
15213 - Lecture 3 - POGIL Activity (Integer Operations)

Introduction

In this activity you will learn about integer operations.

Before you begin, take a minute to assign roles to each member in your group. Try to switch up the
roles as much as possible: please don’t pick a role for yourself that you have already done more than
once. Below is a summary of the four roles; write the name of the person taking that role next to the
summary.

If your group only has three members, combine the roles of Facilitator and Process Analyst.

For this and all future activities, the Facilitator should also take the role of the reader and read the
questions aloud to the group.

• Facilitator: Reads question aloud; keeps track of time and makes sure everyone contributes
appropriately.

• Quality Control: Records all answers & questions, and provides team reflection to team &
instructor.

• Spokesperson: Talks to the instructor and other teams. Compiles and runs programs when
applicable.

• Process Analyst: Considers how the team could work and learn more effectively.

Fill in the following table showing which group member is performing each role:

Role Person
Facilitator
Quality Control
Spokesperson
Process Analyst

Model 0: Review of Addition / Positive

1. Add the following two binary numbers together.

__
1 0 1 0

+ 1 1 0 0
__

1

2. How many bits were required for the result in the previous question?

3. How does the number of bits needed for the result compare to the number of bits in the numbers
you added together?

4. If you only have 4 bits to represent the previous sum, what number(s) might you provide?
Explain.

Model 0: Review of Negative Integers

1. Thinking about two’s complement, what is the leftmost bit in a non-negative number?

2. Complete the following table to indicate the most positive (i.e. largest) and most negative
(i.e. smallest) number that can be represented with a given number of bits when using two’s
complement representation. Use the table above (which you simplified by removing unnecessary
bits) to help you answer this question.

Bits Most Positive Most Negative
1 0 -1
2 1 -2
3
4

3. Use your answer from the previous question to find an expression that gives the most positive
number that can be represented by a N -bit two’s complement number. Hint: This will be
related to a power of two in some way.

4. Use your answer from the previous questions to find an expression that gives the most negative
number that can be represented by a N -bit two’s complement number. Hint: This will be
related to a power of two in some way.

The most positive signed integer is termed TMax, and the most negative is TMin. The most positive
unsigned integer is termed UMax.

5. Add the following two binary numbers together:

__
1111000

+ 0100111

__

Confirm that the result is correct by converting all the binary numbers to their decimal
representation, both signed and unsigned. Are both results correct?

6. Given what you observed in the previous question, does the architecture need multiple adders
in hardware for signed and unsigned addition?

2

Model 1: Bit-Level Operations

In the 1800s, George Boole proposed a logic-system based on two values: 0 and 1. We will work
through how these operations are exposed in C, and by extension the underlying system. The first
set of operations are performed by treating the integer as a bit-vector.

1. Yesterday, one of the steps to negating a signed integer was to invert all of the bits. This
operation, complement or “~”, can be applied to any integer. For each integer, convert it from
hexadecimal to binary and then apply the operation. What is the final hexadecimal integer?

• ~0xCAFE
• ~0x3C3C
• ~0x0000

2. There are three other bit-wise operations: AND (&), OR (|), and XOR (ˆ). Each is applied
between two bits. AND gives the value 1 when both operands are 1. OR gives the value of
1 when at least one operand is 1. And XOR gives the value of 1 when only 1 operand is 1.
Complete the table below.

OP0 OP1 AND OR XOR
0 0 0 0 0
1 0 0 1 1
0 1
1 1

3. Fill in the following table using AND:

Dec Bin X & 0x1
-2 1110 0000
-1
0 0000 0000
1
2

4. For which numbers was the value & 0x1 not 0000? What is a common property of these
integers?

5. Many times in systems programming, we want to test if a flag value is set in a given bit-pattern.
The programmer will commonly use X & FLAG == FLAG. Give an explanation of this expression
in pseudo-code.

6. Systems programmers will also regularly have to combine flag values. Describe how OR (|) is
used in the following example, which creates a new file for writing:

open(filename, (O_WRONLY | O_CREAT | O_TRUNC), ...);

7. De Morgan’s Law enables one to distribute negation over AND and OR. Given the following
expression, verify whether it is true over various inputs. ~(x & y) == (~x) | (~y)

3

x y ~(x & y) ‘ (~x) | (~y)
0xF 0x1
0x5 0x7
0x3 0xC

Model 2: Logical Operations

This section will explore logical operations. These operations contrast with bit-level in that they
treat the entire value as a single element. In other languages, the type of these values would be
termed, “bool” or “boolean”. C does not have any such type. Instead, the value of 0 is false and all
other values are true.

The three operators are AND (&&), OR (||), and NOT (!). “!” is commonly termed “bang”.

1. With 4-bit values, how many values are false and how many are true?

2. Evaluate the following expression: (0x3 && 0xC) == (0x3 & 0xC)

3. Test whether !!X == X holds across different values of X.

X !X !!X
-1
0
1
2

4. Now, for each of the previous values, substitute complement “~” for logical not. Do these
results differ from the previous results?

Model 3: Multiplication and Division

1. We observed yesterday that when a 0 is appended to the right of a binary number, its value
was increased. Appending these zeros has an operator, “<<”. Assume that the final integer is
32-bit.

Value <<
0x30 1
0x5A 4
0x11D 31

2. Given the expression X = (0x1 << 2) | (0x1 << 1) , what is the value of X in decimal and
binary?

3. The compiler can often detect simple multiplication and replace it with shifts and addition.
Given the largest 3-bit unsigned integer, what is its value squared? How many bits does this

4

value require?

4. What is the result from the previous question if it must be stored in 3 bits.

5. Shift can also move the digits the other direction with “>>”. Compute the following.

Value >>
0x30 1
0x5A 4
0x11 3

6. Convert the initial and final values in the previous question to decimal. To what common
operation is right shift equivalent?

7. Suppose we right shift the value of “-2” by 1. Based on the previous question, what value do
we expect?

8. With 4-bit integers, what is the binary for -2? After right shifting by 1, what value(s) might
we have?

9. Given the unsigned, 4-bit value of 0xA, what should the result be when right shifting by 1?

10. Yesterday, when we discussed converting from decimal to binary, it was suggested to divide by
2 and take the remainder. Fill in this algorithm into the following code using the operations
learned today:

while (x != 0)
{

int rem = x _______ ;
x = __________;

}

5

	Introduction
	Model 0: Review of Addition / Positive
	Model 0: Review of Negative Integers
	Model 1: Bit-Level Operations
	Model 2: Logical Operations
	Model 3: Multiplication and Division

