

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

27

Carnegie Mellon

Disk Access — Rotational Latency

N e

After BLUE read Seek for RED Rotational latency

Wait for red sector to rotate around

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Disk Access — Read

N & @&

After BLUE read Seek for RED Rotational latency After RED read

Complete read of red

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Disk Access — Service Time Components

W&%@&%ﬂ

After BLUE read Seek for RED Rotational latency After RED read

I T

Data transfer Seek Rotational Data transfer
latency

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Disk Access Time

[Average time to access some target sector approximated by:
=T = Tavgseek+ T +T

access

m Seek time (T
= Time to position heads over cylinder containing target sector.
" Typical T, eex iS3—9 ms

m Rotational latency (T, rotation)

" Time waiting for first bit of target sector to pass under r/w head.
" Taug rotation = 1/2 X 1/RPMs x 60 sec/1 min
= Typical T = 7,200 RPMs

avg rotation avg transfer

avg seek)

avg rotation

m Transfer time (T,,, vanster)
= Time to read the bits in the target sector.
" T,gtransfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Disk Access Time Example

m Given:
= Rotational rate = 7,200 RPM
= Average seek time =9 ms.
= Avg # sectors/track = 400.

m Derived:

m T - m Average time to access some target sector approximated by:
avg rotation .
Taccess = Tau'g spak + Ta\rg rotation + Tau'g tramsfer
. — -
Tavg transfer ~ m Seek time (T,,; scex)
T = = Time to position heads over cylinder containing target sector.
access

= Typical e e
m Rotational latency (T, rotation)
= Time waiting for first bit of target sector to pass under r/w head.
® Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min
* Typical T,z roration = 7,200 RPMs
m Transfer time (T,.; yranster)

= Time to read the bits in the target sector.
" Tavgtransier = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Disk Access Time Example

m Given:
= Rotational rate = 7,200 RPM
= Average seek time =9 ms.
= Avg # sectors/track = 400.

m Derived:

" Taug rotation = 1/2 X (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.

" Tavgtranster = ©60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms
=T =9ms+4 ms+0.02ms

access

m Important points:

= Access time dominated by seek time and rotational latency.

= First bit in a sector is the most expensive, the rest are free.

" SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
= Disk is about 40,000 times slower than SRAM,
= 2,500 times slower then DRAM.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Logical Disk Blocks

m Modern disks present a simpler abstract view of the
complex sector geometry:
" The set of available sectors is modeled as a sequence of b-sized
logical blocks (0, 1, 2, ...)
m Mapping between logical blocks and actual (physical)
sectors
" Maintained by hardware/firmware device called disk controller.
= Converts requests for logical blocks into (surface,track,sector)
triples.
m Allows controller to set aside spare cylinders for each
zone.

= Accounts for the difference in “formatted capacity” and “maximum
capacity”.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

/O Bus

CPU chip

Register file

1r

: ALU

System bus

Memory bus

l

=

Main
memory

Carnegie Mellon

HAF>

. 1/0
Bus interface bridge
l ‘ \ ‘ 1/0 bus \ ‘
USB Graphics Disk
controller adapter controller
Mouse Keyboard Monitor T

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Expansion slots for
other devices such
as network adapters.

35

Carnegie Mellon

Reading a Disk Sector (1)

ool CPU initiates a disk read by writing a
Register fle command, logical block number, and
:> ALU destination memory address to a port
Cj (address) associated with disk

] | controller.
st [y K | Man
us interface \17 memory

%
T 0 I

USB Graphics Disk
controller adapter controller

T l ,,

mouse keyboard Monitor ii
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition m 36

Carnegie Mellon

Reading a Disk Sector (2)

CPU chip
Register file Disk controller reads the sector
i> and performs a direct memory
<: ALU access (DMA) transfer into main

iI memaory.
mersee [| [)]
Bus interface
memory

T
I I &

USB Graphics Di k
controller adapter contioller

o l

Mouse Keyboard Monitor
ok ,

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Reading a Disk Sector (3)

CPU chip When the DMA transfer completes,
Register file the disk controller notifies the CPU

g ALU with an interrupt (i.e., asserts a
special “interrupt” pin on the CPU)

. Main
Bus interface <:::>
:::::: memory

i
I I &

USB Graphics Disk
controller adapter controller

ro l |

A 4

Mouse Keyboard Monitor ii
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition W 38

Carnegie Mellon

Solid State Disks (SSDs)

1/O bus
Requests to read and
ite logical disk block
SolidstateDisk (SSD) N\ L
Flash
translation layer
Flash memory 1
Block O Block B-1

Page 0 Page 1 «+« | Page P-1 Page O Page 1 <+« | Page P-1

m Pages: 512KB to 4KB, Blocks: 32 to 128 pages
m Data read/written in units of pages.

m Page can be written only after its block has been erased
m A block wears out after about 100,000 repeated writes.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

SSD Performance Characteristics

Sequential read tput 550 MB/s Sequential write tput 470 MB/s
Random read tput 365 MB/s Random write tput 303 MB/s
Avg seq read time 50 us Avg seq write time 60 us

m Sequential access faster than random access

®= Common theme in the memory hierarchy

m Random writes are somewhat slower
" Erasing a block takes a long time (~1 ms)

= Modifying a block page requires all other pages to be copied to
new block

" |n earlier SSDs, the read/write gap was much larger.

Source: Intel SSD 730 product specification.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

SSD Tradeoffs vs Rotating Disks

m Advantages

= No moving parts = faster, less power, more rugged

m Disadvantages
= Have the potential to wear out
= Mitigated by “wear leveling logic” in flash translation layer

= E.g. Intel SSD 730 guarantees 128 petabyte (128 x 10!° bytes) of
writes before they wear out

" |n 2015, about 30 times more expensive per byte

m Applications
= MP3 players, smart phones, laptops
= Beginning to appear in desktops and servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

The CPU-Memory Gap
The gap widens between DRAM, disk, and CPU speeds.

100,000,000.0

10,000,000.0 Disk
1,000,000.0
100,000.0 55D
A
R 10,000.0 —e—Disk seek time
e —— SSD access time
g 1,000.0 —-DRAM access time
=

100.0 - DRAM- —e—SRAM access time
-+ CPU cycle time
10.0 M —O—Effective CPU cycle time
- R
0.1 CPU

0.0 T T T T T T T 1
1985 1990 1995 2000 2003 2005 2010 2015

Year

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental
property of computer programs known as locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Today

|
m Locality of reference
|

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Locality

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

m Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

C /

m Spatial locality:

" |tems with nearby addresses tend
to be referenced close together in time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Locality Example

Carnegie Mellon

sum = 0;

sum += af[i];
return sum;

for (i = 0; i < n; i++)

m Data references

= Reference array elements in succession
(stride-1 reference pattern).

" Reference variable sum each iteration.

m Instruction references
= Reference instructions in sequence.
= Cycle through loop repeatedly.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Spatial locality

Temporal locality

Spatial locality
Temporal locality

46

Carnegie Mellon

Qualitative Estimates of Locality

m Claim: Being able to look at code and get a qualitative
sense of its locality is a key skill for a professional
programmer.

m Question: Does this function have good locality with
respect to array a?

int sum array rows(int a[M] [N])

{

int i, j, sum = 0;

for (1 = 0; i < M; i++)
for (j = 0; j < N; Jj++)
sum += a[i][]];
return sum;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Locality Example

m Question: Does this function have good locality with
respect to array a?

int sum array cols(int a[M] [N])
{
int i, j, sum = 0;
for (j = 0; j < N; Jj++)
for (1 = 0; i < M; i++4)
sum += a[i][]];
return sum;
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Locality Example

m Question: Can you permute the loops so that the function
scans the 3-d array a with a stride-1 reference pattern

(and thus has good spatial locality)?

int sum array 3d(int a[M] [N] [N])
{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
for (k = 0; k < M; k++)
sum += a[k][1i][]]’
return sum;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Memory Hierarchies

m Some fundamental and enduring properties of hardware
and software:

= Fast storage technologies cost more per byte, have less capacity,
and require more power (heat!).

" The gap between CPU and main memory speed is widening.
= Well-written programs tend to exhibit good locality.

m These fundamental properties complement each other
beautifully.

m They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Today

|
|
m Caching in the memory hierarchy

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Example Memory

Hierarchy 10/ ens
CPU registers hold words retrieved
Smaller, from the L1 cache.
faster, L1: L1 cache
and (SRAM) L1 cache holds cache lines retrieved
Costlier from the L2 cache.
(per byte] L2: L2 cache
(SRAM) _
storage L2 cache holds cache lines
devices retrieved from L3 cache
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger,
slower, L4: Main memory
and (DRAM) Main memory holds disk
cheaper blocks retrieved from local
(per byte) disks.
storage |g. Local secondary storage
devices (local disks)
Local disks hold files
retrieved from disks
on remote servers
L6: Remote secondary storage

(e.g., Web servers)

Bryant anfl Q’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Caches

m Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.

m Fundamental idea of a memory hierarchy:
" For each k, the faster, smaller device at level k serves as a cache for the
larger, slower device at level k+1.
m Why do memory hierarchies work?

= Because of locality, programs tend to access the data at level k more
often than they access the data at level k+1.

" Thus, the storage at level k+1 can be slower, and thus larger and
cheaper per bit.

m Bigldea: The memory hierarchy creates a large pool of
storage that costs as much as the cheap storage near the
bottom, but that serves data to programs at the rate of the
fast storage near the top.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

General Cache Concepts

Cache

Memory

Smaller, faster, more expensive

4 9 10 3 memory caches a subset of
the blocks
Data is copied in block-sized
10 transfer units
Larger, slower, cheaper memory

0 1 2 3 viewed as partitioned into “blocks”
4 5 6 7

8 9 10 11

12 13 14 15

00000000000 O0CDOCGOGEOG OO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Cach 2 5 T 3 Block b is in cache:
ache Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
0000000000 O0COCOGOOGOS OO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

General Cache Concepts: Miss

Request: 12 Data in block b is needed
Cach 2 5 12 3 Block b is not in cache:
ache Miss!
Block b is fetched from
12 Request: 12
memory
Block b is stored in cache
Memory 0 1 2 3 * Placement policy:
4 5 6 7 determines where b goes
* Replacement policy:
8 9 10 11
determines which block
12 13 14 15 gets evicted (victim)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

General Caching Concepts:

Types of Cache Misses

m Cold (compulsory) miss
= Cold misses occur because the cache is empty.

m Conflict miss

= Most caches limit blocks at level k+1 to a small subset (sometimes a
singleton) of the block positions at level k.

= E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

= Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.

= E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
m Capacity miss

= Occurs when the set of active cache blocks (working set) is larger than
the cache.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Examples of Caching in the Mem. Hierarchy

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By

Registers 4-8 bytes words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 | Hardware
MMU

L1 cache 64-byte blocks On-Chip L1 4 | Hardware

L2 cache 64-byte blocks On-Chip L2 10 | Hardware

Virtual Memory 4-KB pages Main memory 100 | Hardware + OS

Buffer cache Parts of files Main memory 100 | OS

Disk cache Disk sectors Disk controller 100,000 | Disk firmware

Network buffer Parts of files Local disk 10,000,000 | NFS client

cache

Browser cache Web pages Local disk 10,000,000 | Web browser

Web cache Web pages Remote server disks 1,000,000,000 | Web proxy
server

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Summary

m The speed gap between CPU, memory and mass storage
continues to widen.

m Well-written programs exhibit a property called locality.

m Memory hierarchies based on caching close the gap by
exploiting locality.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

Supplemental slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

Conventional DRAM Organization

m d xwDRAM:

= dw total bits organized as d supercells of size w bits

16x8DRAMchip
cols
| 0 1 2 3 |
2bits ! 0
. g !
addr |
! 1 i
> ous =
Memory 2 - | supercell
controller ! — (2,1)
(to/from CPU) ! i ,
8hits ! 3 |
< s P: !
data | |

Internal row buffer

L e e e e e e e e e — e —— e ——— e —————————— 1
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Reading DRAM Supercell (2,1)

Step 1(a): Row access strobe (RAS) selects row 2.
Step 1(b): Row 2 copied from DRAM array to row buffer.

16x8DRAMchip .

Cols

— 0 1 2 3 i

2 | |

— 0 :

addr | |

i 1 i

Memory EROWS
controller 2| ~ - - -
8 | 3 i

- > = 5= == = =

data i |

Internal row buffer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, THirEBdifigr ==~ """ TTTTTTTTTTTTmmTmssoomsoooes ' 62

Reading DRAM Supercell (2,1)

Step 2(a): Column access strobe (CAS) selects column 1.
Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually

back to the CPU.

16 x 8 DRAM chip
cas =1 !
2 |
— 5
addr |
To CPU i
Memory |
controller i
supercell :
(2’1) < ,' E
data i
SUP; tlc)ell Internal row buffer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition ~ -~~~ "~~~ ~"~"~"~"~="=========7==7========7 63

Carnegie Mellon

Memory Modules

addr (row = i, col = j)

O : supercell (i,j)

| l DRAM 0
[
[— I O memory module
I DRAM 7 [l " a consisting of
ol O I s eight 8Mx8 DRAMs
[l I

bits bits bits bits bits bits bits bits
56-63 48-55 40-47 32-39 24-31 16-23 8-15 | 0-7

63 56 55 4847 40 39 32 31 2423 16 15 8 7 0

Memory
controller

64-bit word main memory address A

64-bit word

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 64

Enhanced DRAMs

m Basic DRAM cell has not changed since its invention in 1966.
= Commercialized by Intel in 1970.

m DRAM cores with better interface logic and faster 1/0 :
= Synchronous DRAM (SDRAM)

= Uses a conventional clock signal instead of asynchronous control
= Allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)

" Double data-rate synchronous DRAM (DDR SDRAM)
= Double edge clocking sends two bits per cycle per pin
= Different types distinguished by size of small prefetch buffer:
— DDR (2 bits), DDR2 (4 bits), DDR3 (8 bits)
= By 2010, standard for most server and desktop systems
= Intel Core i7 supports only DDR3 SDRAM

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon

Storage Trends

SRAM
Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985
$/MB 2900 320 256 100 75 60 320 116
access (ns) 150 35 15 3 2 1.5 200 115
DRAM
Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985
$/MB 880 100 30 1 0.1 0.06 0.02 44,000
access (ns) 200 100 70 60 50 40 20 10
typical size (MB) 0.256 4 16 64 2,000 8,000 16.000 62,500
Disk
Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985
$/GB 100,000 8,000 300 10 5 0.3 0.03 3,333,333
access (ms) 75 28 10 8 S 3 3 25
typical size (GB) 0.01 0.16 1 20 160 1,500 3,000 300,000

Carnegie Mellon

CPU Clock Rates Inflection point in computer history

when designers hit the “Power Wall”

1985 1990 1995 : 2003 2005 2010 2015 2015:1985
CPU 80286 80386 Pentiumi P-4 Core2 Corei7(n)Corei7(h)
Clock
rate (MHz) 6 20 150 1 3,300 2,000 2,500 3,000 500
Cycle i
time (ns) 166 50 6 030 : 0.50 0.4 0.33 500
Cores 1 1 1 1 2 4 4 4
Effective
cycle 166 50 6 1 030 025 0.10 0.08 2,075
time (ns) i i

(n) Nehalem processor
(h) Haswell processor 67

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

