
Full Name:

Andrew ID:

CS 15-213, Fall 1998

Final Exam
December 11, 1998

Instructions:

� Make sure that your exam is not missing any sheets, then write your full name and Andrew ID on the
front.

� Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

� The exam has a maximum score of 100 points.

� The problems are of varying difficulty. The point value indicated for each problem is proportional to
its difficulty. Pile up the easy points quickly and then come back to the harder problems.

� Each problem tests a skill from a lab or homework assignment. The problems are listed in course
order.

� This exam is OPEN BOOK. You may use any books or notes you like. Good luck!

1: /05

2: /10

3: /18

4: /10

5: /14

6: /10

7: /16

8: /17

TOTAL: /100

Page 1 of 13

Problem 1. (5 points):
Write a bit mask generator. Assume that 0� low � high � 31. Examples:make_mask(12,9) should
return0x000000E0 , while make_mask(31,31) should return0x80000000 .

int make_mask(unsigned int high, unsigned int low)
{

int mask;

return mask;
}

Page 2 of 13

Problem 2. (10 points):
Consider the following Alpha assembly code for a procedurefoo() :

foo:
0x0: 47ff0413 bis zero, zero, a3
0x4: ee20000c ble a1, 0x38
0x8: a4300000 ldq t0, 0(a0)
0xc: 424105a2 cmpeq a2, t0, t1
0x10: f4400009 bne t1, 0x38
0x14: 42700640 s8addq a3, a0, v0
0x18: b7e00000 stq zero, 0(v0)
0x1c: 42603413 addq a3, 0x1, a3
0x20: 40011400 addq v0, 0x8, v0
0x24: 427109a3 cmplt a3, a1, t2
0x28: e4600003 beq t2, 0x38
0x2c: a4800000 ldq t3, 0(v0)
0x30: 424405a5 cmpeq a2, t3, t4
0x34: e4bffff8 beq t4, 0x18
0x38: 46730400 bis a3, a3, v0
0x3c: 6bfa8001 ret zero, (ra), 1

Based on the assembly code above, fill in the blanks below in its corresponding C source code. (Note: you
may only use symbolic variablesa, len, val, andi, from the source code in your expressions below—do
notuse register names.)

long int foo(long int *a, long int len, long int val)
{

long int i;

for (i = _________; ____________________________ ; i =___________) {
a[i] = 0;

}
return i;

}

Page 3 of 13

Problem 3. (18 points):
Dr. Evil has returned! He has placed a binary bomb in this exam! Once again, Dr. Evil has made the
disasterous mistake of leaving behind some of his source code. Can you save all of mankind (or at least
your grade on this question), and tell us what this bomb does? Turn the page to find out how...

The C source code Dr. Evil forgot to erase:

/* bomb.c: Use new computer technology to blow up exams! -- Dr. Evil */
#include <stdio.h>
#include <stdlib.h>

extern long secret_unsolvable_puzzle_fn(long input);

void explode_bomb()
{

printf("You fail! Mwhahahahaha!!!\n");
exit(8);

}

int main(int argc,
char *argv[])

{
if(argc != 2) {

printf("Usage: %s <magic password>\n", argv[0]);
explode_bomb();

}

if(secret_unsolvable_puzzle_fn(atol(argv[1])) != 1) {
explode_bomb();

}

printf("Curses, foiled again! Good work!\n");

return 0;
}

The Alpha dissasembly for the stuff Dr. Evil did erase:

secret_unsolvable_puzzle_fn:
0x120001320: addq a0, a0, t0
0x120001324: lda t1, 15213(zero)
0x120001328: cmpult t0, t1, t2
0x12000132c: beq t2, 0x12000133c
0x120001330: addq t0, a0, t0
0x120001334: cmpult t0, t1, t3
0x120001338: bne t3, 0x120001330
0x12000133c: lda v0, -15213(t0)
0x120001340: cmpeq zero, v0, v0
0x120001344: ret zero, (ra), 1

Page 4 of 13

(a) Does the bomb use floating point arithmetic? (Yes/No)

(b) Does the functionsecret_unsolvable_puzzle_fn() contain any recursion? (Yes/No)

(c) You think thatsecret_unsolvable_puzzle_fn() is too slow, and you want to replace it by a
lookup table which exhaustively lists all possible inputs and maps them to all possible outputs. How many
entries will your lookup table have? What values cansecret_unsolvable_puzzle_fn() return?

entries in table =

possible return values =

(d) Just to see what happens, you try running the program “./bomb 0 ”. What happens? Does the bomb
explode?

(e) For each of the following input values, circle whether it defuses or explodes the bomb:

input = 2 defuses explodes

input = 11 defuses explodes

input = 1381 defuses explodes

input = 5071 defuses explodes

Page 5 of 13

Problem 4. (10 points):
You have been assigned the task of writing a C function to compute a floating point representation of 2x.
You realize that the best way to do this is to directly construct the IEEE single precision representation of
the result. Whenx is too small, your routine will return 0:0. Whenx is too large, it will return+1. Fill in
the blank portions of the following code to compute the correct result:

/* Compute 2**x */
float fpwr2(int x) {

union {
unsigned u;
float f;

} result;

unsigned exp, sig; /* Result exponent and significand */

if (x < ______) {
/* Too small. Return 0.0 */
exp = ____________;
sig = ____________;

} else if (x < ______) {
/* Denormalized result */
exp = ____________;
sig = ____________;

} else if (x < ______) {
/* Normalized result. */
exp = ____________;
sig = ____________;

} else {
/* Too big. Return +oo */
exp = ____________;
sig = ____________;

}

result.u = exp << 23 | sig;
return result.f;

}

Page 6 of 13

Problem 5. (14 points):
Welcome to the C-Memory-Layout Question. The context for all questions is the Alpha, as usual.

struct s1 {
char c;
short s;
double d;
int i[4];

};

struct s2 {
int a[2][3];
struct s1 b;
long c[2][2];

};

struct s2 thing;

a) Fill in the following table to describe the memory footprint ofthing . Do not include wasted space in
length. To help you, we’ve filled in two of the blanks (well, ok - only one is useful).

Field Start Length
a 0
b.c
b.s
b.d
b.i
c 56

b) In an effort to create job security for himself, a deranged programmer at your company had “optimized”
his code by referencing fields ofthing via out-of-range elements ofthing.a andthing.c . Needless
to say, as soon as this was discovered, he was fired. Now, you must figure out what the programmer was
actually referencing.
First, figure out theoffsetof the access from the beginning of the array accessed. For example, the offset
of thing.b.i[1] is 4. Using the offset and your knowledge of the structure’s layout, you can figure
out how the programmershouldhave referred to those memory locations. Write oneor more expressions
indicating what fields were being referenced. Array indices you give should be within the bounds as given
in the declaration. It may help you to draw a picture on scratch paper.

Store-to Relative Offset Fields/Elements Overwritten
thing.a[3][2]
thing.c[-1][-3]
thing.b.i[6]

Page 7 of 13

Translation Lookaside Buffers

Translation Lookaside Buffers (TLBs) are often managed by the operating system virtual memory manager
using special instructions to update TLB entries. If there are bugs in this software, chaotic behavior can
occur. Consider the task of writing a “consistency checker” that would scan through the TLB and detect
anomalous entries.

Assume a virtually-addressed memory system with the following properties:

� Virtual addresses are 14 bits wide.

� Physical addresses are 12 bits wide.

� The page size is 64 bytes.

� The TLB is 8-way set associative with 16 total entries.

� There should be no aliasing in the address mapping, i.e., under no condition should two virtual
addresses map to the same physical address.

Observe that for this virtual address format, the upper 8 bits denote the virtual page number (VPN), while
the lower 6 bits denote the virtual page offset (VPO). For indexing into the TLB, the low order bit of the
VPN indexes the set (TLBI), and the upper 7 bits form the tag (TLBT), as diagrammed below:

13 12 11 10 9 8 7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

|------------ VPN --------------|------- VPO -----------|
|------------ TLBT ---------|---|

|
TLBI

The physical address is split into two fields: the upper 6 bits denote the physical page number (PPN), while
the lower 6 bits denote the physical page offset (PPO).

The page table (in hexadecimal) for the first 16 pages is as follows:

VPN PPN Valid VPN PPN Valid
00 28 1 08 13 1
01 2B 0 09 17 1
02 33 1 0A 09 0
03 02 1 0B 1A 0
04 2A 0 0C 27 0
05 16 1 0D 2D 1
06 04 0 0E 11 1
07 26 0 0F 0D 1

Page 8 of 13

Problem 6. (10 points):
In this problem, you are given a series of TLB entriesfor set index 1. For each entry, indicate the virtual
page number (VPN) represented (in hexadecimal), whether the entry is valid (i.e, there is nothing wrong
with its format or with respect to the portion of the page table given), and a brief explanation. For valid
entries, your explanation should describe what the combination of TLB and page table indicates about this
page. For invalid entries, you should describe why they are invalid.

A.
Tag PPN Valid
03 31 1

VPN:
OK?:

Explanation:

B.
Tag PPN Valid
06 2D 1

VPN:
OK?:

Explanation:

C.
Tag PPN Valid
04 28 0

VPN:
OK?:

Explanation:

D.
Tag PPN Valid
1F 33 1

VPN:
OK?:

Explanation:

E.
Tag PPN Valid
F0 40 1

VPN:
OK?:

Explanation:

Page 9 of 13

Caches

In the next problem you will determine the number of read and write misses for a small transpose routine,
given data caches of sizes 64 and 256 bytes. Throughout this problem you should assume the following:

� Like Lab L3, the data cache is direct mapped, write through, write allocate, and the block size is 32
bytes.

� Thesrc array starts at address 0 and thedstarray starts at address 128.

� Accesses to thesrcanddstarrays are the only sources of read and write misses, respectively.

� Unlike Lab L3, the arrays are 2d arrays of longs, wheresizeof(long) = 8 bytes.

Page 10 of 13

Problem 7. (16 points):

typedef long array[4][4];

void foo(array dst, array src) {
int i, j;

for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {

dst[j][i] = src[i][j];
}

}
}

A. For a cache with atotal size of 64 data bytesand for eachi andj, indicate whether each access to
dst[i][j] andsrc[i][j] is a hit (h) or a miss (m). For example, readingsrc[0][0] is a miss and writing
dst[0][0] is also a miss.

dst array

0 1 2 3

0 m

1

2

3

src array

0 1 2 3

0 m

1

2

3

B. Repeat part A for a cache with atotal size of 256 data bytes.

dst array

0 1 2 3

0

1

2

3

src array

0 1 2 3

0

1

2

3

Page 11 of 13

Problem 8. (Of course, 17 points):

The designers of the cookienet protocol just can’t stop: after their proprietary protocol was reverse engi-
neered, they designed CookieNet 2000. In this problem, you’ll reverse engineer this protocol. They’ve
advertised that they’ve improved encryption by varying the key on every packet, and increased the number
of simultaneous cookie messages possible.

You start by using the manufacturer’s program,pfw2k to write the following message to the network,
specifying port0x12345678 :

the quick brown fox 1
the quick brown fox 2222
the quick brown fox 33333333

Here’s a dump of the packets that were sent to the network, both in hex and the character representation,
without the Ethernet header.

packet 1:
00 00 00 00 12 34 56 78 00 16 00 00 74 68 65 20 71 75 69 63 6B 20 62

72 6F 77 6E 20 66 6F 78 20 31 0A
.....4Vx....the quick brown fox 1.

packet 2:
00 00 00 01 12 34 56 78 00 19 00 00 75 69 66 20 72 76 6A 64 6C 20 63
73 70 78 6F 20 67 70 79 20 32 32 32 32 0A
.....4Vx....uif rvjdl cspxo gpy 2222.

packet 3:
00 00 00 02 12 34 56 78 00 1D 00 00 76 6A 67 20 73 77 6B 65 6D 20 64
74 71 79 70 20 68 71 7A 20 33 33 33 33 33 33 33 33 0A
.....4Vx....vjg swkem dtqyp hqz 33333333.

a) Name the fields present in the CookieNet 2000 packet header. Does any field serve more than one
purpose?

Page 12 of 13

b) Fill in the C structure below with the format of the packet. If you need a placeholder, clearly label it as
such.

struct packet {

unsigned char payload[1]; /* actual payload may be longer */
};

c) Write, in hex, the header for a packet that contains0x12C (300) characters and has sequence number
0x10000 (65536), on port number0x19 (25). You may not need all the spaces. Put one byte per box.
Indicate where the start of the payload would be.

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Page 13 of 13

