
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Recitation 12: ProxyLab Part 1

Instructor: TA(s)

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Outline

⬛ Feedback
⬛ Proxies
⬛ Networking
⬛ PXYDRIVE Demo

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Reminder:

⬛ Please sign up for code reviews for Shell Lab by Thursday

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Proxy Lab

⬛ Checkpoint is worth 2%, due Tuesday, November 23rd

⬛ Final is worth 6%, due Thursday, December 2nd

⬛ Current situation w/ grace / late days (subject to change):
⬛ 1 grace / late day allowed for both checkpoint and final

⬛ You are submitting an entire project
▪ Modify the makefile

▪ Split source file into separate pieces

⬛ Submit regularly to verify proxy builds on Autolab

⬛ Your proxy is a server, it should not crash!

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Why Proxies?
⬛ Proxies are both clients and servers
⬛ Can perform useful functions as requests and responses pass by

▪ Examples: Caching, logging, anonymization, filtering, transcoding

Client
A

Proxy
cache

Origin
Server

Request foo.html

Request foo.html

foo.html

foo.html

Client
B

Request foo.html

foo.html

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

5. Drop client4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Echo
Server
+ Client
Structure

Client Server

rio_readline
b

rio_writenrio_readlineb
fputs

fgets
rio_writen

Connection
request

rio_readline
b

close

close
EOF

Await connection
request from client

accept

open_listen
fd

open_client
fd

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Transferring HTTP Data

If something requests a file from a web server, how does it know
that the transfer is complete?

A) It reads a NULL byte.
B) The connection closes.
C) It reads a blank line.
D) The HTTP header specifies the number of bytes to receive.
E) The reading function receives EOF.

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

1x-x13

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Introducing PXYDRIVE
1

⬛ A REPL for testing your proxy implementation
⬛ We also grade using this

⬛ Typical pre-f18 proxy debugging experience:
⬛ Open up three terminals:

for Tiny server, gdb proxy and curl
⬛ Can make multiple requests, but need more terminals

for multiple instances of the Tiny server
⬛ If the data is corrupted, need to manually inspect lines

of gibberish binary data to check error

⬛ Not anymore with PXYDRIVE!

1 Not typing PXYDRIVE in small-caps is a style violation.

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Introducing PXYDRIVE

⬛ General workflow
⬛ Generate text and

binary data to test
your proxy with

⬛ Create (multiple) server
⬛ Make transactions
⬛ Trace transactions to

inspect headers and
response data

⬛ Transaction

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Some practice

⬛ Get the tarball

⬛ $ wget
https://www.cs.cmu.edu/~213/activities/proxy-r
ecitation13.tar

⬛ $ tar –xvf proxy-recitation13.tar
⬛ $ cd pxydrive-tutorial

https://www.cs.cmu.edu/~213/activities/proxy-recitation13.tar
https://www.cs.cmu.edu/~213/activities/proxy-recitation13.tar

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Trying out PXYDRIVE

⬛ It’s a REPL: the user can run commands

⬛ $./pxy/pxydrive.py
⬛ Just starts PXYDRIVE

⬛ Try entering commands:
⬛ >help
⬛ >help help help help help help...
⬛ >quit

⬛ $./pxy/pxydrive.py –p ./proxy-ref
⬛ Starts PXYDRIVE and specifies a proxy to run
⬛ Proxy set up at <someshark>:30104
⬛ Picks the right port and starts the proxy
⬛ ./proxy-ref is the reference proxy

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

PXYDRIVE Tutorial 1

⬛ Introducing basic procedures:
generate data, create server, fetch / request file from server,
trace transaction

⬛ Open s01-basic-fetch.cmd

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

PXYDRIVE Tutorial 1

⬛ >generate data1.txt 1K
⬛ Generates a 1K text file called data1.txt

⬛ >serve s1
⬛ Launches a server called s1

⬛ >fetch f1 data1.txt s1
⬛ Fetches data1.txt from server s1, in a transaction called f1

⬛ >wait *
⬛ Waits for all transactions to finish
⬛ Needed in the trace, not in the command-line

⬛ >trace f1
⬛ Traces the transaction f1

⬛ >check f1
⬛ Checks the transaction f1

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

PXYDRIVE Tutorial 1

⬛ Run trace with –f option:

⬛ $./pxy/pxydrive.py –f s01-basic-fetch.cmd –p
./proxy-ref

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Look at the trace of the transaction!

⬛ Identify:
⬛ GET command
⬛ Host header
⬛ Other headers
⬛ Request from client to proxy
⬛ Request from proxy to server
⬛ Response by server to proxy
⬛ Response by proxy to client

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

PXYDRIVE Tutorial 1

⬛ Run a different trace

⬛ $./pxy/pxydrive.py –f s02-basic-request.cmd –p
./proxy-ref

⬛ You should get a different output from the first trace
⬛ Why? Let’s look at this trace...

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

PXYDRIVE Tutorial 1

⬛ >generate data1.txt 1K
⬛ >serve s1
⬛ >request r1 data1.txt s1

⬛ Requests data1.txt from server s1, in a transaction called r1
⬛ >wait *
⬛ >trace r1
⬛ >respond r1

⬛ Allow server to respond to the transaction r1
⬛ >wait *
⬛ >trace r1
⬛ >check r1

⬛ Checks the transaction r1

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

PXYDRIVE Tutorial 1

⬛ The fetch command makes the server immediately respond
to a request.

⬛ All steps of a transaction are complete after a fetch.

⬛ The request command does not complete a transaction.
⬛ A request needs a respond to complete its transaction.

fetch

Client Proxy Server

request

Client Proxy Server

respond

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

PXYDRIVE Tutorial 2

⬛ Debugging a proxy that clobbers responses
⬛ Run the same trace but with a faulty proxy

⬛ $./pxy/pxydrive.py –f s01-basic-fetch.cmd
 –p ./proxy-corrupt

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

What went wrong?

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

PXYDRIVE Tutorial 3

⬛ Debugging a proxy that clobbers headers
⬛ Run the same trace but with another faulty proxy

⬛ $./pxy/pxydrive.py –f s01-basic-fetch.cmd
 –p ./proxy-strip –S 3

⬛ -S specifies strictness level

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

What went wrong?

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

PXYDRIVE Tutorial 4

⬛ Debugging a proxy that crashes
⬛ Run the same trace but with yet another faulty proxy

⬛ $./pxy/pxydrive.py –f s03-overrun.cmd
 –p ./proxy-overrun

⬛ Is the error message helpful?

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

PXYDRIVE Tutorial 4

⬛ We resort to multi-window debugging
⬛ Set up another window and run GDB in one:

⬛ $ gdb ./proxy-overrun
⬛ (gdb) run <port>

⬛ In the other window, run PXYDRIVE:

⬛ $./pxy/pxydrive.py –P localhost:<port>
 –f s03-overrun.cmd
⬛ -P specifies the host and port the proxy is running on

./port-for-user.pl
Run this to get your
unique port!

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Reminders

⬛ Read the writeup

⬛ One grace / late day for both checkpoint and final

⬛ So you really have to start early
▪ Come to office hours this week, before it gets crowded!

⬛ Work incrementally and take breaks

⬛ Simpler tests should be completed in the first week!

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

So you wanna TA for 213?

⬛ What qualifications are we looking for?
○ Decent class performance, but also critical thinking skills
○ Like computer systems + want to help others like systems!
○ Have a reasonable ability to gauge your schedule + responsibilities
○ Leadership potential! Take initiative, we love to see it 😌
○ Ability to tell students:

■ “Did you write your heap checker”
■ “Run backtrace for me”
■ rinse and repeat, it’s mouthwash baby

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Appendix on echoserver / client

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Echo Demo

⬛ See the instructions written in the telnet results to set up
the echo server. Get someone nearby to connect using the
echo client.

⬛ What does echoserver output? (Sample output:)
$./echoserver 10101
Accepted connection from hammerheadshark.ics.cs.cmu.edu :46422
hammerheadshark.ics.cs.cmu.edu:46422 sent 6 bytes
Disconnected from hammerheadshark.ics.cs.cmu.edu:46422

Server
listening port

Client
host

Client
port

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Echo Demo

⬛ Look at echoclient.c
− Opens a connection to the server
− Reads/writes from the server

⬛ Look at echoserver output
− Why is the printed client port different from the

server’s listening port?
− Server opens one “listening” port

● Incoming clients connect to this port
− Once server accepts a connection, it talks to client on a

different “ephemeral” port

HTTP/1.1 200 OK Content-Type: text/html…

Client connects to server

GET /~213/recitations/rec12.html HTTP/1.0

Listening port

Ephemeral port

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Echo Demo

⬛ Try to connect two clients to the same server.
⬛ What happens?

− Second client has to wait for first client to finish!
− Server doesn’t even accept second client’s connection
− Where/why are we getting stuck?

⬛ Because we’re stuck in echo() talking to the first client,
echoserver can’t handle any more clients

⬛ Solution: multi-threading

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Echo Server Multithreaded

⬛ How might we make this server multithreaded?
(Don’t look at echoserver_t.c)

 while (1) {
 // Allocate space on the stack for client info
 client_info client_data;
 client_info *client = &client_data;

 // Initialize the length of the address
 client->addrlen = sizeof(client->addr);

 // Accept() will block until a client connects to the port
 client->connfd = Accept(listenfd,
 (SA *) &client->addr, &client->addrlen);

 // Connection is established; echo to client
 echo(client);
 }

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Echo Server Multithreaded

⬛ echoserver_t.c isn’t too different from echoserver.c
− To see the changes: `diff echoserver.c echoserver_t.c`

⬛ Making your proxy multithreaded will be very similar
⬛ However, don’t underestimate the difficulty of addressing

race conditions between threads!
− Definitely the hardest part of proxylab
− More on this next time...

