
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Recitation 13: Synchronization

Your TA(s)

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Outline

⬛ Logistics
⬛ Proxylab

⬛ Makefiles

⬛ Threading

⬛ Threads and Synchronization

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

⬛ What qualifications are we looking for?
○ Decent class performance, but also critical thinking skills
○ Like computer systems + want to help others like systems!
○ Have a reasonable ability to gauge your schedule +

responsibilities
○ Leadership potential! Take initiative, we love to see it 😌
○ Ability to tell students:

■ “Did you write your heap checker”
■ “Run backtrace for me”
■ rinse and repeat, it’s mouthwash baby

So you wanna TA for 213

Apply at https://www.ugrad.cs.cmu.edu/ta/S22/

https://www.ugrad.cs.cmu.edu/ta/F20/

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

ProxyLab
⬛ ProxyLab is due next Thursday. Checkpoint is due Tuesday.

▪ One grace day for each

▪ Proxy Final may NOT be submitted after the last day of classes per
University policy

▪ Make sure to submit well in advance of the deadline in case there are
errors in your submission.

▪ Build errors are a common source of failure

⬛ A proxy is a server process
▪ It is expected to be long-lived

▪ To not leak resources

▪ To be robust against user input

⬛ Note on CSAPP
▪ Most CSAPP functions have been removed

▪ Error check all system calls and exit only on critical failure

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Proxies and Threads
⬛ Network connections can be handled concurrently

▪ Three approaches were discussed in lecture for doing so

▪ Your proxy should (eventually) use threads

▪ Threaded echo server is a good example of how to do this

⬛ Multi-threaded cache design
▪ Be careful how you use mutexes. Do not hold locks over network /

file operations (read, write, etc)

▪ Using semaphores is not permitted

▪ Be careful how you maintain your object age

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Join / Detach

⬛ Does the following code terminate? Why or why not?

int main(int argc, char** argv)
{
…
 pthread_create(&tid, NULL, work, NULL);
 if (pthread_join(tid, NULL) != 0) printf(“Done.\n”);
…
void* work(void* a)
{
 pthread_detach(pthread_self());
 while(1);
}

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Join / Detach cont.

⬛ Does the following code terminate now? Why or why
not?

int main(int argc, char** argv)
{
…
 pthread_create(&tid, NULL, work, NULL); sleep(1);
 if (pthread_join(tid, NULL) != 0) printf(“Done.\n”);
…
void* work(void* a)
{
 pthread_detach(pthread_self());
 while(1);
}

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Join / Detach cont.

⬛ Does the following code terminate now? Why or why
not?

int main(int argc, char** argv)
{
…
 pthread_create(&tid, NULL, work, NULL); sleep(1);
 if (pthread_join(tid, NULL) != 0) printf(“Done.\n”);
…
void* work(void* a)
{
 pthread_detach(pthread_self());
 while(1);
}

sleep will not help solve race conditions!!!

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

When should threads detach?

⬛ In general, pthreads will wait to be reaped via
pthread_join.

⬛ When should this behavior be overridden?

⬛ When termination status does not matter.
▪ pthread_join provides a return value

⬛ When result of thread is not needed.
▪ When other threads do not depend on this thread having

completed

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Threads

⬛ What is the range of value(s) that main will print?

⬛ A programmer proposes removing j from thread and just
directly accessing count. Does the answer change?

volatile int count = 0;

void* thread(void* v)
{
 int j = count;
 j = j + 1;
 count = j;
}

int main(int argc, char** argv)
{
 pthread_t tid[2];
 for(int i = 0; i < 2; i++)
 pthread_create(&tid[i], NULL,
 thread, NULL);
 for (int i = 0; i < 2; i++)
 pthread_join(tid[i]);
 printf(“%d\n”, count);
 return 0;
}

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Synchronization

⬛ Is not cheap
▪ 100s of cycles just to acquire without waiting

⬛ Is also not that expensive
▪ Recall your malloc target of 15000kops => ~100 cycles

⬛ May be necessary
▪ Correctness is always more important than performance

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Semaphore Review

⬛ Semaphores are non-negative global integers for
synchronization

⬛ P(s) -- “wait until it’s my turn”
▪ while(s == 0) { wait(); } s--;

⬛ V(s) -- “I’m done”
▪ s++;

⬛ P/V are implemented to run atomically

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Other Synchronization

⬛ Mutexes -- similar to semaphores
▪ Only two states

▪ ~2 times faster than semaphores

⬛ Reader-Writer Locks
▪ Allows multiple threads to read at the same time, but only one if it

needs to write

⬛ These will be discussed in more detail in lecture

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Which synchronization should I use?

⬛ Counting a shared resource, such as shared buffers
▪ Semaphore

⬛ Exclusive access to one or more variables
▪ Mutex

⬛ Most operations are reading, rarely writing / modifying
▪ RWLock

For proxy it’s sufficient to just use mutexes!

(using semaphores is forbidden)

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Threads Revisited

⬛ Which lock type should be used?

⬛ Where should it be acquired / released?

volatile int count = 0;

void* thread(void* v)
{
 int j = count;
 j = j + 1;
 count = j;
}

int main(int argc, char** argv)
{
 pthread_t tid[2];
 for(int i = 0; i < 2; i++)
 pthread_create(&tid[i], NULL,
 thread, NULL);
 for (int i = 0; i < 2; i++)
 pthread_join(tid[i]);
 printf(“%d\n”, count);
 return 0;
}

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Associating locks with data

⬛ Given the following key-value store
▪ Key and value have separate mutexes: klock and vlock

▪ When an entry is replaced, both locks are acquired.

⬛ Describe why the printf may not be accurate.

...
pthread_mutex_lock(klock);
match = search(k);
pthread_mutex_unlock(klock);

if (match != -1)
{
 pthread_mutex_lock(vlock);
 printf(“%zd\n”, space[match]);
 pthread_mutex_unlock(vlock);
}

typedef struct _data_t {
 int key;
 size_t value;
} data_t;

#define SIZE 10
data_t space[SIZE];
int search(int k)
{
 for(int j = 0; j < SIZE; j++)
 if (space[j].key == k) return j;
 return -1;
}

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Locks gone wrong

1. RWLocks are particularly susceptible to which issue:
a. Starvation b. Livelock c. Deadlock

1. If some code acquires semaphores: S1 then S2, while
other readers go S2 then S1. What, if any, order can a
writer acquire both S1 and S2?

No order is possible without a potential deadlock.

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Proxylab Reminders

⬛ Plan out your implementation
▪ “Weeks of programming can save you hours of planning”

– Anonymous

▪ Arbitrarily using mutexes will not fix race conditions

⬛ Read the writeup

⬛ Submit your code (days) early
▪ Test that the submission will build and run on Autolab

⬛ Final exam is only a few weeks away!

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Appendix

⬛ Calling exit() will terminate all threads

⬛ Calling pthread_join on a detached thread is technically
undefined behavior. Was defined as returning an error.

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Client-to-Client Communication

⬛ Clients don’t have to fetch content from servers
▪ Clients can communicate with each other

▪ In a chat system, a server acts as a facilitator between clients

▪ Clients could also send messages directly to each other, but this is
more complicated (peer-to-peer networking)

⬛ Running the chat server
▪ ./chatserver <port>

⬛ Running the client
▪ telnet <hostname> <port>

⬛ What race conditions could arise from having
communication between multiple clients?

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Appendix: Makefiles

▪ Makefile: tells program how to compile and link files

List of all header files (for fake cache.c file)

DEPS = csapp.h transpose.h

Rules for building cache

cache: cache.o transpose.o csapp.o

transpose.o: transpose.c $(DEPS)

cache.o: cache.c $(DEPS)

csapp.o: csapp.c csapp.h

