Carnegie Mellon

Recitation 13: Synchronization

Your TA(s)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 1

Carnegie Mellon

Outline

m Logistics
Proxylab

m Makefiles
m Threading
m Threads and Synchronization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third

Carnegie Mellon

So you wanna TA for 213

. What qualifications are we looking for?
o Decent class performance, but also critical thinking skills
o Like computer systems + want to help others like systems!
o Have a reasonable ability to gauge your schedule +
responsibilities
o Leadership potential! Take initiative, we love to see it =~

o Ability to tell students:
] “Did you write your heap checker”
] “Run backtrace for me”
] rinse and repeat, it’s mouthwash baby

Apply at https://www.ugrad.cs.cmu.edu/ta/S22/

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 3

https://www.ugrad.cs.cmu.edu/ta/F20/

Carnegie Mellon

ProxyLab

m ProxylLab is due next Thursday. Checkpoint is due Tuesday.
= One grace day for each

= Proxy Final may NOT be submitted after the last day of classes per
University policy

= Make sure to submit well in advance of the deadline in case there are
errors in your submission.

= Build errors are a common source of failure
m A proxy is a server process

= |tis expected to be long-lived

= To not leak resources

= To be robust against user input
= Note on CSAPP

= Most CSAPP functions have been removed

= Error check all system calls and exit only on critical failure

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 4

Carnegie Mellon

Proxies and Threads

m Network connections can be handled concurrently
* Three approaches were discussed in lecture for doing so
= Your proxy should (eventually) use threads

= Threaded echo server is a good example of how to do this

m Multi-threaded cache design

= Be careful how you use mutexes. Do not hold locks over network /
file operations (read, write, etc)

= Using semaphores is not permitted

= Be careful how you maintain your object age

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 5

Carnegie Mellon

Join / Detach

m Does the following code terminate? Why or why not?

int main(int argc, char** argv)

{

pthread create(&tid, NULL, work, NULL);
if (pthread join(tid, NULL) !'= 0) printf(“Done.\n”);

void* work (void* a)

{
pthread detach (pthread self())

while (1) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 6

Carnegie Mellon

Join / Detach cont.

m Does the following code terminate now? Why or why
not?

int main(int argc, char** argv)

{

pthread create(&tid, NULL, work, NULL); sleep(l) ;
if (pthread join(tid, NULL) !'= 0) printf(“Done.\n”);

void* work (void* a)

{
pthread detach (pthread self())

while (1) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 7

Carnegie Mellon

Join / Detach cont.

m Does the following code terminate now? Why or why
not?

int main(int argc, char** argv)

{

pthread create(&tid, NULL, work, NULL); sleep(l) ;
if (pthread join(tid, NULL) !'= 0) printf(“Done.\n”);

void* work (void* a)

{
pthread detach (pthread self())

while (1) ;
}

sleep will not help solve race conditions!!!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 8

When should threads detach?

m In general, pthreads will wait to be reaped via
pthread_join.

m When should this behavior be overridden?

s When termination status does not matter.

= pthread_join provides a return value

s When result of thread is not needed.

= When other threads do not depend on this thread having
completed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 9

Carnegie Mellon

Threads

m What is the range of value(s) that main will print?

m A programmer proposes removing j from thread and just
directly accessing count. Does the answer change?

volatile int count = 0; int main(int argc, char** argv)

void* thread(void* v) { pthread t tid[2];

«t for(int i = 0; i < 2; i++)
TnE J = :?unt; pthread create(&tid[i], NULL,
) ant ! 5 thread, NULL);

} for (int 1 = 0; 1 < 2; i++)
pthread join(tid[i]);
printf (“$d\n”, count) ;
return 0O;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 10

Carnegie Mellon

Synchronization

m Is not cheap

= 100s of cycles just to acquire without waiting

m Is also not that expensive
= Recall your malloc target of 15000kops => ~100 cycles

m May be necessary

= Correctness is always more important than performance

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 11

Carnegie Mellon

Semaphore Review

m Semaphores are non-negative global integers for
synchronization

m P(s) -- “wait until it’s my turn”
= while(s == 0) { wait(); } s--;
s V(s)--“I'm done”

" S+

I

s P/V are implemented to run atomically

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 12

Carnegie Mellon

Other Synchronization

m Mutexes -- similar to semaphores

= Only two states
= ~2 times faster than semaphores

m Reader-Writer Locks

= Allows multiple threads to read at the same time, but only one if it
needs to write

m These will be discussed in more detail in lecture

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 13

Carnegie Mellon

Which synchronization should | use?

m Counting a shared resource, such as shared buffers

= Semaphore

m EXxclusive access to one or more variables

= Mutex

s Most operations are reading, rarely writing / modifying
= RWLock

For proxy it’s sufficient to just use mutexes!
(using semaphores is forbidden)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 14

Carnegie Mellon

Threads Revisited

m Which lock type should be used?
s Where should it be acquired / released?

volatile int count = 0; int main(int argc, char** argv)

void* thread(void* v) { pthread t tid[2];

«t for(int i = 0; i < 2; i++)
TnE J = ;?unt; pthread create(&tid[i], NULL,
) ant ! 5 thread, NULL);

} for (int 1 = 0; 1 < 2; i++)
pthread join(tid[i]);
printf (“$d\n”, count) ;
return 0O;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 15

Carnegie Mellon

Associating locks with data

m Given the following key-value store
= Key and value have separate mutexes: klock and vlock

= When an entry is replaced, both locks are acquired.

m Describe why the printf may not be accurate.

typedef struct data t {

int key; pthread mutex lock (klock) ;
size t ;alue- match = search (k) ;
} data_t- , pthread mutex unlock (klock) ;
i 1= —
#define SIZE 10 if (match != -1)
data t space[SIZE]; {
int ;éarch(int k) pthread mutex lock(vlock) ;
{ printf (“$zd\n”, space[match]);
for(int § = 0; 3 < SIZE; j++) pthread mutex unlock (vlock);
if (space[j].key == k) return j; }

return -1;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 16

Carnegie Mellon

Locks gone wrong

1. RWLacks are particularly susceptible to which issue:
b. Livelock c. Deadlock

1. |If some code acquires semaphores: S1 then S2, while
other readers go S2 then S1. What, if any, order can a
writer acquire both S1 and S2?

No order is possible without a potential deadlock.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 17

Carnegie Mellon

Proxylab Reminders

m Plan out your implementation

= “Weeks of programming can save you hours of planning”
— Anonymous

= Arbitrarily using mutexes will not fix race conditions
m Read the writeup

s Submit your code (days) early
= Test that the submission will build and run on Autolab

m Final exam is only a few weeks away!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 18

Appendix

m Calling exit() will terminate all threads

m Calling pthread_join on a detached thread is technically
undefined behavior. Was defined as returning an error.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 19

Carnegie Mellon

Client-to-Client Communication

m Clients don’t have to fetch content from servers
= Clients can communicate with each other
* |n a chat system, a server acts as a facilitator between clients

= Clients could also send messages directly to each other, but this is
more complicated (peer-to-peer networking)

m Running the chat server

» ./chatserver <port>

m Running the client

= telnet <hostname> <port>

s What race conditions could arise from having
communication between multiple clients?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 20

Carnegie Mellon

Appendix: Makefiles

= Makefile: tells program how to compile and link files

List of all header files (for fake cache.c file)
DEPS = csapp.h transpose.h

Rules for building cache

cache: cache.o transpose.o csapp.o

transpose.o: transpose.c $(DEPS)

cache.o: cache.c $ (DEPS)

csapp.o: csapp.c csapp.h

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 21

