
15-213 Recitation 7: Style, Valgrind, 
Blocking

Your TAs
Monday, October 11th, 2021



Agenda
■ Logistics

■ Code Reviews

■ Blocking

■ Valgrind / Intro to Git

■ Looking Ahead: Cache Lab



Logistics

■ Cache lab is due tomorrow!
■ Come to office hours for help
■ NO Midterm!



Code Reviews



Code Reviews

• Why code reviews?
• Used in industry - Nearly all companies utilize code reviews
• Systematic code reviews are highly effective at finding bugs 

efficiently and effectively.



Code Reviews
• Industry example from an embedded system machine critical pipeline 

flow device requiring high software quality

No code reviews / planned testing

Example from CMU 18-642 https://course.ece.cmu.edu/~ece642/ , Sourced from Roger G. 
2005

The same team 
implemented testing 
and code reviews. 
This is a similar 
project done 5 years 
later.

https://course.ece.cmu.edu/~ece642/


Code Review Signup

• All students in the course will receive an email with a link to signup 
for a code review timeslot.

• All students will receive a final style score from 0-4 points
• 213 code reviews will be short (<= 15 minutes) and cover code style 

and code quality.



Code Style

• Properly document your code
• Function + File header comments, overall operation of large blocks, any tricky bits

• Write robust code – check error and failure conditions
• Write modular code

• Use interfaces for data structures, e.g. create/insert/remove/free functions for a linked 
list

• No magic numbers – use #define or static const
• Formatting

• 80 characters per line (use Autolab’s highlight feature to double-check)
• Consistent braces and whitespace

• No memory or file descriptor leaks



Valgrind

■ Finding memory leaks - part of the style
■ $ valgrind –leak-resolution=high –leak-check=full 
–show-reachable=yes –track-fds=yes ./myProgram arg1 arg

■ Remember that Valgrind can be used for other things, like finding 
invalid reads and writes!



Activity: Valgrind



Activity Setup
■ Split up into groups of 2-3 people

■ One person needs a laptop

■ Log in to a Shark machine, and type:

 $ wget https://www.cs.cmu.edu/~213/activities/rec7.tar
 $ tar -xvf rec7.tar
 $ cd rec7



213_exam_answers.c



Blocking



Example: Matrix Multiplication
/* multiply 4x4 matrices */
void mm(int a[4][4], int b[4][4], int c[4][4]) {
    int i, j, k;
    for (i = 0; i < 4; i++)
        for (j = 0; j < 4; j++)
            for (k = 0; k < 4; k++)
                c[i][j] += a[i][k] * b[k][j];

Let’s step through this to see what’s actually happening



Example: Matrix Multiplication

■ Assume a tiny cache with 4 lines of 8 bytes (2 ints)
■ S = 1, E = 4, B = 8

■ Let’s see what happens if we don’t use blocking



c a b

= x

iter i j k             operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]

Key:
Grey = accessed
Dark grey = currently accessing
Red border = in cache



c a b

= x

iter i j k             operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]

Key:
Grey = accessed
Dark grey = currently accessing
Red border = in cache



c a b

= x

iter i j k             operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 0 2 c[0][0] += a[0][2] * b[2][0]

Key:
Grey = accessed
Dark grey = currently accessing
Red border = in cache



c a b

= x

iter i j k             operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 0 2 c[0][0] += a[0][2] * b[2][0]
3 0 0 3 c[0][0] += a[0][3] * b[3][0]

Key:
Grey = accessed
Dark grey = currently accessing
Red border = in cache



c a b

= x

iter i j k             operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 0 2 c[0][0] += a[0][2] * b[2][0]
3 0 0 3 c[0][0] += a[0][3] * b[3][0]
4 0 1 0 c[0][1] += a[0][0] * b[0][1]

Key:
Grey = accessed
Dark grey = currently accessing
Red border = in cache



c a b

= x

iter i j k             operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 0 2 c[0][0] += a[0][2] * b[2][0]
3 0 0 3 c[0][0] += a[0][3] * b[3][0]
4 0 1 0 c[0][1] += a[0][0] * b[0][1]
5 0 1 1 c[0][1] += a[0][1] * b[1][1]

Key:
Grey = accessed
Dark grey = currently accessing
Red border = in cache



c a b

= x

iter i j k             operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 0 2 c[0][0] += a[0][2] * b[2][0]
3 0 0 3 c[0][0] += a[0][3] * b[3][0]
4 0 1 0 c[0][1] += a[0][0] * b[0][1]
5 0 1 1 c[0][1] += a[0][1] * b[1][1]
6 0 1 2 c[0][1] += a[0][2] * b[2][1]

Key:
Grey = accessed
Dark grey = currently accessing
Red border = in cache



c a b

= x

iter i j k             operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 0 2 c[0][0] += a[0][2] * b[2][0]
3 0 0 3 c[0][0] += a[0][3] * b[3][0]
4 0 1 0 c[0][1] += a[0][0] * b[0][1]
5 0 1 1 c[0][1] += a[0][1] * b[1][1]
6 0 1 2 c[0][1] += a[0][2] * b[2][1]
7 0 1 3 c[0][1] += a[0][3] * b[3][1]

Key:
Grey = accessed
Dark grey = currently accessing
Red border = in cache



c a b

= x

iter i j k             operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 0 2 c[0][0] += a[0][2] * b[2][0]
3 0 0 3 c[0][0] += a[0][3] * b[3][0]
4 0 1 0 c[0][1] += a[0][0] * b[0][1]
5 0 1 1 c[0][1] += a[0][1] * b[1][1]
6 0 1 2 c[0][1] += a[0][2] * b[2][1]
7 0 1 3 c[0][1] += a[0][3] * b[3][1]

What is the miss rate of a?

Key:
Grey = accessed
Dark grey = currently accessing
Red border = in cache



c a b

= x

iter i j k             operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 0 2 c[0][0] += a[0][2] * b[2][0]
3 0 0 3 c[0][0] += a[0][3] * b[3][0]
4 0 1 0 c[0][1] += a[0][0] * b[0][1]
5 0 1 1 c[0][1] += a[0][1] * b[1][1]
6 0 1 2 c[0][1] += a[0][2] * b[2][1]
7 0 1 3 c[0][1] += a[0][3] * b[3][1]

What is the miss rate of a?

What is the miss rate of b?

Key:
Grey = accessed
Dark grey = currently accessing
Red border = in cache



Example: Matrix Multiplication (blocking)
/* multiply 4x4 matrices using blocks of size 2 */
void mm_blocking(int a[4][4], int b[4][4], int c[4][4]) {
    int i, j, k;
    int i_c, j_c, k_c;
    int B = 2;
    // control loops
    for (i_c = 0; i_c < 4; i_c += B)
        for (j_c = 0; j_c < 4; j_c += B)
            for (k_c = 0; k_c < 4; k_c += B)
                // block multiplications
                for (i = i_c; i < i_c + B; i++)
                    for (j = j_c; j < j_c + B; j++)
                        for (k = k_c; k < k_c + B; k++)
                            c[i][j] += a[i][k] * b[k][j];

Let’s step through this to see what’s actually happening



Example: Matrix Multiplication (blocking)

■ Assume a tiny cache with 4 lines of 8 bytes (2 ints)
■ S = 1, E = 4, B = 8

■ Let’s see what happens if we now use blocking



c a b

= x

iter i j k              operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]

Key:
Grey = accessed
Dark grey = currently accessing
Red border = in cache



c a b

= x

iter i j k              operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]

Key:
Grey = accessed
Dark grey = currently accessing
Red border = in cache



c a b

= x

iter i j k              operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 1 0 c[0][1] += a[0][0] * b[0][1]

Key:
Grey = accessed
Dark grey = currently accessing
Red border = in cache



c a b

= x

iter i j k              operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 1 0 c[0][1] += a[0][0] * b[0][1]
3 0 1 1 c[0][1] += a[0][1] * b[1][1]

Key:
Grey = accessed
Dark grey = currently accessing
Red border = in cache



c a b

= x

iter i j k              operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 1 0 c[0][1] += a[0][0] * b[0][1]
3 0 1 1 c[0][1] += a[0][1] * b[1][1]
4 1 0 0 c[1][0] += a[1][0] * b[0][0]

Key:
Grey = accessed
Dark grey = currently accessing
Red border = in cache



c a b

= x

iter i j k              operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 1 0 c[0][1] += a[0][0] * b[0][1]
3 0 1 1 c[0][1] += a[0][1] * b[1][1]
4 1 0 0 c[1][0] += a[1][0] * b[0][0]
5 1 0 1 c[1][0] += a[1][1] * b[1][0]

Key:
Grey = accessed
Dark grey = currently accessing
Red border = in cache



c a b

= x

iter i j k              operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 1 0 c[0][1] += a[0][0] * b[0][1]
3 0 1 1 c[0][1] += a[0][1] * b[1][1]
4 1 0 0 c[1][0] += a[1][0] * b[0][0]
5 1 0 1 c[1][0] += a[1][1] * b[1][0]
6 1 1 0 c[1][1] += a[1][0] * b[0][1]

Key:
Grey = accessed
Dark grey = currently accessing
Red border = in cache



c a b

= x

iter i j k              operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 1 0 c[0][1] += a[0][0] * b[0][1]
3 0 1 1 c[0][1] += a[0][1] * b[1][1]
4 1 0 0 c[1][0] += a[1][0] * b[0][0]
5 1 0 1 c[1][0] += a[1][1] * b[1][0]
6 1 1 0 c[1][1] += a[1][0] * b[0][1]
7 1 1 1 c[1][1] += a[1][1] * b[1][1]

Key:
Grey = accessed
Dark grey = currently accessing
Red border = in cache



c a b

= x

iter i j k              operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 1 0 c[0][1] += a[0][0] * b[0][1]
3 0 1 1 c[0][1] += a[0][1] * b[1][1]
4 1 0 0 c[1][0] += a[1][0] * b[0][0]
5 1 0 1 c[1][0] += a[1][1] * b[1][0]
6 1 1 0 c[1][1] += a[1][0] * b[0][1]
7 1 1 1 c[1][1] += a[1][1] * b[1][1]

iter i j k              operation
8 0 0 2 c[0][0] += a[0][2] * b[2][0]



c a b

= x

iter i j k              operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 1 0 c[0][1] += a[0][0] * b[0][1]
3 0 1 1 c[0][1] += a[0][1] * b[1][1]
4 1 0 0 c[1][0] += a[1][0] * b[0][0]
5 1 0 1 c[1][0] += a[1][1] * b[1][0]
6 1 1 0 c[1][1] += a[1][0] * b[0][1]
7 1 1 1 c[1][1] += a[1][1] * b[1][1]

iter i j k              operation
8 0 0 2 c[0][0] += a[0][2] * b[2][0]
9 0 0 3 c[0][0] += a[0][3] * b[3][0]



c a b

= x

iter i j k              operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 1 0 c[0][1] += a[0][0] * b[0][1]
3 0 1 1 c[0][1] += a[0][1] * b[1][1]
4 1 0 0 c[1][0] += a[1][0] * b[0][0]
5 1 0 1 c[1][0] += a[1][1] * b[1][0]
6 1 1 0 c[1][1] += a[1][0] * b[0][1]
7 1 1 1 c[1][1] += a[1][1] * b[1][1]

iter i j k              operation
8 0 0 2 c[0][0] += a[0][2] * b[2][0]
9 0 0 3 c[0][0] += a[0][3] * b[3][0]
10 0 1 2 c[0][1] += a[0][2] * b[2][1]



c a b

= x

iter i j k              operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 1 0 c[0][1] += a[0][0] * b[0][1]
3 0 1 1 c[0][1] += a[0][1] * b[1][1]
4 1 0 0 c[1][0] += a[1][0] * b[0][0]
5 1 0 1 c[1][0] += a[1][1] * b[1][0]
6 1 1 0 c[1][1] += a[1][0] * b[0][1]
7 1 1 1 c[1][1] += a[1][1] * b[1][1]

iter i j k              operation
8 0 0 2 c[0][0] += a[0][2] * b[2][0]
9 0 0 3 c[0][0] += a[0][3] * b[3][0]
10 0 1 2 c[0][1] += a[0][2] * b[2][1]
11 0 1 3 c[0][1] += a[0][3] * b[3][1]



c a b

= x

iter i j k              operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 1 0 c[0][1] += a[0][0] * b[0][1]
3 0 1 1 c[0][1] += a[0][1] * b[1][1]
4 1 0 0 c[1][0] += a[1][0] * b[0][0]
5 1 0 1 c[1][0] += a[1][1] * b[1][0]
6 1 1 0 c[1][1] += a[1][0] * b[0][1]
7 1 1 1 c[1][1] += a[1][1] * b[1][1]

iter i j k              operation
8 0 0 2 c[0][0] += a[0][2] * b[2][0]
9 0 0 3 c[0][0] += a[0][3] * b[3][0]
10 0 1 2 c[0][1] += a[0][2] * b[2][1]
11 0 1 3 c[0][1] += a[0][3] * b[3][1]
12 1 0 2 c[1][0] += a[1][2] * b[2][0]



c a b

= x

iter i j k              operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 1 0 c[0][1] += a[0][0] * b[0][1]
3 0 1 1 c[0][1] += a[0][1] * b[1][1]
4 1 0 0 c[1][0] += a[1][0] * b[0][0]
5 1 0 1 c[1][0] += a[1][1] * b[1][0]
6 1 1 0 c[1][1] += a[1][0] * b[0][1]
7 1 1 1 c[1][1] += a[1][1] * b[1][1]

iter i j k              operation
8 0 0 2 c[0][0] += a[0][2] * b[2][0]
9 0 0 3 c[0][0] += a[0][3] * b[3][0]
10 0 1 2 c[0][1] += a[0][2] * b[2][1]
11 0 1 3 c[0][1] += a[0][3] * b[3][1]
12 1 0 2 c[1][0] += a[1][2] * b[2][0]
13 1 0 3 c[1][0] += a[1][3] * b[3][0]



c a b

= x

iter i j k              operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 1 0 c[0][1] += a[0][0] * b[0][1]
3 0 1 1 c[0][1] += a[0][1] * b[1][1]
4 1 0 0 c[1][0] += a[1][0] * b[0][0]
5 1 0 1 c[1][0] += a[1][1] * b[1][0]
6 1 1 0 c[1][1] += a[1][0] * b[0][1]
7 1 1 1 c[1][1] += a[1][1] * b[1][1]

iter i j k              operation
8 0 0 2 c[0][0] += a[0][2] * b[2][0]
9 0 0 3 c[0][0] += a[0][3] * b[3][0]
10 0 1 2 c[0][1] += a[0][2] * b[2][1]
11 0 1 3 c[0][1] += a[0][3] * b[3][1]
12 1 0 2 c[1][0] += a[1][2] * b[2][0]
13 1 0 3 c[1][0] += a[1][3] * b[3][0]
14 1 1 2 c[1][1] += a[1][2] * b[2][1]



c a b

= x

iter i j k              operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 1 0 c[0][1] += a[0][0] * b[0][1]
3 0 1 1 c[0][1] += a[0][1] * b[1][1]
4 1 0 0 c[1][0] += a[1][0] * b[0][0]
5 1 0 1 c[1][0] += a[1][1] * b[1][0]
6 1 1 0 c[1][1] += a[1][0] * b[0][1]
7 1 1 1 c[1][1] += a[1][1] * b[1][1]

iter i j k              operation
8 0 0 2 c[0][0] += a[0][2] * b[2][0]
9 0 0 3 c[0][0] += a[0][3] * b[3][0]
10 0 1 2 c[0][1] += a[0][2] * b[2][1]
11 0 1 3 c[0][1] += a[0][3] * b[3][1]
12 1 0 2 c[1][0] += a[1][2] * b[2][0]
13 1 0 3 c[1][0] += a[1][3] * b[3][0]
14 1 1 2 c[1][1] += a[1][2] * b[2][1]
15 1 1 3 c[1][1] += a[1][3] * b[3][1]



c a b

= x

iter i j k              operation
0 0 0 0 c[0][0] += a[0][0] * b[0][0]
1 0 0 1 c[0][0] += a[0][1] * b[1][0]
2 0 1 0 c[0][1] += a[0][0] * b[0][1]
3 0 1 1 c[0][1] += a[0][1] * b[1][1]
4 1 0 0 c[1][0] += a[1][0] * b[0][0]
5 1 0 1 c[1][0] += a[1][1] * b[1][0]
6 1 1 0 c[1][1] += a[1][0] * b[0][1]
7 1 1 1 c[1][1] += a[1][1] * b[1][1]

iter i j k              operation
8 0 0 2 c[0][0] += a[0][2] * b[2][0]
9 0 0 3 c[0][0] += a[0][3] * b[3][0]
10 0 1 2 c[0][1] += a[0][2] * b[2][1]
11 0 1 3 c[0][1] += a[0][3] * b[3][1]
12 1 0 2 c[1][0] += a[1][2] * b[2][0]
13 1 0 3 c[1][0] += a[1][3] * b[3][0]
14 1 1 2 c[1][1] += a[1][2] * b[2][1]
15 1 1 3 c[1][1] += a[1][3] * b[3][1]

What is the miss rate of a?

What is the miss rate of b?



Introduction to Git
Version control is your friend



What is Git?

• Most widely used version control system out there
• Version control:

• Help track changes to your source code over time
• Help teams manage changes on shared code



Git Commands

• Clone: git clone <clone-repository-url>

• Add: git add . or git add <file-name>

• Push / Pull: git push / git pull

• Commit: git commit -m “your-commit-message”

• Good commit messages are key!

• Bad:“commit”, “change”, “fixed”

• Good: “Fixed buffer overflow potential in AttackLab”  



If you get stuck…

■ Reread the writeup
■ Look at CS:APP Chapter 6
■ Review lecture notes (http://cs.cmu.edu/~213)
■ Come to Office Hours (Sunday to Friday, 6:00-10:00 PM 

Locations on Piazza)
■ Post private question on Piazza
■ man malloc, man valgrind, man gdb

http://cs.cmu.edu/~213


Appendix



Practice Problems



Class Question / Discussions
■ We’ll work through a series of questions

■ Write down your answer for each question

■ You can discuss with your classmates



void who(int *arr, int size) {
  for (int i = 0; i < size-1; ++i)
    arr[i] = arr[i+1];
}

• The following function exhibits which type of 
locality? Consider only array accesses.

What Type of Locality?

52

A. Spatial

B. Temporal

C. Both A and B

D. Neither A nor B



void who(int *arr, int size) {
  for (int i = 0; i < size-1; ++i)
    arr[i] = arr[i+1];
}

• The following function exhibits which type of 
locality? Consider only array accesses.

What Type of Locality?

53

A. Spatial

B. Temporal

C. Both A and B

D. Neither A nor B



void coo(int *arr, int size) {
  for (int i = size-2; i >= 0; --i)
    arr[i] = arr[i+1];
}

• The following function exhibits which type of 
locality? Consider only array accesses.

What Type of Locality?

54

A. Spatial

B. Temporal

C. Both A and B

D. Neither A nor B



void coo(int *arr, int size) {
  for (int i = size-2; i >= 0; --i)
    arr[i] = arr[i+1];
}

• The following function exhibits which type of 
locality? Consider only array accesses.

What Type of Locality?

55

A. Spatial

B. Temporal

C. Both A and B

D. Neither A nor B



• Given the following address partition, how many 
int values will fit in a single data block?

Calculating Cache Parameters

18 
bits

10 
bits

4 
bits

031

Tag Set 
index

Block 
offset

Address:

# of int in block

A. 0

B. 1

C. 2

D. 4

E. Unknown: We 
need more info



• Given the following address partition, how many 
int values will fit in a single data block?

Calculating Cache Parameters

18 
bits

10 
bits

4 
bits

031

Tag Set 
index

Block 
offset

Address:

# of int in block

A. 0

B. 1

C. 2

D. 4

E. Unknown: We 
need more info



• Assuming a 32-bit address (i.e. m=32), how many bits 
are used for tag (t), set index (s), and block offset (b).

Direct-Mapped Cache Example

Valid

Valid
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Set 1:

E = 1  lines per 
setCache block

Cache block

8  bytes
per data block
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Tag
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Cache block

Cache block

t s b
A. 1 2 3
B. 27 2 3
C. 25 4 3
D. 1 4 8
E. 20 4 8

t 
bits

s bits b 
bits

031

Tag Set index Block 
offset



• Assuming a 32-bit address (i.e. m=32), how many bits 
are used for tag (t), set index (s), and block offset (b).

Direct-Mapped Cache Example
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Tag
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Set 1:
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Cache block

8  bytes
per data block
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Set 3:

Cache block

Cache block

t s b
A. 1 2 3
B. 27 2 3
C. 25 4 3
D. 1 4 8
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Tag Set index Block 
offset



Which Set Is it?
• Which set is the address 0xFA1C located in?

Valid

Valid

Tag

Tag

Set 0:

Set 1:

E = 1  lines per 
setCache block

Cache block

8  bytes
per data block

Valid

Valid

Tag

Tag

Set 2:

Set 3:

Cache block

Cache block

27 
bits

2 
bits

3 
bits

031

Tag Set index Block 
offset

Set # for 0xFA1C

A. 0

B. 1

C. 2

D. 3

E. More than one 
of the above



Which Set Is it?
• Which set is the address 0xFA1C located in?

Valid

Valid

Tag

Tag

Set 0:

Set 1:

E = 1  lines per 
setCache block

Cache block

8  bytes
per data block

Valid

Valid

Tag

Tag

Set 2:

Set 3:

Cache block

Cache block

27 
bits

2 
bits

3 
bits

031

Tag Set index Block 
offset

Set # for 0xFA1C

A. 0

B. 1

C. 2

D. 3

E. More than one 
of the above



• What range of addresses will be in the same block as 
address 0xFA1C?

Cache Block Range

Valid

Valid

Tag

Tag

Set 0:

Set 1:

Cache block

Cache block

8  bytes
per data block

Valid

Valid

Tag

Tag

Set 2:

Set 3:

Cache block

Cache block

27 
bits

2 
bits

3 
bits

031

Tag Set index Block 
offset

Addr. Range

A. 0xFA1C

B. 0xFA1C – 0xFA23

C. 0xFA1C – 0xFA1F

D. 0xFA18 – 0xFA1F

E. It depends on 
the access size 
(byte, word, etc)



• What range of addresses will be in the same block as 
address 0xFA1C?

Cache Block Range

Valid

Valid

Tag

Tag

Set 0:

Set 1:

Cache block

Cache block

8  bytes
per data block

Valid

Valid

Tag

Tag

Set 2:

Set 3:

Cache block

Cache block

27 
bits

2 
bits

3 
bits

031

Tag Set index Block 
offset

Addr. Range

A. 0xFA1C

B. 0xFA1C – 0xFA23

C. 0xFA1C – 0xFA1F

D. 0xFA18 – 0xFA1F

E. It depends on 
the access size 
(byte, word, etc)



int foo(int* a, int N)
{
    int i;
    int sum = 0;
    for(i = 0; i < N; i++)
    {
        sum += a[i];
    }
    return sum;
}

Cache Misses

Accessed 
Bytes

A 4

B 16

C 64

D 256

If N = 16, how many bytes does the loop access of a?



int foo(int* a, int N)
{
    int i;
    int sum = 0;
    for(i = 0; i < N; i++)
    {
        sum += a[i];
    }
    return sum;
}

Cache Misses

Accessed 
Bytes

A 4

B 16

C 64

D 256

If N = 16, how many bytes does the loop access of a?



Cache Misses

Miss Rate

A 0 %

B 25 %

C 33 %

D 50 %

E 66 %

void muchAccessSoCacheWow(int *bigArr){  
    // 48 KB array of ints  
    int length = (48*1024)/sizeof(int);

    int access = 0;

    // traverse array with stride 8

    // pass 1
    for(int i = 0; i < length; i+=8){
        access = bigArr[i];
    }

    // pass 2
    for(int i = 0; i < length; i+=8){
        access = bigArr[i];
    }
}

Consider a 32 KB cache in a 32 bit address space. The cache is 8-way associative 
and has 64 bytes per block. A LRU (Least Recently Used) replacement policy is used.
What is the miss rate on ‘pass 1’?



Cache Misses

Miss Rate

A 0 %

B 25 %

C 33 %

D 50 %

E 66 %

void muchAccessSoCacheWow(int *bigArr){  
    // 48 KB array of ints  
    int length = (48*1024)/sizeof(int);

    int access = 0;

    // traverse array with stride 8

    // pass 1
    for(int i = 0; i < length; i+=8){
        access = bigArr[i];
    }

    // pass 2
    for(int i = 0; i < length; i+=8){
        access = bigArr[i];
    }
}

Consider a 32 KB cache in a 32 bit address space. The cache is 8-way associative 
and has 64 bytes per block. A LRU (Least Recently Used) replacement policy is used.
What is the miss rate on ‘pass 1’?



Cache Misses

Miss Rate

A 0 %

B 25 %

C 33 %

D 50 %

E 66 %

void muchAccessSoCacheWow(int *bigArr){  
    // 48 KB array of ints  
    int length = (48*1024)/sizeof(int);

    int access = 0;

    // traverse array with stride 8

    // pass 1
    for(int i = 0; i < length; i+=8){
        access = bigArr[i];
    }

    // pass 2
    for(int i = 0; i < length; i+=8){
        access = bigArr[i];
    }
}

Consider a 32 KB cache in a 32 bit address space. The cache is 8-way associative 
and has 64 bytes per block. A LRU (Least Recently Used) replacement policy is used.
What is the miss rate on ‘pass 2’?



Cache Misses

Miss Rate

A 0 %

B 25 %

C 33 %

D 50 %

E 66 %

void muchAccessSoCacheWow(int *bigArr){  
    // 48 KB array of ints  
    int length = (48*1024)/sizeof(int);

    int access = 0;

    // traverse array with stride 8

    // pass 1
    for(int i = 0; i < length; i+=8){
        access = bigArr[i];
    }

    // pass 2
    for(int i = 0; i < length; i+=8){
        access = bigArr[i];
    }
}

Consider a 32 KB cache in a 32 bit address space. The cache is 8-way associative 
and has 64 bytes per block. A LRU (Least Recently Used) replacement policy is used.
What is the miss rate on ‘pass 2’? 

Detailed explanation in Appendix!



Clang / LLVM

■ Clang is a (gcc equivalent) C compiler
■ Support for code analyses and transformation
■ Compiler will check you variable usage and declarations
■ Compiler will create code recording all memory accesses to a file
■ Useful for Cache Lab Part B (Matrix Transpose)



Appendix: Git Usage

• Commit early and often!
• At minimum at every major milestone
• Commits don’t cost anything!

• Popular stylistic conventions
• Branches: short, descriptive names
• Commits: A single, logical change. Split large changes into multiple 

commits.
• Messages:

• Summary: Descriptive, yet succinct
• Body: More detailed description on what you changed, why you 

changed it, and what side effects it may have



Appendix: Parsing Input with fscanf
• fscanf(FILE *stream, const char *format, …)

• “scanf” but for files

• Arguments
1. A stream pointer, e.g. from fopen()
2. Format string for parsing, e.g “%c %d,%d”
3+. Pointers to variables for parsed data

• Can be pointers to stack variables

• Return Value
• Success: # of parsed vars
• Failure: EOF

• man fscanf



Appendix: fscanf() Example
FILE *pFile;
pFile = fopen(“trace.txt”, "r"); // Open file for reading

// TODO: Error check sys call

char access_type;
unsigned long address;
int size;

// Line format is " S 2f,1" or " L 7d0,3"
//      - 1 character, 1 hex value, 1 decimal value
while (fscanf(pFile, " %c %lx, %d", &access_type, &address, &size) > 0) 
{
    // TODO: Do stuff
}

fclose(pFile); // Clean up Resources



Appendix: Discussion Questions

• What did the optimal transversal orders have in common?

• How does the pattern generalize to int[8][8] A and a 
cache that holds 4 lines each of 4 int’s?



Appendix: Blocking Example

• We have a 2D array int[4][4] A;
• Cache is fully associative and can hold two lines
• Each line can hold two int values

Consider the following:

• What is the best miss rate for traversing A once?
• What order does of traversal did you use?

• What other traversal orders can achieve this miss rate?



int foo(int* a, int N)
{
    int i;
    int sum = 0;
    for(i = 0; i < N; i++)
    {
        sum += a[i];
    }
    return sum;
}

Appendix: Cache Misses

Misses

A 0

B 8

C 12

D 14

E 16

If there is a 48KB cache with 8 bytes per block and 3 cache lines 
per set, how many misses if foo is called twice? N still equals 16.

NOTE: This is a contrived example since the number of cache lines must be a power of 2. 
However, it still demonstrates an important point.



int foo(int* a, int N)
{
    int i;
    int sum = 0;
    for(i = 0; i < N; i++)
    {
        sum += a[i];
    }
    return sum;
}

Appendix: Cache Misses

Misses

A 0

B 8

C 12

D 14

E 16

If there is a 48KB cache with 8 bytes per block and 3 cache lines 
per set, how many misses if foo is called twice? N still equals 16.

NOTE: This is a contrived example since the number of cache lines must be a power of 2. 
However, it still demonstrates an important point.



Appendix: Very Hard Cache Problem

• We will use a direct-mapped cache with 2 sets, which each can 
hold up to 4 int’s.

• How can we copy A into B, shifted over by 1 position?
• The most efficient way? (Use temp!)

A 0 1 2 3 4 5 6 7

B 0 1 2 3 4 5 6 7



Number of misses:

A 0 1 2 3 4 5 6 7

B 0 1 2 3 4 5 6 7

temp 0 1 2 3 4 5 6 7



Number of misses:

A 0 1 2 3 4 5 6 7

B 0 1 2 3 4 5 6 7

temp 0 1 2 3 4 5 6 7

� Could’ve been 16 misses otherwise!
We would save even more if the block size 
were larger, or if temp were already cached



Appendix: 48KB Cache Explained (1)
We access the int array in strides of 8 (note the comment and the i += 8). Each block is 64 bytes, which is enough to hold 16 
ints, so in each block:

| 8 ints = 32B  | 8 ints = 32B  |
+---------------+---------------+
|m| | | | | | | |h| | | | | | | |
+---------------+---------------+
|       16 ints = 64B           

The "m" denotes a miss, and the "h" denotes a hit. This pattern will repeat for the entirety of the array.

We can be sure that the second access is always a hit. This is because the first access will load the entire 64-byte block 
into the cache (since the entire block is always loaded if any of its elements are accessed).

So, the big question is why the first access is always a miss. To answer this, we must understand many things about the cache.

First of all, we know that s, the number of set bits, is 6, which means there are 64 sets. Since each set maps to 64 bytes (as 
there are b = 6 block bits), we know that every 64 * 64 bytes = 4 kilobytes we run out of sets:

   64B     64B             64B      64B
+-------+-------+--...--+--------+-------+--...
| set 0 | set 1 |       | set 63 | set 0 |
+-------+-------+--...--+--------+-------+--...
|        64 * 64B = 4KB          |

Clearly, this pattern will repeat for the entirety of the array.



Appendix: 48KB Cache Explained (2)
However, note that we have E = 8 lines per set. That means that even though the next 4KB map to the same sets (0-63) as the 
first 4KB, they will just be put in another line in the cache, until we run out of lines (i.e., after we've gone through 8 * 
4KB = 32KB of memory). Splitting up the bigArr into 16KB chunks:

    16KB        16KB        16KB
+-----------+-----------+-----------+
| section A | section B | section C |
+-----------+-----------+-----------+
|  |  |  |  |  |  |  |  |  |  |  |  |
              4KB each

We see that section A will take up 16KB = 4 * 4KB; like we said, each of those 4KB chunks will take up 1 line each, so section 
A uses 4 lines per set (and uses all 64 sets).

Similarly, section B also takes up 16KB = 4 * 4KB; again, each of those 4KB chunks will take up 1 line each, so section B also 
uses 4 lines per set (and uses all 64 sets).

Note that as all of this data is being loaded in, our cache is still cold (does not contain any data from those sections), so 
the previous assumption about the first of every other access missing (the "m" above) is still true.

After we read in sections A and B, the cache looks like:
line 0 1 2 3 4 5 6 7
    +-------+-------+
  0 |       |       |
  1 |       |       |
s . .       .       .
e . .   A   .   B   .
t . .       .       .
  62|       |       |
  63|       |       |
    +-------+-------+



Appendix: 48KB Cache Explained (3)
However, once we reach section C, we've run out of lines! So what do we have to do? We have to start evicting lines. And of 
course, the least-recently used lines are the ones used to store the data from A (lines 0-3), since we just loaded in the 
stuff from B. So, first of all, these evictions are causing misses on the first of every other read, so that "m" assumption is 
still true. Second, after we read in the entirety of section C, the cache looks like:

line 0 1 2 3 4 5 6 7
    +-------+-------+
  0 |       |       |
  1 |       |       |
s . .       .       .
e . .   C   .   B   .
t . .       .       .
  62|       |       |
  63|       |       |
    +-------+-------+

Thus, we know now that the miss rate for the first pass is 50%.



Appendix: 48KB Cache Explained (4)
If we now consider the second pass, we're starting over at the beginning of bigArr (i.e., now we're reading section A). 
However, there's a problem - section A isn't in the cache anymore! So we get a bunch of evictions (the "m" assumption is still 
true, of course, since these evictions must also be misses). What are we evicting? The least-recently used lines, which are 
now lines 4-7 (holding data from B). Thus, the cache after reading section A looks like:

line 0 1 2 3 4 5 6 7
    +-------+-------+
  0 |       |       |
  1 |       |       |
s . .       .       .
e . .   C   .   A   .
t . .       .       .
  62|       |       |
  63|       |       |
    +-------+-------+

Then, we access B. But it isn't in the cache either! So we evict the least-recently-used lines (in this case, the lines that 
were holding section C, 0-3) (the "m" assumption still holds); afterwards, the cache looks like:

line 0 1 2 3 4 5 6 7
    +-------+-------+
  0 |       |       |
  1 |       |       |
s . .       .       .
e . .   B   .   A   .
t . .       .       .
  62|       |       |
  63|       |       |
    +-------+-------+



Appendix: 48KB Cache Explained (5)
And finally, we access section C. But of course, its data isn't in the cache at all, so we again evict the least-recently used 
lines (in this case, section A's lines, 4-7) (again, "m" assumption holds):

line 0 1 2 3 4 5 6 7
    +-------+-------+
  0 |       |       |
  1 |       |       |
s . .       .       .
e . .   B   .   C   .
t . .       .       .
  62|       |       |
  63|       |       |
    +-------+-------+

And so the miss rate is 50% for the second pass as well.

Thank you to Stan Zhang for coming up with such a detailed explanation!



Appendix: $ man 3 getopt
■ int getopt(int argc, char * const argv[], const char *optstring);

■ int argc →  argument count passed to main() 
■ Note: includes executable, so ./a.out 1 2 has argc=3

■ char * const argv is argument string array passed to main

■ const char *optstring → string with command line arguments
■ Characters followed by colon require arguments

• Find argument text in char *optarg
■ getopt can’t find argument or finds illegal argument sets optarg to “?”
■ Example: “abc:d:”

• a and b are boolean arguments (not followed by text)
• c and d are followed by text (found in char *optarg)

■ Returns: getopt returns -1 when done parsing


