Carnegie Mellon

15-213 Recitation 11
Processes, Signals, 10

November 8, 2021
Your TAs

Brvant and O’Hallaron, Computer Systems: A Proerammer’s Perspective, Third Edition 1

Outline

m Logistics

m Process Lifecycle

= Signal Handling

m 1O and File Descriptors

Brvant and O’Hallaron, Computer Systems: A Proerammer’s Perspective, Third Edition 2

Carnegie Mellon

Learning Objectives

m Expectations:

= Basic understanding of signals & processes
s Goals:

= Better understanding of signals & processes

Brvant and O’Hallaron, Computer Systems: A Proerammer’s Perspective, Third Edition 3

Logistics

m Shell Lab due Nov 16th

= Code Review Signup due Nov 18th
= Check Website for updated code review signups deadlines in the
future

Brvant and O’Hallaron, Computer Systems: A Proerammer’s Perspective, Third Edition 4

Shell Lab

m Due date: Nov 16th
m Simulate a Linux-like shell
m Review the write-up carefully.

= Review once before starting, and again when halfway through
= This will save you a lot of style points and a lot of grief!

m Read Chapter 8 in the textbook:
= Process lifecycle and signal handling

= How race conditions occur, and how to avoid them

= Be careful not to use code from the textbook without
understanding it first.

Brvant and O’Hallaron, Computer Systems: A Proerammer’s Perspective, Third Edition 5

. CarnegicMellon
Process Graphs

= How many different lines are printed?
int main(void) {
char *tgt = "child";
sigset t mask, old mask;
sigemptyset(&mask);
sigaddset(&mask, SIGINT);
sigprocmask(SIG_SETMASK, &mask, &old mask); // Block
pid_t pid = fork();
if (pid == 0) {
pid = getppid(); // Get parent pid
tgt "parent”;

}

kill(pid, SIGINT);

sigprocmask(SIG_SETMASK, &old mask, NULL); // Unblock
printf("Sent SIGINT to %s:%d\n", tgt, pid);

exit(0);

}

Brvant and O’Hallaron, Computer Systems: A Proerammer’s Perspective, Third Edition 6

Process Graphs

= How many different lines are printed?
int main(void) {
char *tgt = "child";
sigset t mask, old mask;
sigemptyset(&mask); other.
sigaddset(&mask, SIGINT);
sigprocmask(SIG_SETMASK, &mask, &old mask); // Block
pid_t pid = fork();
if (pid == 0) {
pid = getppid(); // Get parent pid
tgt "parent”;

O or 1 line. The parent and
child try to terminate each

}
kill(pid, SIGINT);
sigprocmask(SIG_SETMASK, &old mask, NULL); // Unblock
printf("Sent SIGINT to %s:%d\n", tgt, pid);
exit(0);
}

Brvant and O’Hallaron, Computer Systems: A Proerammer’s Perspective, Third Edition 7

Carnegie Mellon

Signals and Handling

m Signals can happen at any time

= Control when through blocking signals

m Signals also communicate that events have occurred

= What event(s) correspond to each signal?

m Write separate routines for receiving (i.e., signals)

Brvant and O’Hallaron, Computer Systems: A Proerammer’s Perspective, Third Edition 8

Counting with signals

m Will this code terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {
signal (SIGCHLD, handler);
for (int i = 0; i < 10; i++) {
if (fork() == @) { exit(@); }
}
while (counter < 10) {
mine bitcoin();
}

return O;

}

Brvant and O’Hallaron, Computer Systems: A Proerammer’s Perspective, Third Edition 9

Counting with signals (you can’t)

m Will this code terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {

signal (SIGCHLD, handler); == (Don't use signal, use

for (int 1 = 0; 1 < 10; i++) { Signal or sigaction
if (fork() == 0) { exit(@); } instead!)

}

while (counter < 10) {
mine bitcoin();
} It might not, since

return O; .
} (Don't busy-wait, use signals can coalesce.

sigsuspend instead!)

Brvant and O’Hallaron, Computer Systems: A Proerammer’s Perspective, Third Edition 10

sigsuspend

int sigsuspend(const sigset t *mask);

- Suspend current process until a signal is received, you can
specify which one using a mask

This is an atomic version of:
sigprocmask (SIG SETMASK, é&mask, é&prev)
pause () ;
sigprocmask (SIG SETMASK, é&prev, NULL);
- This still doesn’t fix the issue of signals coalescing!
Don’t use pause() in your own code

Brvant and O’Hallaron, Computer Systems: A Proerammer’s Perspective, Third Edition 11

Proper signal handling

m How can we fix the previous code?

= Remember that signals will be coalesced, so the number of times a
signal handler has executed is not necessarily the same as number
of times a signal was sent.

= We need some other way to count the number of children.

Brvant and O’Hallaron, Computer Systems: A Proerammer’s Perspective, Third Edition 12

Carnegie Mellon

Proper signal handling

m How can we fix the previous code?

= Remember that signals will be coalesced, so the number of times a
signal handler has executed is not necessarily the same as number

of times a signal was sent.
= We need some other way to count the number of children.

void handler(int sig) {
pid_t pid;
while ((pid = waitpid(-1, NULL, WNOHANG)) > @) {

counter++;

} T
}
(This instruction isn't atomic. Why
won't there be a race condition?)

Brvant and O’Hallaron, Computer Systems: A Proerammer’s Perspective, Third Edition

13

- CarnegieMellon
Blocking signals

= Surround blocks of code with calls to sigprocmask.
= Use SIG_BLOCK to block signals at the start.
= Use SIG_SETMASK to restore the previous signal mask at the end.

s Don't use SIG_UNBLOCK.

= We don't want to unblock a signal if it was already blocked.

= This allows us to nest this procedure multiple times.

sigset t mask, prev;
sigemptyset(&mask, SIGINT);
sigaddset(&mask, SIGINT);
sigprocmask(SIG BLOCK, &mask, &prev);

/] ...
sigprocmask (SIG_SETMASK, &prev, NULL);

Brvant and O’Hallaron, Computer Systems: A Proerammer’s Perspective, Third Edition 14

Carnegie Mellon

Writing signal handlers

= G1. Call only async-signal-safe functions in your handlers.

= Do notcall printf, sprintf, malloc, exit! Doing so can cause deadlocks, since these
functions may require global locks.

= We've provided you with sio_printf which you can use instead.
= G2. Save and restore errno on entry and exit.
* |If not, the signal handler can corrupt code that tries to read errno.
= The driver will print a warning if errno is corrupted.
= G3. Temporarily block signals to protect shared data.
= This will prevent race conditions when writing to shared data.
= Avoid the use of global variables in tshlab.
* They are a source of pernicious race conditions!
* You do not need to declare any global variables to complete tshlab.
= Use the functions provided by tsh_helper.

Brvant and O’Hallaron, Computer Systems: A Proerammer’s Perspective, Third Edition 15

Error and signals : Recap

m You can’t expect people to block signals around all error
handling logic

m Hence, your signal handler shouldn’t interfere with them
m Solution:

= Do not make any system call that could set errno

= Save and restore errno (store at beginning of handler and restore
after)

= Think about what would work for the case you are using, not one
rule

Brvant and O’Hallaron, Computer Systems: A Proerammer’s Perspective, Third Edition 26

10 functions

Needed for tshlab

= 1nt open(const char *pathname, 1int flags, mode t mode);
= (Can pass bitwise-or of flags:
= File Creation: O_CREAT, O_TRUNC, etc.
= Access Modes (must include one): O_RDONLY, O_WRONLY, O_RDWR
— O_RDONLY|O_WRONLY doesn’t work! Use O_RDWR

= Mode: specifies who else can read/write the new file
= Required argument when O_CREAT is used
= Use 0666 unless you have a specific reason to do something else

m 1nt close(int f£d);
m 1int dup2(int oldfd, int newfd);

Brvant and O’Hallaron, Computer Systems: A Proerammer’s Perspective, Third Edition 17

Carnegie Mellon

Permissions for open()

Read (R) Write (W) Executable (X) All (RWX)
User (USR) S_IRUSR S_IWUSR S_IXUSR S_IRWXU
Group (GRP) S_IRGRP S_IWGRP S_IXGRP S_IRWXG
Other (OTH) S_IROTH S_IWOTH S_IXOTH S_IRWXO

m These constants can be bitwise-OR’d and passed to the
third argument of open()

s WhatdoesS_ IRWXG | S _IXUSR | S_IXOTH mean?

m How to create a file which everyone can read from but
only the user can write to it or execute it?

Brvant and O’Hallaron, Computer Systems: A Proerammer’s Perspective, Third Edition 18

Carnegie Mellon

STD File Descriptors

stdin, stdout, stderr are

fd opened automatically and

STDIN_FILENO 0 closed by normal termination
STDOUT_FILENO 1 or exit()
STDERR_FILENO 2

|
stdin
stdout
stderr

Brvant and O’Hallaron, Computer Systems: A Proerammer’s Perspective, Third Edition 19

Carnegie Mellon

File descriptors (File A != File B)

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
File A
fd O / “foo.txt” " File access
Ig ; File pos File size
fd 3 refcnt=1 File type
fd 4 : :
“bartxt” / File access
File pos File size
refcnt=1 e -type

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 20

Carnegie Mellon

File descriptors after dup2(4,1);

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
Closed . FileA SO
fd 0 silently | “foo.txt” - File access|
fd 1 i i |
P . _File pos | File size ;
fd 3 irefcnt=0: . _File type
fd 4 P I
File B
/ File access
“bar.txt” File s
File pos ' i57e
refcnt=2 File .type

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 21

Carnegie Mellon

File Descriptors (File A == File B)

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
File A
___-—-—/_——-—" .
;g (1) “f00.txt” File access
fd 2 File pos File size
fd 3 refcnt=1 File type

fd 4 :

“foo.txt”

File pos
refcnt=1

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 22

File Descriptors after a fork()

Descriptor tables

Open file table

(shared by
all processes)
Parent’s table File A
/——-—-——P
;g (1) / “foo.txt”
fd 2 File pos
fd 3 refcnt=2
fd 4 :
_ File B
Child's table e
fdO :
fd 1 File pos
fd 2 refcnt=2
fd 3 :
fd 4

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition

v-node table

(shared by

all processes)

File access

File size

File type

File access

File size

File type

Carnegie Mellon

23

Carnegie Mellon

10 and Fork()

= File descriptor management can be tricky.
= How many file descriptors are open in the parent process at the indicated point?
= How many does each child have open at the call to execve?

int main(int argc, char** argv)
{
int i;
for (i = 0; i < 4; i++)
{
int fd = open(“foo”, O_RDONLY) ;
pid_t pid = fork():;
if (pid == 0)
{
int ofd = open(“bar”, O_RDONLY) ;
execve(...);

}

// How many file descriptors are open in the parent?

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 24

Carnegie Mellon

Redirecting 10

= At the two points (A and B) in main, how many file descriptors are open?

int main(int argc, char** argv)
{

int i, £d;

fd = open(“foo”, O WRONLY) ;

dup2 (£fd, STDOUT FILENO) ;

// Point A

close (£fd) ;

// Point B

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 25

Carnegie Mellon

Redirecting 10

m File descriptors can be directed to identify different open
files.

int main(int argc, char** argv) ({
int i;
for (1 = 0; i < 4; i++)
{
int fd = open(“foo”, O_RDONLY) ;
pid_t pid = fork();
if (pid == 0)
{
int ofd = open(“bar”, O_WRONLY) ;
dup2 (fd, STDIN_ FILENO) ;
dup2 (ofd, STDOUT_ FILENO) ;
execve(...);

}
// How many file descriptors are open in the parent?

}

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 26

Carnegie Mellon

File 10 Activity

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 27

Carnegie Mellon

Activity Question

What is the possible output given contents of foo.txt are “ABCDEFG”?

. o void read and print one(int
int main(int argc, char *argv([]) { — — —

. £d) |
int fdl = open("foo.txt", O RDONLY) ;
int fd2 = open("foo.txt", O RDONLY); char c;
read_and print one(fdl); read (fd, &c, 1);
read and print one(£d2); printf ("%C" , C) :
if(!fork()) {
, fflush (stdout) ;
read and print one(£d2);
read and print one(£d2); }

close (£d2) ;
£fd2 = dup(fdl);
read and print one(£d2);
} else {
wait (NULL) ;
read and print one(fdl);
read and print one(£d2);
printf ("\n");
}
close (fdl) ;
close (£d2) ;
return 0;

}

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 28

Carnegie Mellon

File Descriptors after open() of fd2

Open File Table

“foo.txt” ; i i
int main(int argc, char *argv[]) {

int fdl = open("foo.txt", O RDONLY) ;

File pos

Descriptor Tables
—P int fd2 = open("foo.txt", O RDONLY) ;
cefent - 1 V Node Table
fd 0
File access
o £d 1
3 File si
fud lle size
= fd 2
o
© File type
a
s “foo.txt”
el 4 File pos

refcnt = 1

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 29

Carnegie Mellon

File Descriptors after fork()

Descriptor Tables Open File Table

fd 0 “foo.txt” ; ; X
int main(int argc, char *argv[]) {

int fdl = open("foo.txt", O RDONLY) ;

@ fd 1 \ .
) int fd2 = open("foo.txt", O RDONLY) ;
s ~ V Node Table pen "=)
£ il 2 mOEEmE S 2 read and print one (fdl);
o
E a3 TAIE B read _and print one (£d2);
—if (! fork()) {
£d 4 File size
File type
“foo.txt”
£d 0
fd 1 cie pes What has been printed so far?
@
-‘3 / refcnt = 2
o fd 2 ?
=
o
£d 3
£d 4

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 30

Carnegie Mellon

File Descriptors after fork()

Descriptor Tables Open File Table

fd 0 “foo.txt” ; ; X
int main(int argc, char *argv[]) {

int fdl = open("foo.txt", O RDONLY) ;

) il 1 \ -
o int fd2 = open("foo.txt", O RDONLY) ;
s ~ V Node Table pen "=)
£ il 2 mOEEmE S 2 read and print one (fdl);
7]
E a3 TAIE B read _and print one (£d2);
—P-if (! fork()) {
£d 4 File size
File type
“foo.txt”
£d 0
fd 1 cie pes What has been printed so far?
o
-‘3 / refcnt = 2
o fd 2 AA
=
(@)
fd 3
£d 4

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 31

Carnegie Mellon

Output after child prints

int main(int argc, char *argv[]) {
Descriptor Tables Open File Table int fdl = open("foo.txt", O RDONLY);
int fd2 = open("foo.txt", O RDONLY) ;

fd 0 “foo.txt” } -
read and print one(fdl);

read and print one (£d2);

° fd 1 \ File pos
o] |
e, fent — 3 V Node Table if(tfork()) o
= oot T read and print one (fd2);
o _ _ _
E fd 3 File access read and print one (£d2);
close (£d2) ;
fd 4 File size f42 = dup(fdl);
File type — read and print one(fd2);
“foo.txt” } else {

fd 0

a1 Fiie pos What has been printed so far?
)
-‘S refcnt = 1
o fd 2 ?
=
o

fd 3

£d 4

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 32

Carnegie Mellon

Output after child prints

int main(int argc, char *argv[]) {
Descriptor Tables Open File Table int fdl = open("foo.txt", O RDONLY);
int fd2 = open("foo.txt", O RDONLY) ;

fd 0 “foo.txt” } -
read and print one(fdl);

read and print one (£d2);

o fd 1 \ File pos
3 1 i
Y A V Node Table if(tfork()) |
5 o read and print one (fd2);
o _ _ _
E fd 3 File access read and print one (£d2);
close (£d2) ;
fd 4 File size fan - dup(fdl);
File type —P read and print one(£d2);
“foo.txt” } else {

£d 0

fat e What has been printed so far?
)
-'S refcnt = 1
z AABCB
=
o

fd 3

£d 4

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 33

Carnegie Mellon

Output after parent prints e s

int fdl = open("foo.txt", O RDONLY);
int fd2 = open("foo.txt", O RDONLY);

read and print one (fdl);

Descriptor Tables Open File Table read_and_print_one (£d2);
if(!'fork()) {
el @ HiHeRoERE” read and print one (£d2);

read and print one (£d2);

fd 1 File pos
\ close (£d2);

fd 2 refent = 1 V Node Table fd2 = dup (£dl);

File access read and print one(fd2);

Parent Table

fd 3
} else {
£ 4 File size wait (NULL) ;
read and print one (fdl);
File type .
read and print one (fd2);
“foo.txt” - - -
—P printf ("\n");
File pos }

refcnt = 1

What has been printed so far?

?

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 34

Carnegie Mellon

Output after parent prints e s

int fdl = open("foo.txt", O RDONLY);
int fd2 = open("foo.txt", O RDONLY);

read and print one (fdl);

Descriptor Tables Open File Table read_and_print_one (£d2);
if(!'fork()) {
el @ HiHeRoERE” read and print one (£d2);

read and print one (£d2);

fd 1 File pos
\ close (£d2) ;

fd 2 refent = 1 V Node Table fd2 = dup (£dl);

File access read and print one(fd2);

Parent Table

fd 3

—~—

} else

£ 4 File size wait (NULL) ;

read and print one (fdl);

File type .
read and print one (£d2);
“foo.txt” - — -
— printf("\n");
File pos }
refcnt = 1

What has been printed so far?

AABCBCD

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 35

Carnegie Mellon

If you get stuck on tshlab

m Read the writeup!
m Do manual unit testing before runtrace and sdriver!
m Post private questions on piazza!

m Read the man pages on the syscalls.
= Especially the error conditions
= What errors should terminate the shell?

= What errors should be reported?

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 36

Carnegie Mellon

man 2 wait

Taken from http://man7.org/linux/man-pages/man2/wait.2.html
WAIT(2) Linux Programmer's Manual WAIT(2)

NAME
wait, waitpid, waitid - wait for process to change state
SYNOPSIS

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *wstatus);
pid_t waitpid(pid_t pid, int *wstatus, int options);
int waitid(idtype_t 1idtype, id_t id, siginfo_t *infop, int options);

/* This is the glibc and POSIX interface; see
NOTES for information on the raw system call. */

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 37

man pages (probably) cover all you need

= What arguments does the function take?
= read SYNOPSIS

= What does the function do?
= read DESCRIPTION

= What does the function return?
* read RETURN VALUE

= What errors can the function fail with?
= read ERRORS

= Is there anything | should watch out for?
= read NOTES

= Different categories for man page entries with the same name
= Looking up man pages online is not an academic integrity violation

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 38

Function arguments

m Should | do dup2(old, new) or dup2(new, old)?
m Read the man page:

$ man dup2

SYNOPSIS
#include <unistd.h>

int dup(int oldfd);
int dup2(int oldfd, int newfd);

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 39

Function behavior

m How should | write my format string when | need to print
a long double in octals with precision 5 and zero-padded?

m Read the man page
$ man printf

DESCRIPTION
Flag characters
The character % is followed by zero or more of the following flags:

The value should be converted...

%] The value should be zero padded...

- The converted value is to be left adjusted...
(a space) A blank should be left before...

+ A sign (+ or -) should always ...

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 40

Carnegie Mellon

Function return

m What does waitpid() return with and without WNOHANG?
m Read the man page:

$ man waitpid

RETURN VALUE

waitpid(): on success, returns the process ID of the child whose
state has changed; if WNOHANG was specified and one or more
child(ren) specified by pid exist, but have not yet changed state,
then @ is returned. On error, -1 is returned.

Each of these calls sets errno to an appropriate value in the case of
an error.

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 41

Potential errors
m How should | check waitpid for errors?

m Read the man page:
$ man waitpid

ERRORS

ECHILD (for waitpid() or waitid()) The process specified by pid
(waitpid()) or 1idtype and id (waitid()) does not exist or is
not a child of the calling process. (This can happen for
one's own child if the action for SIGCHLD is set to SIG_IGN.

See also the Linux Notes section about threads.)

EINTR WNOHANG was not set and an unblocked signal or a SIGCHLD was
caught; see signal(7).

EINVAL The options argument was invalid.

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 42

Carnegie Mellon

Get advice from the developers

m | sprintf from a string into itself, is this okay?

m Read the man page:
$ man sprintf

NOTES
Some programs imprudently rely on code such as the following

sprintf(buf, "%s some further text", buf);

to append text to buf. However, the standards explicitly note that
the results are undefined if source and destination buffers overlap
when calling sprintf(), snprintf(), vsprintf(), and vsnprintf().
Depending on the version of gcc(1l) used, and the compiler options
employed, calls such as the above will not produce the expected
results.

The glibc implementation of the functions snprintf() and vsnprintf()
conforms to the C99 standard, that is, behaves as described above,
since glibc version 2.1. Until glibc 2.0.6, they would return -1
when the output was truncated.

Brvant and O’Hallaron, Computer Systems: A Proegrammer’s Perspective, Third Edition 43

