Carnegie Mellon

Thread-Level Parallelism

15-213/14-513/15-513: Introduction to Computer Systems
25t Lecture, November 30, 2021

Logistics

m Proxy final due Thursday 12/2 by 11:59pm, one grace day

m Final Exam full details soon
= Review session: Saturday 12/4 12-3pm ET (tentative)
" Final will be on Thursday 12/9
= Pittsburgh at 8:30-11:30 am ET in various rooms
= SV at 8-11 am PT in Room 118
" Exam is on Gradescope. Bring a laptop to do the exam.

m Next lecture Wednesday 12/3: The Future of Computing
= Exponential Trends
" Impact on the labor market
= Technological solutions towards meaningful lives

Carnegie Mellon

Today

m Parallel Computing Hardware
= Multicore
= Multiple separate processors on single chip
" Hyperthreading
= Efficient execution of multiple threads on single core

m Consistency Models

= What happens when multiple threads are reading & writing shared state

m Thread-Level Parallelism
= Splitting program into independent tasks
= Example: Parallel summation
= Examine some performance artifacts
= Divide-and conquer parallelism
= Example: Parallel quicksort

Carnegie Mellon

IntegratedMemory Cantrallen -3 Ch DDR3

Typical Multicore Processor

L3 unified cache
(shared by all cores)

CoreD Core1l Core2 Core3
core0 Coren1
i Regs Regs E
i L1 L1 L1 L1 E
: d-cache| | i-cache d-cache| | i-cache :
i i
i L2 unified cache L2 unified cache i
! 1
: |
! :

Main memory

m Multiple processors operating with coherent view of memory

Carnegie Mellon

Out-of-Order Processor Structure

Instruction Control

Instruction
Cache

Registers Op. Queue

T PC

o
Functional Units

m Instruction control dynamically converts program into stream
of operations

m Operations mapped onto functional units to execute in parallel

Carnegie Mellon

Hyperthreading Implementation

Instruction Control
Instruction
Reg A Op. Queue A l Cache
A
Reg B Op. Queue B
T PCA PCB
\ 4 1 VY V

Functional Units

m Replicate instruction control to process K instruction streams

m K copies of all registers
m Share functional units

Carnegie Mellon

Benchmark Machine

m Get data about machine from /proc/cpuinfo

m Shark Machines
" Intel Xeon E5520 @ 2.27 GHz
® Nehalem, ca. 2010
= 8 Cores
® Each can do 2x hyperthreading

Carnegie Mellon

Exploiting parallel execution

m So far, we’ve used threads to deal with 1/O delays

= e.g., one thread per client to prevent one from delaying another
m Multi-core CPUs offer another opportunity

= Spread work over threads executing in parallel on N cores

"= Happens automatically, if many independent tasks
= e.g., running many applications or serving many clients
= Can also write code to make one big task go faster

= by organizing it as multiple parallel sub-tasks
m Shark machines can execute 16 threads at once

= 8 cores, each with 2-way hyperthreading
" Theoretical speedup of 16X

= never achieved in our benchmarks

Memory Consistency

inta=1;

int b =100;
Threadl: Thread2:
Wa: a=2; Wb: b = 200;
Rb: print(b); | | Ra: print(a);

m What are the possible values printed?

" Depends on memory consistency model

Carnegie Mellon

Thread consistency
constraints

Wa——— Rb

Wb—— Ra

= Abstract model of how hardware handles concurrent accesses

Carnegie Mellon

Non-Coherent Cache Scenario

m Write-back caches, without
coordination between them

Thread1 Cache
a: 2 b:100

™~

a:1

inta=1;

int b = 100;
Threadl: Thread2:
Wa: a=2; Whb: b = 200;
Rb: print(b); | | Ra: print(a);

Thread2 Cache

a:1 b:200

7

in Me

b:100

print 1

print 100

At later points, a:2 and b:200
are written back to main memory

10

Carnegie Mellon

Snoopy Caches ——

int b =100;

m Tag each cache block with state /\
Invalid Cannot use value Thread1: Thread2:
Shared Readable copy Wa: a=2; Whb: b = 200;
Modified Writeable copy Rb: print(b); | | Ra: print(a);

Thread1 Cache Thread2 Cache
M| a:2
M|b:200
Main Memory
a:1 b:100

1"

Snoopy Caches

Tag each cache block with state
Invalid Cannot use value
Shared Readable copy
Modified Writeable copy

Carnegie Mellon

inta=1;

int b =100;
Threadl: Thread2:
Wa: a=2; Whb: b = 200;
Rb: print(b); | | Ra: print(a);

Thread1 Cache Thread2 Cache
S| a:2 S| a:2
S | b:200 s 1:200
\mnnmry/
a:1 b:100

print 2
print 200

m When cache sees request for
one of its M-tagged blocks

m Supply value from cache
(Note: value in memory
may be stale)

m Settagto$S

12

Memory Consistency

inta=1;

int b =100;
Threadl: Thread2:
Wa: a=2; Wb: b = 200;
Rb: print(b); | | Ra: print(a);

m What are the possible values printed?

" Depends on memory consistency model

Carnegie Mellon

Thread consistency
constraints

Wa——— Rb

Wb—— Ra

= Abstract model of how hardware handles concurrent accesses

13

Carnegie Mellon

Memory Consistency

inta=1;

int b = 100; Thread consistency

/\ constraints

Wa———— Rb
Thread1l: Thread2:
Wa: a=2; Wb: b = 200; Wb R
Rb: print(b); | | Ra: print(a); a

m What are the possible values printed?

" Depends on memory consistency model

= Abstract model of how hardware handles concurrent accesses
m Sequential consistency

= As if only one operation at a time, in an order consistent with the
order of operations within each thread

= Thus, overall effect consistent with each individual thread but
otherwise allows an arbitrary interleaving

14

Carnegie Mellon

Sequential Consistency Example

- Y Thread consistency
!n: Z: 12)0 constraints
in —/I\ Wa———— Rb
Thread1l: Thread2: Wb Ra
Wa: a=2; Whb: b = 200;
Rb: print(b); | | Ra: print(a); Rb Wb Ra 100, 2
Wa < Rb ———Ra 200,2
Wb <
Ra —————Rb 2,200
Ra ———— Wa ———Rb 1,200
Wb < Ra ———Rb 2,200

Wa <
Rb ————Ra 200, 2

m Impossible outputs
= 100,1and 1, 100
" Would require reaching both Ra and Rb before either Wa or Wb

15

Carnegie Mellon

Non-Coherent Cache Scenario

inta=1;
m Write-back caches, without int b = 100;
coordination between them /\
Thread1l: Thread2:
Wa: a=2; Whb: b = 200;
Rb: print(b); | | Ra: print(a);

Thread1 Cache Thread2 Cache
a: 2 b:100 a:1 b:200 print 1

—. : print 100

In Me . .
yA‘“ﬂ Sequentially consistent? No!

a:1 b:100

16

Carnegie Mellon

Non-Sequentially Consistent Scenario

m Coherent caches, but thread
consistency constraints violated
due to operation reordering

inta=1;

int b = 100;
Threadl: Thread2:
Wa: a=2; Whb: b = 200; 4
Rb: print(b); | | Ra: print(a); 1

a:2 b:200
Threadl Cache Thread2 Cache
b:100 a:1
Maih MemmqQry
a:1 b:100

print 1

print 100

m Architecture lets reads finish before writes because single thread

accesses different memory locations

17

Carnegie Mellon

Non-Sequentially Consistent Scenario

inta=1;
int b = 100;
Threadl Write Thread2 Write
Buffer —2 Buffer o /\
| ' I ' | Thread1: Thread2:
Threadl Cache Thread2 Cache | 3 |[Wa:a=2; Wb: b =200; | 4
2 | Rb: print(b); | | Ra: print(a); 1

m Why Reordered? Writes
take long time. Buffer
write, let read go ahead.
Instruction-level parallelism

m Fix;: Add SFENCE instructions between Wa & Rb and Wb & Ra

18

Carnegie Mellon

Memory Models

m Sequentially Consistent:

= Each thread executes in proper order, any interleaving

m To ensure, requires
" Proper cache/memory behavior
" Proper intra-thread ordering constraints

m Thread ordering constraints

® Use synchronization to ensure the program is free of data races

19

Carnegie Mellon

Today

m Thread-Level Parallelism
= Splitting program into independent tasks
= Example: Parallel summation
= Examine some performance artifacts
= Divide-and conquer parallelism
= Example: Parallel quicksort

20

Carnegie Mellon

Summation Example

m Sum numbersO, ..., N-1
= Should add up to (N-1)*N/2

m Partition into K ranges

- |_N/KJ values each
= Each of the t threads processes 1 range

= Accumulate leftover values serially
m Method #1: All threads update single global variable

= 1A: No synchronization
= 1B: Synchronize with pthread semaphore

= 1C: Synchronize with pthread mutex
= “Binary” semaphore. Only values 0 & 1

21

Accumulating in Single Global Variable:

Declarations

typedef unsigned long data t;
/* Single accumulator */
volatile data t global sum;

22

Carnegie Mellon

Accumulating in Single Global Variable:
Declarations

typedef unsigned long data t;
/* Single accumulator */
volatile data t global sum;

/* Mutex & semaphore for global sum */
sem t semaphore;
pthread mutex t mutex;

23

Accumulating in Single Global Variable:

Declarations

typedef unsigned long data t;
/* Single accumulator */
volatile data t global sum;

/* Mutex & semaphore for global sum */
sem t semaphore;
pthread mutex t mutex;

/* Number of elements summed by each thread */
size_ t nelems per thread;

/* Keep track of thread IDs */
pthread t tid[MAXTHREADS] ;

/* Identify each thread */
int myid[MAXTHREADS] ;

24

Accumulating in Single Global Variable:

Operation

/* Set global value */
global sum = 0;

/* Create threads and wait
for (i 0; i < nthreads;
myid[i]

}
for (i 0; 1 < nthreads; i++)
Pthread join(tid[i], NULL) ;

result = global sum;

/* Add leftover elements */
for (e
result += e;

nelems per thread = nelems / nthreads;

Pthread create(&tid[i], NULL, thread fun, &myid[i]);

nthreads * nelems per thread; e < nelems; e++)

Thread ID Thread routine

them to finish */

Thread arguments
(void *p)

25

Carnegie Mellon

Thread Function: No Synchronization

void *sum race (void *vargp)

{
int myid = *((int *)vargp):;
size t start = myid * nelems per thread;
size t end = start + nelems per thread;
size_t i;

for (1 = start; i < end; i++) {
global sum += i;

}

return NULL;

26

Carnegie Mellon

Unsynchronized Performance

Parallel Sums #1

A\
N\

\x*_‘_._“—* —4—Race
1

0.5

Elapsed Seconds

1 2 3 4 5 6 7 &8 9 10 11 12 13 14 15 16

Threads

m N=230
m Best speedup = 2.86X
m Gets wrong answer when > 1 thread! Why?

27

Carnegie Mellon

Thread Function: Semaphore / Mutex

Semaphore

void *sum sem(void *vargp)

{
int myid = *((int *)vargp):;
size t start = myid * nelems per thread;
size t end = start + nelems per thread;
size t i;

for (i = start; i < end; i++) {
sem wait (&semaphore) ;
global sum += i;

sem post (&semaphore) ;

}
return NULL;

Mutex
pthread mutex lock (&mutex) ;
global sum += i;

pthread mutex unlock (&mutex) ;

28

Carnegie Mellon

Semaphore / Mutex Performance

Parallel Sums #2

/’*‘v\/\/ Vo

—fl—Semaphore
200 / Mutex
100 [

1 2 3 4 5 6 7 & 9 1011 12 13 14 15 16

700

600

500

I
(an]
(o=]

Elapsed Seconds
L
o
(]

E

Threads

What is main reason for

m Terrible Performance
poor performance?

= 2.5seconds = ~10 minutes
m Mutex 3X faster than semaphore
m Clearly, neither is successful N

Carnegie Mellon

Separate Accumulation

m Method #2: Each thread accumulates into separate variable
= 2A: Accumulate in contiguous array elements
= 2B: Accumulate in spaced-apart array elements
= 2C: Accumulate in registers

/* Partial sum computed by each thread */
data t psum[MAXTHREADS*MAXSPACING] ;

/* Spacing between accumulators */
size_t spacing = 1;

30

Carnegie Mellon

Separate Accumulation: Operation

nelems per thread = nelems / nthreads;

/* Create threads and wait for them to finish */
for (1 = 0; i < nthreads; i++) {
myid[i] = i,
psum[i*spacing] = O0;
Pthread create(&tid[i], NULL, thread fun, &myid[i]);
}
for (1 = 0; i < nthreads; i++)
Pthread join(tid[i], NULL) ;

result = 0;

/* Add up the partial sums computed by each thread */
for (1 = 0; i < nthreads; i++)
result += psum[i*spacing]

/* Add leftover elements */
for (e = nthreads * nelems per thread; e < nelems; e++)
result += e;

3

Carnegie Mellon

Thread Function: Memory Accumulation

Where is the mutex?

void *sum_global(void *vargp)

{
int myid = *((int *)vargp):;
size t start = myid * nelems per thread;
size t end = start + nelems per thread;
size_t i;

size t index = myid*spacing;

psum[index] = 0;

for (i = start; 1 < end; i++) {
psum[index] += 1i;

}

return NULL;

32

Carnegie Mellon

Memory Accumulation Performance

Parallel Sums #3

Elapsed Seconds

= L
[un a8 w
7 y

== Race

Adjacent memory acc

=== Spaced memory acc

o
wn

M—&—o—/

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

an]

Threads

m Clear threading advantage
= Adjacent speedup: 5 X
= Spaced-apart speedup: 13.3 X (Only observed speedup > 8)

m Why does spacing the accumulators apart matter?

33

Carnegie Mellon

False Sharing

psum

Y Y

Cache Block m Cache Block m+1

m Coherence maintained on cache blocks

m To update psumli], thread i must have exclusive access

" Threads sharing common cache block will keep fighting each other
for access to block

34

Carnegie Mellon

False Sharing Performance

False Sharing Effects

e 516

" Best spaced-apart performance 2.8 X better than best adjacent

m Demonstrates cache block size = 64

= 8-byte values
" No benefit increasing spacing beyond 8

35

Carnegie Mellon

Thread Function: Register Accumulation

void *sum local (void *vargp)
{
int myid = *((int *)vargp):;
size t start = myid * nelems per thread;
size t end = start + nelems per thread;
size t i;
size t index = myid*spacing;
data t sum = 0;
for (i = start; 1 < end; i++) {
sum += 1i;
}
psum[index] = sum;
return NULL;

36

Carnegie Mellon

Register Accumulation Performance

Parallel Sums #4

I
wu

P

\\ : —e Race
\\ —fl—Spaced memory acc

D —)
‘\‘1"-"-—.—-.._-__._-_.,. o

1 2 3 4 5 6 7 &8 9 10 11 12 13 14 15 16

=
un

Elapsed Seconds

=

ot
&

o

Threads

m Clear threading advantage
= Speedup=7.5X
m 2X better than fastest memory accumulation

Beware the speedup metric!

37

Carnegie Mellon

Lessons learned

m Sharing memory can be expensive
= Pay attention to true sharing
= Pay attention to false sharing

m Use registers whenever possible
= (Remember cachelab)
= Use local cache whenever possible

m Deal with leftovers

m When examining performance, compare to best possible
sequential implementation

38

Carnegie Mellon

Quiz

m https://canvas.cmu.edu/courses/24383/quizzes/67214

39

https://canvas.cmu.edu/courses/24383/quizzes/67214

Carnegie Mellon

A More Substantial Example: Sort

m Sort set of N random numbers
m Multiple possible algorithms

= Use parallel version of quicksort

m Sequential quicksort of set of values X
" Choose “pivot” p from X
® Rearrange X into
= L:Values<p
= R:Values >p
= Recursively sort Lto get L
= Recursively sort R to get R’
= Returnl':p:R

40

Carnegie Mellon

Sequential Quicksort Visualized

X

L [

4

Carnegie Mellon

Sequential Quicksort Visualized

-’

X
[[
[p3]
s w R
E <~
PHE r

42

Carnegie Mellon

Sequential Quicksort Code

void gsort serial(data t *base, size t nele) {
if (nele <= 1)
return;
if (nele == 2) {
if (base[0] > base[l])
swap (base, base+l) ;
return;

}

/* Partition returns index of pivot */
size t m = partition(base, nele);
if (m > 1)
gsort serial (base, m);
if (nele-1 > m+l)
gsort serial (base+m+l, nele-m-1);

}

m Sort nele elements starting at base
= Recursively sort L or R if has more than one element

43

Carnegie Mellon

Parallel Quicksort

m Parallel quicksort of set of values X
= |f N < Nthresh, do sequential quicksort
= Else

= Choose “pivot” p from X
= Rearrange Xinto
— L: Values <p
— R: Values > p
= Recursively spawn separate threads
— Sort Lto get L
— Sort Rto get R’
= Returnl':p: R’

44

Carnegie Mellon

Parallel Quicksort Visualized

—
| ><

45

Carnegie Mellon

Thread Structure: Sorting Tasks

Task Threads
m Task: Sort subrange of data

= Specify as:
= base: Starting address

= nele: Number of elements in subrange
m Run as separate thread

46

Small Sort Task Operation

X

A
1
1
1
1
1
1
1
1
1
1
i

Task Threads

m Sort subrange using serial quicksort

47

Carnegie Mellon

Large Sort Task Operation

Partition Subrange -~

Spawn 2 tasks / R

48

Carnegie Mellon

Top-Level Function (Simplified)

void tgsort(data t *base, size t nele) {
init task(nele) ;
global base = base;
global end = global base + nele - 1;
task queue ptr tq = new_task queue();
tgsort helper (base, nele, tq);
join tasks(tq) ;
free task queue(tq);

Sets up data structures

[

m Calls recursive sort routine

m Keeps joining threads until none left
[

Frees data structures

49

Carnegie Mellon

Recursive sort routine (Simplified)

/* Multi-threaded quicksort */
static void tgsort helper (data_t *base, size t nele,
task queue ptr tq) {
if (nele <= nele max sort serial) {
/* Use sequential sort */
gsort serial (base, nele);
return;

}
sort task t *t = new_ task(base, nele, tq);
spawn_ task (tq, sort thread, (void *) t);

m Small partition: Sort serially
m Large partition: Spawn new sort task

50

Carnegie Mellon

Sort task thread (Simplified)

/* Thread routine for many-threaded quicksort */
static void *sort thread(void *vargp) {
sort task t *t = (sort task t *) vargp;
data_t *base = t->base;
size t nele = t->nele;
task queue ptr tg = t->tqg;
free (vargp) ;
size t m = partition(base, nele);
if (m > 1)
tgsort helper (base, m, tq);
if (nele-1 > m+l)
tgsort helper (base+m+l, nele-m-1, tq);
return NULL;

m Get task parameters
m Perform partitioning step
m Call recursive sort routine on each partition (if size of part > 1)

51

Carnegie Mellon

Parallel Quicksort Performance

22.00

Parallel Quicksort

20.00
18.00
16.00
14.00
12.00

e [|apsed seconds
10.00

Multicore limit

= Hyperthread limit

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Serial Fraction

m Serial fraction: Fraction of input at which do serial sort
m Sort 2?7 (134,217,728) random values
m Best speedup = 6.84X

52

Carnegie Mellon

Parallel Quicksort Performance

22.00

Parallel Quicksort

20.00
18.00
16.00
14.00
12.00

e [|apsed seconds
10.00

Multicore limit

= Hyperthread limit

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Serial Fraction

m Good performance over wide range of fraction values
" F too small: Not enough parallelism
" Ftoo large: Thread overhead too high

53

Carnegie Mellon

Amdahl’s Law (Travel Analogy)
Speed-Up

m Flying jet non-stop from PIT -> LHR: 7.5 Hours 1

m Or, old fashioned SST way:
" Flyjet from PIT -> JFK: 1.5 Hours

= Fly SST from JFK -> LHR: 3.5 Hours 5 Hours 1.5x
m Or, Using FTL:

" Fly jet from PIT -> JFK: 1.5 Hours

= Fly FTL from JFK -> LHR: .01 Hours 1.51 Hours ~5x

m Best possible speed up is 5X, even with FTL because have to get
to New York.

54

Carnegie Mellon

Amdahl’s Law

m Overall problem
= T Total sequential time required
" p Fraction of total that can be sped up (0 <p <1)
= k Speedup factor

m Resulting Performance
= T =pT/k+(1-p)T
= Portion which can be sped up runs k times faster
= Portion which cannot be sped up stays the same
" Maximum possible speedup
= k=00

. Too = (1-p)T

55

Carnegie Mellon

Amdahl’s Law (Travel Analogy)
Speed-Up

m Flying jet non-stop from PIT -> LHR: 7.5 Hours 1

m Or, old fashioned SST way:
" Flyjet from PIT -> JFK: 1.5 Hours

= Fly SST from JFK -> LHR: 3.5 Hours 5 Hours 1.5x
m Or, Using FTL:

" Fly jet from PIT -> JFK: 1.5 Hours

= Fly FTL from JFK -> LHR: .01 Hours 1.51 Hours ~5x

m Best possible speed up is 5X, even with FTL because have to get
to New York.
= T=7.5, p=6/7.5=.8, k=00 = T_=(1-p)T=1.5 max speed-up =5x

56

Carnegie Mellon

Amdahl’s Law Example

m Overall problem
"= T=10 Total time required
" p=0.9 Fraction of total which can be sped up
= k=9 Speedup factor

m Resulting Performance
" T,=09*10/9+0.1*10=1.0+1.0=2.0 (a5xspeedup)

m Maximum possible speedup
= T,=0.1*10.0=1.0 (a 10x speedup)
= With infinite parallel computing resources!
" Limit speedup shows algorithmic limitation

57

Carnegie Mellon

Amdahl’s Law & Parallel Quicksort

m Sequential bottleneck
" Top-level partition: No speedup
= Second level: < 2X speedup
= kth Jevel: <2KIX speedup

m Implications
" Good performance for small-scale parallelism

" Would need to parallelize partitioning step to get large-scale
parallelism

= Parallel Sorting by Regular Sampling

— H. Shi & J. Schaeffer, J. Parallel & Distributed Computing,
1992

58

Carnegie Mellon

Lessons Learned

m Must have parallelization strategy

= Partition into K independent parts
" Divide-and-conquer
m Inner loops must be synchronization free

= Synchronization operations very expensive

m Watch out for hardware artifacts
" Need to understand processor & memory structure
= Sharing and false sharing of global data

m Beware of Amdahl’s Law
= Serial code can become bottleneck

m Youcando it!
= Achieving modest levels of parallelism is not difficult
= Set up experimental framework and test multiple strategies

59

