Carnegie Mellon

15-213 Recitation
Malloc Part |l

Your TAs
Monday, October 25th, 2021

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Mid-semester Feedback

m Take 5 minutes to fill out the anonymous feedback form on Piazza
m Be as honest as you can since we will try and make any

reasonable adjustments for the next half of the semester

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Logistics

m Malloc Lab Checkpoint is due on TOMORROW at 11:59 pm
m Malloc Bootcamp on Friday, October 29th, 7-9 pm (see piazza)
m Malloc Lab Final is due Tue, November 2nd at 11:59 pm
m 7% of final grade (+4% for checkpoint)
m Style matters! Don't let all of your hard work get wasted.
m There are many different implementations and TAs will need to

know the details behind your implementation.

Agenda

m Logistics

m Malloc Lab

m Checkpoint review
m Activity 1

m Appendix

Understanding Your Code

m Sketch out the heap
m Add Instrumentation
m Use tools

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Sketch out the Heap

m Start with a heap, in this case implicit list

- - - -~ - ~
- ~ ~ - ~ ~ - ~ -~ - ~
e —— N . ~ -
I I I I I I I I | I I I I I I
I I I I I I I ! | I I I I I I
0/a! | fafa] | laje] | | | lelo] | [a
________________ P > e TTTTTTTTTT
N - - N - e ~ -

m Now try something, in this case, extend_heap
block t *block = payload to header (bp) ;
write block(block, size, false);

// Create new epilogue header
block t *block next = find next(block) ;
write epilogue (block next);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Sketch out the Heap

m Hereis a free block based on lectures 19 and 20

= Explicit pointers (will be well-defined see writeup and Piazza)
= This applies to ALL new fields you want inside your struct

= Optional boundary tags 1 word
_A—
~ ~
. . . b
= [f you make changes to your design beyond this Size 0
= Draw it out. Next
= |f you have bugs, pictures can help the staff help you A
- Pufc a picture of your data structure into your file header Unallocated
(optional, but we will be impressed)
Size g
Free
Block

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Common Problems

m Throughput is very low
= Which operation is likely the most throughput intensive?
= Hint: It uses loops!

= Solution: ??

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Common Problems

m Throughput is very low

= Which operation is likely the most throughput intensive?
= Hint: It uses loops!

= Solution: Instrument your code!

m Utilization is very low / Out of Memory

= Which operation can cause you to allocate more memory than you
may need?

= Hint: It extends the amount of memory that you have!
= Solution: ??

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Common Problems

m Throughput is very low

= Which operation is likely the most throughput intensive?
= Hint: It uses loops!

= Solution: Instrument your code!

m Utilization is very low / Out of Memory

= Which operation can cause you to allocate more memory than you
may need?

= Hint: It extends the amount of memory that you have!

= Solution: Instrument your code!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Add Instrumentation

m Remember that measurements inform insights.
= Add temporary code to understand aspects of malloc

= Code can violate style rules or 128 byte limits, because it is
temporary

m Particularly important to develop insights into
performance before making changes

= What is expensive throughput-wise?

= How much might a change benefit utilization?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Add Instrumentation example

m Searchingin £ind fit is often the slowest step

m How efficient is your code? How might you know?

= Compute the ratio of blocks viewed to calls

static block t *find fit(size t asize)
{
block_t *block; call count++;
for (block = heap listp; get size(block) > 0;
block = find next(block))
{ block count++;
if (! (get_alloc(block)) && (asize <= get size(block)))
{
return block;
}

}
return NULL; // no fit found

Bryant aLd O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Add Instrumentation cont.

m What size of requests?
= How many 8 bytes or less?
= How many 16 bytes or less?
= What other sizes?

m What else could you measure? Why?

m Remember that although the system’s performance varies
= The mdriver’s traces are deterministic

= Measured results should not change between runs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Use tools

m Use mm_checkheap()
= Write it if you haven’t done so already
*= Add new invariants when you add new features

= Know how to use the heap checker.
« Why do you need a heap checker? 2 reasons.

m Usegdb

= You can call print or mm_checkheap whenever you want in gdb. No
need to add a whole lot of printf’s.

= Offers useful information whenever you crash, like backtrace.

= Write helper functions to print out free lists that are ONLY called
from GDB

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Write your own traces!

m Write short traces that test simple sequences of malloc
and free

m Read the README file in the traces directory and the

writeup from the traces assignment to see how trace files
need to be written

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

mdriver-emulate

m Testing for 64-bit address space

m Use correctly sized masks, constants, and other variables

m Be careful about subtraction between size types (may
result in underflow/overflow)

m Reinitialize your pointers in mm_init

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Garbled Bytes

m Malloc library returns a block
= mdriver writes bytes into payload (using memcpy)
= mdriver will check that those bytes are still present

= |f malloc library has overwritten any bytes, then report garbled bytes
» Also checks for other kinds of bugs

m Now what?

m The mm_checkheap call is catching it right?
m If not, we want to find the garbled address and watch it

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Garbled Bytes GDB and Contracts

m Get out a laptop

m Login to shark machine
s wget http://www.cs.cmu.edu/~213/activities/rec9.tar

m tar -xfrec9.tar
= cdrec9

m mm.cis a fake implicit list implementation.

= Source code is based on mm.c starter code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

http://www.cs.cmu.edu/~213/activities/rec9.tar

Carnegie Mellon

GDB and Contracts Exercise

m First, let us run without contracts and gdb
m ./mdriver -c ./traces/syn-array-short.rep

(example output)

ERROR [trace ./traces/syn-struct-short.rep, line 16]: block 1
(at 0x8000000a0) has 8 garbled bytes, starting at byte 16

ERROR [trace ./traces/syn-struct-short.rep, line 21]: block 4
(at 0x800000180) has 8 garbled bytes, starting at byte 16

correctness check finished, by running tracefile
"traces/syn-struct-short.rep".

=> incorrect.

Terminated with 2 errors

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Using watchpoints in GDB

m gdb --args ./mdriver-dbgl -c ./traces/syn-struct-short.rep
m What is the first address that was garbled?
= Use gdb watch to find out when / what garbled it.

(gdb) watch *0x8000000a0
(gdb) run

// Keep continuing through the breaks:

// write_block() We just broke in
// 4 x memcpy after overwriting

Hardware watchpoint 1: *0x8000000a0

0ld wvalue 129
New wvalue 32
write block() at mm.c:333

m Tells us to take a closer look at write_block()

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Contracts Exercise cont.

m Now let us see what happens, when we use the file with

contracts
« ./mdriver-dbg2 -c ./traces/syn-struct-short.rep

mdriver-dbg: mm.c:331: void write block(block t *, size t, Bool): Assertion
" (unsigned long) footerp < ((long)block + size)' failed.

Aborted (core dumped)

m Contract failed on line 331, which gives us a better idea of the
source of the issue

= Open mm.c and try to find what is causing the contract to fail

= Writing effective contracts can save a lot of debugging time!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Tips for using our tools

m Run mdriver with the —D option to detect garbled bytes as
early as possible. Run it with =V to find out which trace
caused the error.

m Note that sometimes, you get the error within the first

few allocations. If so, you could set a breakpoint for
mm_malloc / mm_free and step through every line.

m Print out local variables and convince yourself that they
have the right values.

m For mdriver-emulate, you can still read memory from the
simulated 64-bit address space using
mem read (address, 8) insteadofx /gx.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

m Well organized code is easier to debug and easier to grade!
= Modularity: Helper functions to respect the list interface.
= Documentation:

= File Header: Describes all implementation details, including block
structures.

= Code Structure:
= Minimal-to-no pointer arithmetic.
= Loops instead of conditionals, where appropriate.
= Use git!
= Make sure you commit and push often and write descriptive
commit messages

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

MallocLab

m Due next Tuesday
m 7% of final grade (+ 4% for checkpoint)

= Style matters! Don’t let all of your hard work get wasted.

= There are many different implementations and TAs will need to
know the details behind your implementation.

m Read the writeup. It even has a list of tips on how to
improve memory utilization.

m Read the malloc roadmap posted on Piazza
m Rubber duck method

= |f you explain to a rubber duck what your function does
step-by-step, while occasionally stopping to explain why you need
each of those steps, you’d may very well find the bug in the middle
of your explanation.

= Remember the “debug thought process” slide from last recitation?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

