Carnegie Mellon

Machine-Level Programming |: Basics

15-213/18-213: Introduction to Computer Systems
5t Lecture, May 25, 2016

Instructor:
Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Machine Programming |I: Basics

History of Intel processors and architectures
Assembly Basics: Registers, operands, move

N
N
m Arithmetic & logical operations
L]

C, assembly, machine code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Intel x86 Processors

m Dominate laptop/desktop/server market

m Evolutionary design
= Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on

m Complex instruction set computer (CISC)
= Many different instructions with many different formats
= But, only small subset encountered with Linux programs

® Hard to match performance of Reduced Instruction Set Computers
(RISC)

= But, Intel has done just that!

= In terms of speed. Less so for low power.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Intel x86 Evolution: Milestones

Name Date Transistors MHz

= 8086 1978 29K 5-10
" First 16-bit Intel processor. Basis for IBM PC & DOS
= 1MB address space

m 386 1985 275K 16-33

" First 32 bit Intel processor , referred to as 1A32
= Added “flat addressing”, capable of running Unix

m Pentium 4E 2004 125M 2800-3800
" First 64-bit Intel x86 processor, referred to as x86-64

m Core 2 2006 291M 1060-3500
" First multi-core Intel processor

m Corei7 2008 731M 1700-3900

= Four cores (our shark machines)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Intel x86 Processors, cont.

m Machine Evolution

m Added Features

386

Pentium
Pentium/MMX
PentiumPro
Pentium IlI
Pentium 4
Core 2 Duo
Corei7

1985
1993
1997
1995
1999
2001
2006
2008

0.3M
3.1M
4.5M
6.5M
8.2M

am o)
291M P Shared L3 Cache

In'tegiate’d'-Mgmbryﬁlﬁimlleni-i3:‘-'(:h DDR3'

Cdre 0 Cdre 1 Core 2 Core 3

731M

" |nstructions to support multimedia operations

" |nstructions to enable more efficient conditional operations
® Transition from 32 bits to 64 bits

More cores

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

2015 State of the Art

= Core i7 Broadwell 2015

m Desktop Model =

= 4 cores

" 3.3-3.8GHz —

Ethernet
= 65W meGbE — a2 2

m Server Model

= 8 cores ' |

" |ntegrated I/O m ' | I {
" 2-2.6 GHz

= 45W |

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

x86 Clones: Advanced Micro Devices

(AMD)

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4
= Developed x86-64, their own extension to 64 bits

m Recent Years
" Intel got its act together
= Leads the world in semiconductor technology
= AMD has fallen behind
= Relies on external semiconductor manufacturer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Intel’s 64-Bit History
m 2001: Intel Attempts Radical Shift from IA32 to I1A64

= Totally different architecture (Iltanium)
= Executes IA32 code only as legacy
= Performance disappointing

m 2003: AMD Steps in with Evolutionary Solution
= x86-64 (now called “AMD64”)

m Intel Felt Obligated to Focus on I1A64
= Hard to admit mistake or that AMD is better

m 2004: Intel Announces EM64T extension to IA32

= Extended Memory 64-bit Technology
= Almost identical to x86-64!

m All but low-end x86 processors support x86-64

= But, lots of code still runs in 32-bit mode

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Our Coverage

m IA32

" The traditional x86
" For 15/18-213: RIP, Summer 2015

m X86-64

= The standard
" shark> gcc hello.c
" shark> gcc —m64 hello.c

m Presentation
= Book covers x86-64
= Web aside on 1A32

= We will only cover x86-64

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Today: Machine Programming |I: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

L]

C, assembly, machine code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Levels of Abstraction

C programmer
C code

BN 15
E3s

Nice clean layers, but beware...

Assembly programmer

Of course, you know that:
It is why you are taking
this course.

Computer Designer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition "

Carnegie Mellon

Definitions

m Architecture: (also ISA: instruction set architecture) The
parts of a processor design that one needs to understand
for write assembly/machine code.

= Examples: instruction set specification, registers.
m Microarchitecture: Implementation of the architecture.

= Examples: cache sizes and core frequency.

m Code Forms:

= Machine Code: The byte-level programs that a processor executes
= Assembly Code: A text representation of machine code

m Example ISAs:
" Intel: x86, IA32, Itanium, x86-64
= ARM: Used in almost all mobile phones

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Assembly/Machine Code View

CPU Memory
Addresses
Registers >
& Data Code
PC < > Data
Condition Instructions Stack
Codes <

Programmer-Visible State

= PC: Program counter " Memory

« Address of next instruction * Byte addressable array
= Called “RIP” (x86-64) = Code and user data

= Register file = Stack to support procedures

= Heavily used program data
= Condition codes

= Store status information about most
recent arithmetic or logical operation

= Used for conditional branching

Bryantal.c < iciici ity ccriipaees <y o e epmmsireg i e 13

Carnegie Mellon

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, 4, or 8 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes
m Code: Byte sequences encoding series of instructions

m No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

x86-64 Integer Registers

$rax %eax
$rbx %ebx
srex %ecx
Srdx %edx
$rsi %esi
srdi $edi
srsp %esp
srbp %ebp

$r8 $r8d

$r9 $r9d

$rl0 $rlod
srll $rlld
$rl2 srl2d
%rl3 $rl3d
$rld $rldd
$rl5 $rl15d

= Can reference low-order 4 bytes (also low-order 1 & 2 bytes)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15

Carnegie Mellon

Some History: IA32 Registers Origin

(mostly obsolete)

~—

$eax $ax $ah gal accumulate
$ecx %cx %ch scl counter
2
= sedx 9dx [%dh 5dl data
2 <
©
o $ebx sbx sbh bl base
o
a0 O/ - o . source
oeS1 oS 1 indesx
o . o A4 destination
L Oedl odl index
o o stack
€SP ol pointer
base
Qo
o $b
oebp P pointer
\)
Y

16-bit virtual registers

(backwards compatibility)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edit 16

Carnegie Mellon

Assembly Characteristics: Operations

m Transfer data between memory and register
® Load data from memory into register
= Store register data into memory

m Perform arithmetic function on register or memory data

m Transfer control
" Unconditional jumps to/from procedures
= Conditional branches

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Moving Data srax
m Moving Data SIrCX
mo ource, Dest: $rdx
o

m Operand Types srbx
Immediate: Constant integer data srsi
= Example: $0x400, $-533 Srdi
= Like C constant, but prefixed with '$ Srsp

= Encoded with 1, 2, or 4 bytes s1h
= Register: One of 16 integer registers °IOP

= Example: $rax, %$rl3
g SrN

= But $rsp reserved for special use
Qthers have special uses for particular instructions

onsecutive bytes of memory at address given by register
= Simplest example: ($rax)

= Various other “address modes”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Moving Data srax
m Moving Data SIrCX
movq Source, Dest: srdx
o

m Operand Types srbx
* |mmediate: Constant integer data srsi
= Example: $0x400, $-533 Srdi
= Like C constant, but prefixed with '$ Srsp

= Encoded with 1, 2, or 4 bytes s1h
= Register: One of 16 integer registers °IOP

= Example: $rax, %$rl3
g SrN

= But $rsp reserved for special use
= Others have special uses for particular instructions

= Memory: 8 consecutive bytes of memory at address given by register
= Simplest example: ($rax)
= Various other “address modes”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

movq Operand Combinations

Source Dest Src,Dest C Analog
(Reg movqg $0x4,%rax temp = 0x4;
Imm
Mem movqg $-147, (%rax) *p = -147;

movqg %rax,%rdx temp2 = templ;
movq < Reg {Reg q p p

Mem movq Srax, (5rdx) *p = temp;

N Mem Reg movqg (%rax) ,h Srdx temp = *p;

Cannot do memory-memory transfer with a single instruction

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Simple Memory Addressing Modes

m Normal (R) Mem[Reg[R]]
= Register R specifies memory address
" Aha! Pointer dereferencing in C

movqg (%rcx) ,srax

m Displacement D(R) Mem[Reg[R]+D]
= Register R specifies start of memory region
" Constant displacement D specifies offset

movqg 8 (%rbp) , $rdx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Example of Simple Addressing Modes

void

whatAmI (<type> a, <type> b)

{

?272°?

} whatAmI:
movq
movq
movq
movq
ret

] $rsi
$rdi

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

$rdi) , %rax
(%rsi), %rdx
$rdx, (%rdi)
$rax, (%rsi)

Carnegie Mellon

22

Example of Simple Addressing Modes

void swap
(long *xp, long *yp)
{ swap:
long t0 = *xp; movq $rdi) , %Srax
long t1 = *yp; movq (%rsi), S%Srdx
*xp = tl; movqg srdx, (%rdi)
*yp = tO0; movqg $rax, (%rsi)
} ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Understanding Swap()

Memory
void swap Registers
(long *xp, long *yp)
{ $rdi o
long t0 = *xp; orsi
long tl1 = *yp; i
*xp = tl; $rax
*yp = t0;
} Srdx
Register Value
Srdi Xp
sSrsi YP swap:
$rax t0 movq $rdi), %$rax # t0 = *xp
o rdx t1 movq $rsi), %rdx # tl = *yp
movq $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Understanding Swap()

] Memory
Reg Isters Address
: 123 | 0x120
Srdi 0x120
0x118
grsi| 0x100
0x110
srax 0x108
$rdx 456 | 0x100
swap:
movq ($rdi), %rax # t0 = *xp
movq $rsi), %$rdx # tl = *yp
movqg $rdx, (%$rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Understanding Swap()

] Memory
Registers Address
: 123 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
$rax 123 0x108
rdx 456 | 0x100
swap:
movq $rdi), %Srax # t0 = *xp
movq $rsi), %$rdx # tl = *yp
movqg $rdx, (%$rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Understanding Swap()

] Memory
Reg Isters Address
: 123 | 0x120
$rdi| 0x120
0x118
grsi| 0x100
0x110
rdx 456 |€ 456 | 0x100
swap:
movq ($rdi), %rax # t0 = *xp
movq $rsi), %$rdx # t1 = *yp
movqg $rdx, (%$rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Understanding Swap()

. Memory
Reg Isters Address
456 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
$rax 123 0x108
rdx 456 456 | 0x100
swap:
movq ($rdi), %rax # t0 = *xp
movq $rsi), %$rdx # tl1 = *yp
movqg $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Understanding Swap()

] Memory
Registers Address
456 | 0x120
$rdi| 0x120
0x118
grsi| 0x100
0x110
%rax 123 \ OX1O8
Srdx 456 123 | 0x100
swap:
movq ($rdi), %rax # t0 = *xp
movq $rsi), %$rdx # tl = *yp
movqg $rdx, (%$rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Simple Memory Addressing Modes

m Normal (R) Mem[Reg[R]]
= Register R specifies memory address
" Aha! Pointer dereferencing in C

movqg (%rcx) ,srax

m Displacement D(R) Mem[Reg[R]+D]
= Register R specifies start of memory region
" Constant displacement D specifies offset

movqg 8 (%rbp) , $rdx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Complete Memory Addressing Modes

m Most General Form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 16 integer registers
= Ri: Index register: Any, except for $rsp
= S: Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg|[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem|[Reg[Rb]+S*Reg|[Ri]]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Address Computation Examples

$rdx O0xf000

$rcx 0x0100

Expression Address Computation Address
0x8 (%rdx) O0xf000 + Ox8 0x£f008
$rdx, $rcx) 0x£f000 + 0x100 0x£100
$rdx, %rcx,4) 0xf000 + 4*0x100 |0x£f400
0x80 (, $rdx, 2) 2*0x£f000 + 0x80 0x1e080

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Today: Machine Programming |I: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Address Computation Instruction

m leaqSrc, Dst

= Srcis address mode expression
= Set Dst to address denoted by expression

m Uses
® Computing addresses without a memory reference
= E.g., translationof p = &x[i];
= Computing arithmetic expressions of the form x + k*y
= k=1,2,4,0r8

m Example
long ml2 (lon .
{ g mlz(long x) Converted to ASM by compiler:
return x*12; leaq (%rdi,%rdi,2), %rax # t <- x+x*2

} salg $2, %rax # return t<<2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Some Arithmetic Operations

m Two Operand Instructions:
Format Computation
addqg Src,Dest Dest = Dest + Src
subg Src,Dest Dest = Dest — Src
imulg SrcDest Dest = Dest * Src

salqg Src,Dest Dest = Dest << Src Also called shlq
sarq Src,Dest Dest = Dest >> Src Arithmetic
shrq Src,Dest Dest = Dest >> Src Logical

XOorqg Src,Dest Dest = Dest Src

andg Src,Dest Dest = Dest & Src

orq Src,Dest Dest = Dest | Src

m Watch out for argument order!
m No distinction between signed and unsigned int (why?)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Some Arithmetic Operations

m One Operand Instructions

incqg Dest Dest = Dest + 1
decqg Dest Dest = Dest — 1
negq Dest Dest = — Dest
notq Dest Dest = ~“Dest

m See book for more instructions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Arithmetic Expression Example

arith:
leaq (%rdi,%$rsi), %Srax

long arith addq ¥rdx, S%rax
(long x, long y, long z) leaq $rsi,%rsi,2), %rdx
{ salq $4, %$rdx

long tl1 = x+y; leaq 4 (%$rdi,%$rdx), %rcx

long t2 = z+tl; imulq ¥rcx, srax

long t3 = x+4; ret

long t4 =y * 48;]]

long t5 = t3 + t4; Interesting Instructions

long rval = t2 * t5; " leagq: address computation

return rval; = salg: shift
} = imulgqg: multiplication

= But, only used once

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Understanding Arithmetic Expression

Example

arith:
leaq (%$rdi,%rsi), %Srax # tl
long arith addqg $rdx, %rax # t2
(long x, long y, long z) leaq (%rsi,%rsi,2), %rdx
{ salqg $4, %$rdx # t4
long tl1 = x+y; leaq 4(%rdi,%rdx), %rcx # t5
long t2 = z+tl; imulq $rcx, %Srax # rval
long t3 = x+4; ret

long t4 =y * 48;

long 5 = t3 + t4; Register | Usels)
t2 * t5;

long rval =

return rval; srdi Argument x
} Frsi Argument y
Srdx Argument z
$rax tl, t2, rval
srdx t4

$rcx t5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Today: Machine Programming |I: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

L]

C, assembly, machine code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Turning C into Object Code

= Codeinfiles pl.c p2.c

= Compile with command: gecc -Og pl.c p2.c -o p

= Use basic optimizations (-Og) [New to recent versions of GCC]

= Put resulting binary in file p

text

text

binary

binary

C program (pl.c p2.c)

Compiler (gcc -Og -S)

A

Asm program (pl.s p2.s)

Assembler (gcc or as)

A 4

Carnegie Mellon

Object program (pl.o p2.0) Static libraries

(.a)

Linker (gcc or 1d)

A 4

Executable program (p)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

40

Carnegie Mellon

Compiling Into Assembly

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y) sumstore:
pushqg srbx
void sumstore (long x, long y, movq $rdx, S%rbx
long *dest) call plus
{ movq $rax, (%rbx)
long t = plus(x, y): popq srbx
*dest = t; ret
}

Obtain (on shark machine) with command
gcc -0g -S sum.c
Produces file sum. s

Warning: Will get very different results on non-Shark
machines (Andrew Linux, Mac 0S-X, ...) due to different
versions of gcc and different compiler settings.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition M

What it really looks like

.globl sumstore
.type sumstore, @function
sumstore:
.LFB35:
.cfi_ startproc
pushg %rbx
.cfi def cfa offset 16
.cfi offset 3, -16
movq $rdx, S%rbx
call plus
movq $rax, (%rbx)
popda Srbx
.cfi def cfa offset 8
ret
.cfi_endproc
.LFE35:

.size sumstore, .-sumstore

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

What it really looks like

Things that look weird
and are preceded by a “’
sumstore: are generally directives.

pushg %rbx

sumstore:
pushqg $rbx
o o
movq srdx, %rbx movq srdx, S%$rbx
call plus
call plus : .
movq ¥rax, (%rbx)
movq $rax, (%rbx) .
o pPopq $rbx
PopPq $rbx ret

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, 4, or 8 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes
m Code: Byte sequences encoding series of instructions

m No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Assembly Characteristics: Operations

m Transfer data between memory and register
® Load data from memory into register
= Store register data into memory

m Perform arithmetic function on register or memory data

m Transfer control
" Unconditional jumps to/from procedures
= Conditional branches

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Object Code

Code for sumstore
m Assembler

0x0400595:; .
|
0x53 Translates . s into .o
0x48 = Binary encoding of each instruction
0x839 = Nearly-complete image of executable code
0xd3 ..)) _
Oxe8 = Missing linkages between code in different
Oxf2 files
Oxff m Linker
Oxff _ | .) o
Oxff Resolves references between files

e Total of 14 bytes

0x48 = Combines with static run-time libraries

0x89 e Each instruction
0x03 1, 3, or 5 bytes

Ox5b e Starts at address
Oxc3 0x0400595 = Linking occurs when program begins

execution

= E.g.,, code formalloc, printf

= Some libraries are dynamically linked

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Machine Instruction Example

*dest = t;

movqg %rax, (%rbx)
0x40059%9e: 48 89 03

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m C Code

= Store value t where designated by
dest
m Assembly
" Move 8-byte value to memory
= Quad words in x86-64 parlance
" Operands:
t: Register $rax
dest: Register $rbx
*dest: MemoryM[%$rbx]

m Object Code

= 3-byte instruction
® Stored at address 0x40059e

47

Disassembling Object Code

Disassembled

0000000000400595 <sumstore>:
400595: 53 push $rbx
400596: 48 89 d3 mov %$rdx, $rbx
400599: e8 f2 ff ff ff callg 400590 <plus>
40059%9e: 48 89 03 mov $rax, (%rbx)
4005al: 5b pop $rbx
4005a2: c3 retq

m Disassembler
objdump -d sum
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
" Produces approximate rendition of assembly code
® Can berun on either a.out (complete executable) or . o file

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Alternate Disassembly
Disassembled

Dump of assembler code for function sumstore:
0x0000000000400595 <+0>: push $rbx
0x0000000000400596 <+1>: mov $rdx, srbx
0x0000000000400599 <+4>: callg 0x400590 <plus>
0x000000000040059%9e <+9>: mov $rax, (3rbx)
0x00000000004005a1 <+12>:pop $rbx
0x00000000004005a2 <+13>:retq

m Within gdb Debugger

= Disassemble procedure
gdb sum
disassemble sumstore

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Alternate Disassembly
Disassembled

Object
0x0400595:
0x53 Dump of assembler code for function sumstore:
0x48 0x0000000000400595 <+0>: push %rbx
0x89 0x0000000000400596 <+1>: mov %$rdx, $rbx
0xd3 0x0000000000400599 <+4>: callg 0x400590 <plus>
Oxe8 0x000000000040059%e <+9>: mov $rax, (%$rbx)
Oxf2 0x00000000004005a1 <+12>:pop $rbx
Oxff 0x00000000004005a2 <+13>:retq
Oxff
Oxff
0x48 m Within gdb Debugger
A = Disassemble procedure
0x03
0x5b gdb sum
Oxc3 disassemble sumstore

= Examine the 14 bytes starting at sumstore
x/14xb sumstore

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

What Can be Disassembled?

$ objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000:

30001001: : . _

30001003 : .Reverse englneerlroig forbidden by
30001005: Microsoft End User License Agreement
3000100a:

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Machine Programming |: Summary

m History of Intel processors and architectures
= Evolutionary design leads to many quirks and artifacts
m C, assembly, machine code

= New forms of visible state: program counter, registers, ...

= Compiler must transform statements, expressions, procedures into
low-level instruction sequences

m Assembly Basics: Registers, operands, move

" The x86-64 move instructions cover wide range of data movement
forms

m Arithmetic

= Ccompiler will figure out different instruction combinations to
carry out computation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

