Carnegie Mellon

Synchronization: Basics

15-213/14-513/15-513: Introduction to Computer Systems
23" Lecture, November 18, 2021

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Today

Threads review

[|

m Sharing
m Mutual exclusion
[|

Semaphores

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Traditional View of a Process
m Process = process context + code, data, and stack

______ P_rc_:c_efs_cg r_|t_e)£t_ e ——— - Code, data, and stack

Program context: 5p —s Stack
Data registers
Condition codes Shared libraries
Stack pointer (SP)
Program counter (PC) brk — Run-time heap

VM structures PC — Read-only code/data
Descriptor table

brk pointer

|
I
I
|
I
I
|
I
I
|
Kernel context: I Read/write data
I
|
I
I
|
I
I
|
I
I

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Alternate View of a Process

m Process = thread + (code, data, and kernel context)

Thread (main thread) Code, data, and kernel context

Shared libraries

Stack .
i brk Run-time heap
Thread context: Read/write data

Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

I

I |
| I
| [
I |
- :
I

: Data registers : PC — Read'only COdE/data
| [
I |
| I
| [
I |
| I

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

A Process With Multiple Threads

m Multiple threads can be associated with a process
= Each thread has its own logical control flow
® Each thread shares the same code, data, and kernel context
® Each thread has its own stack for local variables
= but not protected from other threads
= Each thread has its own thread id (TID)

Thread 1 (main thread) Thread 2 (peer thread) Shared code and data
shared libraries
stack 1 stack 2
run-time heap
Thread 1 context: Thread 2 context: read/write data
Data registers Data registers read-only code/data
Condition codes Condition codes o
SP, SP,
PC, PC, Kernel context:
VM structures

Descriptor table
brk pointer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Don’t let picture confuse you!

Thread 1 (main thread) Thread 2 (peer thread) Shared code and data
shared libraries
stack 1 stack 2
run-time heap
Thread 1 context: Thread 2 context: read/write data

Data registers Data registers read-only code/data

Condition codes Condition codes o

SP, SP,

PC, PC, Kernel context:
VM structures
Descriptor table
brk pointer

Memory is shared between all threads

Carnegie Mellon

Today

Threads review
Sharing

[|
[|
m Mutual exclusion
m Semaphores

[|

Producer-Consumer Synchronization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Shared Variables in Threaded C Programs

m Question: Which variables in a threaded C program are
shared?

" The answer is not as simple as “global variables are shared” and
“stack variables are private”

m Def: A variable x is shared if and only if multiple threads
reference some instance of x.

m Requires answers to the following questions:
" What is the memory model for threads?
" How are instances of variables mapped to memory?
" How many threads might reference each of these instances?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Threads Memory Model: Conceptual

m Multiple threads run within the context of a single process

m Each thread has its own separate thread context
= Thread ID, stack, stack pointer, PC, condition codes, and GP registers

m All threads share the remaining process context

= Code, data, heap, and shared library segments of the process virtual address space

= QOpen files and installed handlers

Thread 1
(private)

stack 1

Thread 2
(private)

stack 2

Shared code and data

Thread 1 context:
Data registers
Condition codes
SP,

PC,

shared libraries

Thread 2 context:
Data registers
Condition codes
SP,

PC,

run-time heap

read/write data

read-only code/data

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Threads Memory Model: Actual

m Separation of data is not strictly enforced:
= Register values are truly separate and protected, but...
= Any thread can read and write the stack of any other thread

stack 1 K‘\ -»> stack 2 . Virtual Address Space
\ B Shared code and data
Thread 1 hread 2
(private) (pri shared libraries
Thread 1 con?text: Thread 2 con?text: ‘\\ run-time heap
Data registers Data registers %% read/write data
Condition codes Condition codes
read-only code/data

SP, SP,
PC, PC,

The mismatch between the conceptual and operation model
is a source of confusion and errors .

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Passing an argument to a thread - Pedantic

hist[N] = {0};
thread (vargp)
int main(int argc, char *argv[]) { {
i; hist[*() vargp] += 1;
tids[N]; Free (vargp) ;
return NULL;
for (i = 0; i < N; i++) { }
p = Malloc (sizeof ())
*p = i;
Pthread create(&tids[i],
NULL,
thread, void check (void) {
(p); for (i=0; i<N; i++) {
} if (hist[i] '= 1) {
for (1 = 0; i < N; i++) printf ("Failed at %d\n", 1i);
Pthread join(tids[i], NULL); exit(-1);
check () ; }
} }
printf ("OK\n") ;
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Passing an argument to a thread - Pedantic

hist[N] = {0};

int main(int argc, char *argv[]) {
i;
tids|[N];

for (1 = 0; i < N; i++) {
p = Malloc (sizeof (

*p = i;
Pthread create(&tids[i],
NULL,
thread,
(P);

}

for (i = 0; 1 < N; i++)
Pthread join(tids[i], NULL);

check () ;

thread (vargp)

hist[*() vargp] += 1;
Free (vargp) ;
return NULL;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

e Use malloc to create a per
thread heap allocated
place in memory for the
argument

* Remember to free in
thread!

* Producer-consumer
pattern

12

Carnegie Mellon

Passing an argument to a thread — Also OK!

hist[N] = {0}, thread (vargp)
{
int main(int argc, char *argv[]) { hist[() vargp] += 1;
i; return NULL;
tids[N] ; }

for (i = 0; 1 < N; i++)
Pthread;create(&tids[i], .
NULL, e Ok to Use cast since
?hread, o, sizeof(long) <= sizeof(void*)
for (i = 0; i < N; i++)

Pthread join(tids[i], NULL); e Cast does NOT change bits
check () ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Passing an argument to a thread — WRONG!

hist[N] = {0}, thread (vargp)
{
int main(int argc, char *argv[]) { hist[*() vargp] += 1;
i; return NULL;
tids[N] ; }

for (i = 0; 1 < N; i++)
Pthread create(&tids[i], . . .
NULL, * &i points to same location
?hread') for all threads!
for (i = 0; i < N; i++)
Pthread join(tids[i], NULL);

. |
check () ; Creates a data race!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Three Ways to Pass Thread Arg

m Malloc/free
" Producer malloc’s space, passes pointer to pthread_create
= Consumer dereferences pointer

m Ptr to stack slot
" Producer passes address to producer’s stack in pthread_create
= Consumer dereferences pointer

m Cast of int
" Producer casts an int/long to address in pthread_create
= Consumer casts void* argument back to int/long

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Example Program to lllustrate Sharing

char **ptr; /* global var */
int main(int argc, char *argv|[])
{
long i;
pthread t tid;
char *msgs[2] = {
"Hello from foo",
"Hello from bar"

};
ptr = msgs;
for (1 = 0; 1 < 2; i++)
Pthread create(&tid,
NULL,
thread,

(void *)i); <—

void *thread(void *vargp)

{
long myid = (long)vargp:;
static #nt cnt = 0;

printf ('J[%$1d]: %s (cnt=%d)\n"
myid, ptr[myid], ++cnt);
return NULL; \
}

4

\
Peer threads reference main thread’s stack

indirectly through global ptr variable

A common way to pass a single

Pthread exit (NULL) ;

sharing.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

== argument to a thread routine

16

Carnegie Mellon

Shared Variables in Threaded C Programs

m Question: Which variables in a threaded C program are
shared?

" The answer is not as simple as “global variables are shared” and
“stack variables are private”

m Def: A variable x is shared if and only if multiple threads
reference some instance of x.

m Requires answers to the following questions:
" What is the memory model for threads?
" How are instances of variables mapped to memory?
" How many threads might reference each of these instances?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Mapping Variable Instances to Memory

m Global variables

= Def: Variable declared outside of a function

= Virtual memory contains exactly one instance of any global variable

m Local variables
= Def: Variable declared inside function without static attribute

= Each thread stack contains one instance of each local variable

m Local static variables
= Def: Variable declared inside function with the static attribute

= Virtual memory contains exactly one instance of any local static
variable.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Mapping Variable Instances to Memory

char **ptr; /* global var */
int main(int main, char *argv([])
{
long 1i;
pthread t tid;
char *msgs[2] = {
"Hello from foo",
"Hello from bar"

};

ptr = msgs;
for (1 = 0; i < 2; i++)
Pthread create(&tid,

NULL,
thread,
(void *)1i) ;

Pthread exit (NULL) ;

} sharing.c

void *thread(void *vargp)

{
long myid =
static int cnt = 0;

printf (" [$1d] :
myid, ptr[myid],
return NULL;

(long) vargp;

%$s (cnt=%d) \n"

++cnt) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

19

Carnegie Mellon

Mapping Variable Instances to Memory

Global var: 1 instance (ptr [data])
/ Local vars: 1 instance (1.m, msgs.m, tid.m)

* % . * x i
char **ptr; /* global var Local var: 2 instances (

: . : myid.pO [peer thread 0’s stack],
int main(int main,) ,

myid.pl [peerthread 1’s stack]
long 1i;
pthread t tid;
char *msgs[2] = {

"Hello from foo", void *thread {void *vargp)
"Hello from bar" {

}; long myid = (long)vargp;
static int cnt = 0;
pPtr = msgs;

for (i = 0; i < 2; i++) printf("[%$1H]: %s (cnt=%d)\n",
Pthread create(&tid, myid, ptr[myid], ++cnt);
NULL, return NULIL;
thread, }
(void *)1i) ; |
Pthread exit (NULL) ; Local static var: 1 instance (cnt [data])

} sharing.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Shared Variable Analysis

m Which variables are shared?

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?7

ptr yes yes yes
cnt no yes yes
i.m yes no no
msgs.m yes yes yes
myid.p0 no yes no
myid.pl no no yes

char **ptr; /* global var */ | : _
int main(int main, char *argv[]) { void *thread(void *vargp)

long i; pthread t tid; { _
char *msgs[2] = {"Hello from foo", long myid = (long)vargp;
"Hello from bar" }; static int cnt = 0,'
ptr = msgs; .
for (i = 0; i < 2; i++) printf("[%$1d]: %s (cnt=%d)\n",

Pthread create (&tid, myid, ptr[myid], ++cnt);

NULL, thread, (void *)i); return NULL;
Pthread exit (NULL) ;} }

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Shared Variable Analysis

m Which variables are shared?

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes
cnt no yes yes
i.m yes no no
msgs.m yes yes yes
myid.pO no yes no
myid.pl no no yes

m Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:

m ptr, cnt, and msgs are shared
®m i andmyid are not shared

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Synchronizing Threads

m Shared variables are handy...

m ..butintroduce the possibility of nasty synchronization
errors.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

badcnt. c: Improper Synchronization

/* Global shared variable */ /* Thread routine */
volatile long cnt = 0; /* Counter */ void *thread(void *vargp)
{
int main(int argc, char **argv) long i, niters =
{ * ((long *)vargp) ;

long niters;

pthreac_t tidl, tidz; for (i = 0; i < niters; i++)

niters = atoi(argv[1]); cnt+t;

Pthread create(&tidl, NULL,

thread, &niters); return NULL;

Pthread create(&tid2, NULL, }
thread, &niters);
Pthread join(tidl, NULL) ; linux> ./badcnt 10000
Pthread join(tid2, NULL); OK cnt=20000
linux> ./badcnt 10000
/* Check result */ BOOM! cnt=13051
if (cnt !'= (2 * niters)) linux>
printf ("BOOM! cnt=%1d\n", cnt);
else
printf("OK cnt=%1d\n" , cnt) ; Cnt ShOUId equal 20,000.
exit (0) ;
} badcnt.c

What went wrong?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Assembly Code for Counter Loop

C code for counter loop in thread i

for (1 = 0; i < niters; i++)
cnt++;

Asm code for thread i

movqg (%rdi), S%rcx
Festq $rcx, srcex }fﬁ:Head
jle .L2
movl $0, %eax
(L3 T
movqg cnt(%rip) ,%rdx L; : Load cnt
addg $1, %$rdx U, : Update cnt
movqg $%rdx, cnt(%rip) |/ S;:Storecnt
[addg $1, %rax]
cmpg S%rcx, %rax)
jne L3 } T, : Tail
L2:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Concurrent Execution

m Keyidea: In general, any sequentially consistent®
interleaving is possible, but some give an unexpected result!

= |. denotes that thread i executes instruction |
= %rdx;is the content of %rdx in thread i’s context

i (thread) instr, %rdx, %rdx, cnt

=
L
-y

==

=

0
1 -
1

e

N

N

N)
NININ|E=|

N

NININR[IRIR|IRIO|IO|O

RINININININ| R ==
—|-|»|cl—|T|w|c|—

1 - OK

*For now. In reality, on x86 even non-sequentially consistent interleavings are possible

b

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Concurrent Execution

m Keyidea: In general, any sequentially consistent interleaving
is possible, but some give an unexpected result!

= |. denotes that thread i executes instruction |
= %rdx;is the content of %rdx in thread i’s context

i (thread) instr, %rdx, %rdx, cnt

=
L
-y

Thread 1
critical section

e

=y
SEI=1IK
1

Thread 2
critical section

=Y

N

N

N
1
NININ|=|:

N

RINININININ|R [P ([~
—|- | Cl—|T|w Ccir

1
NININ|R|R|R|Rlo|lo|O

Y
= |
'

oK

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Concurrent Execution (cont)

m Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2

i (thread) instr, %rdx, %rdx, cnt

1 H, - - 0
1 L, 0 : 0

1 u, 1 . 0

2 H, - - 0

2 L, - 0 0

1 S, 1 - 1

1 T, 1 - 1

2 u, - 1 1

2 S, - 1 1

2 T, - 1 1 Oops!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Concurrent Execution (cont)

m How about this ordering?

i (thread) instr; %rdx, %rdx, cnt

=
L

—
o

0

=

N

N

N

=

=Y

=

= =

NIR (R RININININ|=
—|—|U’CéﬂCI_II_
= =
=

Oops!

N

m We can analyze the behavior using a progress graph

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Progress Graphs

Thread 2 A progress graph depicts
the discrete execution
o ° ° ° ° ° state space of concurrent
threads.
T
2 (L, S))
7 ¢ ¢ ¢ ® ® Each axis corresponds to
S, the sequential order of
® ° ° ° ° ° instructions in a thread.
U,

Each point corresponds to

T ¢ ¢ ¢ ¢ ¢ a possible execution state
L, (Inst,, Inst,).
o ([([([o o
E.g., (L, S,) denotes state
H, where thread 1 has

® . ° ® ¢ *— Thread 1 completed L, and thread
2 has completed S,.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Trajectories in Progress Graphs

Thread 2
A trajectory is a sequence of legal
¢ o o o o state transitions that describes one
T, x possible concurrent execution of the
threads.
o o o ([([
S, T Example:
1 ¢ ¢ ¢ ¢ x H1, 11, U1, H2, L2, S1,T1, U2, S2, T2
—_——p
([([

¢ T *— Thread 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Trajectories in Progress Graphs

Thread 2
A trajectory is a sequence of legal
. o state transitions that describes one
T, x possible concurrent execution of the
threads.
4
S, Example:
3 H1,L1,Ul,H2,L2, S1,T1,U2,S2, T2
U,
—_—
L,
0 © o
H,
> *— Thread 1

H, L, U, S T,

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Critical Sections and Unsafe Regions

Thread 2
L, U, and S form a critical
® ° ° o o o section wit.h respect to the
shared variable cnt
T,
9 ® ® J ® ° Instructions in critical
S, sections (wrt some shared
critical ! o . . o o variable) should not be
section . interleaved
wrt 3 U2 Unsafe region
cnt 7 ® ® ° ® ® Sets of states where such
L, interleaving occurs form
. o . . . o unsafe regions
H,
¢ ¢ ¢ ¢ ¢ *— Thread 1
H, L, U, S T,
N\ J
'

critical section wrt cnt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Critical Sections and Unsafe Regions

Thread 2

not enter any unsafe region

r [[[
S, | N Claim: A trajectory is correct (wrt
critical cnt) iff it is safe

[([s >
T r T Def: A trajectory is safe iff it does
2

x_P. [[[
section)
wrt < U, Unsafe region
cnt — —
unsafe
o ([

¢ T *— Thread 1

critical section wrt cnt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

badcnt. c: Improper Synchronization

/* Global shared variable */ /* Thread routine */
volatile long cnt = 0; /* Counter */ void *thread(void *vargp)
{
int main(int argc, char **argv) long i, niters =
{ * ((long *)vargp) ;

long niters;

PR, (3 el el for (i = 0; 1 < niters; i++)

niters = atoi(argv[1]); cnt+t;

Pthread create(&tidl, NULL,
thread, &niters); return NULL;

Pthread create (stid2, NULL, Variable | main | thread1 | thread2_
thread, &niters);
cnt

Pthread join(tidl, NULL) ;
Pthread join(tid2, NULL) ;

niters.m

/* Check result */ tidl.m
if (cnt !'= (2 * niters))

printf ("BOOM! cnt=%1d\n", cnt); i.l
else i 9

printf ("OK cnt=%1d\n", cnt); g
exit (0) ; niters.1

} badcnt.c

niters.2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt. c: Improper Synchronization

/* Global shared variable */

{

}

volatile long cnt = 0;

/* Counter */

int main(int argc, char **argv)

long niters;
pthread t tidl, tid2;

niters = atoi(argv[l]);
Pthread create(&tidl, NULL,
thread, &niters);
Pthread create(&tid2, NULL,
thread, &niters);
Pthread join(tidl, NULL) ;
Pthread join(tid2, NULL) ;

/* Check result */
if (cnt !'= (2 * niters))
printf ("BOOM! cnt=%1d\n", cnt);
else
printf ("OK cnt=%1d\n", cnt);
exit (0) ;
badcnt.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/* Thread routine */
void *thread(void *vargp)

{

long i1, niters =

for (1 = 0; i < niters;

cnt++;

return NULL;

*((long *)vargp);

it++)

Variable | main | thread | thread2
cnt yes* yes yes

niters.m yes no
tidl.m yes no
i1 no yes
i.2 no no
niters.1 no yes
niters.2 no no

no
no
no
yes
no

yes

Carnegie Mellon

Today

Threads review
Sharing

|
|
m Mutual exclusion
m Semaphores

|

Producer-Consumer Synchronization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Enforcing Mutual Exclusion

m Question: How can we guarantee a safe trajectory?

m Answer: We must synchronize the execution of the threads so
that they can never have an unsafe trajectory.

" j.e., need to guarantee mutually exclusive access for each critical
section.

m Classic solution:
" Mutex (pthreads)
= Semaphores (Edsger Dijkstra)

m Other approaches (out of our scope)
® Condition variables (pthreads)
= Monitors (Java)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

MUTual EXclusion (mutex)

m Mutex: boolean synchronization variable
m enum {locked =0, unlocked = 1}
m lock(m)
= |f the mutex is currently not locked, lock it and return

= Otherwise, wait (spinning, yielding, etc) and retry

m unlock(m)

= Update the mutex state to unlocked

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

MUTual EXclusion (mutex)

m Mutex: boolean synchronization variable *

m Swap(*a, b)
[t = *a; *a = b; return t;]
// [1 — atomic by the magic of hardware / OS

m Lock(m):

while (swap(&m->state, locked) == locked) ;

m Unlock(m):

m->state = unlocked;

*For now. In reality, many other implementations and design choices (c.f., 15-410, 418, etc).

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

badcnt. c: Improper Synchronization

/* Global shared variable */ /* Thread routine */
volatile long cnt = 0; /* Counter */ void *thread(void *vargp)

{

int main(int argc, char **argv)

{

long i, niters =

. *((long *)vargp);
long niters;

pthreac_t tidl, tidz; for (i = 0; i < niters; i++)

niters = atoi(argv[1]); cnt+t;

Pthread create(&tidl, NULL,
thread, &niters);
Pthread create(&tid2, NULL, }
thread, &niters);
Pthread join(tidl, NULL) ;
Pthread join(tid2, NULL) ;

return NULL;

/* Check result */ How can we fix this using

if (cnt '= (2 * niters)) . .
printf ("BOOM! cnt=%1d\n", ent); | Synchronization?
else
printf ("OK cnt=%1d\n", cnt);
exit (0) ;

} badcnt.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

goodmcnt. c: Mutex Synchronization

m Define and initialize a mutex for the shared variable cnt:

volatile long cnt = 0; /* Counter */
pthread mutex t mutex;
pthread mutex init (&mutex, NULL); // No special attributes

m Surround critical section with lock and unlock:

for (1 = 0; 1 < niters; i++) { linux> ./goodmcnt 10000
pthread mutex lock (&mutex) ; OK cnt=20000
cnt++; linux> ./goodmcnt 10000
pthread mutex unlock (&mutex) ; OK cnt=20000
}
| Function | badent | goodment
Time (ms) 12.0 214.0
niters = 10°

Slowdown 1.0 17.8

Bryant and O’Hallaron, Compt 42

Why Mutexes Work

Thread 2
Provide mutually exclusive
i y ° g y y y y access to shared variable by
T, surrounding critical section
] with lock and unlock
un(m) operations
SZ
U, Unsafe region
I‘2
lo(m)
H, 1 0
. . Thread 1

ﬂ H, lo(m) L, U, S; un(m) T,
Initially

Bryanmnd_olallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Why Mutexes Work

Thread 2
Provide mutually exclusive
i y ° g y y y y access to shared variable by
T, surrounding critical section
] with lock and unlock
un(m) operations
S, Mutex invariant creates a
i forbidden region that encloses
u, Unsafe region unsafe region and tha.t cannot
| .) be entered by any trajectory.
I'2
lo(m)
H, 1 0
. . Thread 1

ﬂ H, lo(m) L, U, S; un(m) T,
Initially

Bryanrgra‘nd_O%allaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Why Mutexes Work

Thread 2
Provide mutually exclusive
i y ° g y y y y access to shared variable by
T, surrounding critical section
] with lock and unlock
un(m) operations
S, Mutex invariant creates a
i forbidden region that encloses
U unsafe region and that cannot
2| . .)) . . . be entered by any trajectory.
lo(m)
H, 1 0 0
. . . Thread 1

ﬂ H, lo(m) L, U, S; un(m) T,
Initially

Bryanmnd_olallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Why Mutexes Work

Thread 2
; 1 0 0 0 0 1 1 Provide mutually exc.:luswe
i * * * ¢ ¢ ¢ ¢ access to shared variable by
T, surrounding critical section
! L of O with lock and unlock
un(m) . . Forbidden region . . operations
S, ! ! o Mutex invariant creates a
| 0 eV e i el e WO L0 forbidden region that encloses
unsafe region and that cannot
U, .
SO . o o L be entered by any trajectory.
LZ lo [] 0 [] 1 [] 1 .-1 1. [] 0 [] o
lo(m) 1 1 0 0 0 0 1 1
HZ
21 1 00 0 0 1 ' Thread 1
» H lom) L U S unm)T,
Initially
m=1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

[]
Quiz

The questions all concern the following code:
#include "csapp.h"

#define N 2

void *thread(void *vargp);

long *pointers[N];

int main(intargc, char *argv[])
{

long i;

pthread_t tids[N];

for (i=0;i<N;i++)

Pthread_create(&tids[i], NULL, thread, (void *) i);
sleep(1); //Sleep #1
for (i=0;i<N;i++)

printf("Thread id %u has local value %ld\n",

(int) tids[i], *pointers[i]);

for (i=0;i<N;i++)

Pthread_join(tids[i], NULL);
return O;

}

void *thread(void *vargp)
{
long myid = (long) vargp;
pointers[myid] = &myid;
sleep(2); //Sleep #2
return NULL;

https://canvas.cmu.edu/courses/24383/quizzes/67234

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

https://canvas.cmu.edu/courses/24383/quizzes/67234

Carnegie Mellon

Today

Threads review
Sharing

[|
[|
m Mutual exclusion
m Semaphores

[|

Producer-Consumer Synchronization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Semaphores

m Semaphore: non-negative global integer synchronization variable.
Manipulated by P and V operations.

m P(s)
"= |f sis nonzero, then decrement s by 1 and return immediately.
= Test and decrement operations occur atomically (indivisibly)

= |fsiszero, then suspend thread until s becomes nonzero and the thread is
restarted by a V operation.

= After restarting, the P operation decrements s and returns control to the
caller.

m V(s):
" Increment s by 1.
= |ncrement operation occurs atomically

= |fthere are any threads blocked in a P operation waiting for s to become non-

zero, then restart exactly one of those threads, which then completes its P
operation by decrementing s.

m Semaphore invariant: (s >=0)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Semaphores

m Semaphore: non-negative global integer synchronization
variable

m Manipulated by P and V operations:
= P(s): [while (s == 0) wait(); s--;]
= Dutch for "Proberen" (test)
= V(s): [s++;]
= Dutch for "Verhogen" (increment)

m OS kernel guarantees that operations between brackets [] are
executed indivisibly

= Only one P or V operation at a time can modify s.
= When while loop in P terminates, only that P can decrement s

m Semaphore invariant: (s >= 0)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

C Semaphore Operations

Pthreads functions:

#include <semaphore.h>
int sem init(sem t *s, 0, unsigned int val);} /* s = val */

int sem wait(sem t *s); /* P(s) */
int sem post(sem t *s); /* V(s) */

CS:APP wrapper functions:

#include "csapp.h”

void P(sem t *s); /* Wrapper function for sem wait */
void V(sem t *s); /* Wrapper function for sem post */

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Using Semaphores to Coordinate
Access to Shared Resources

m Basic idea: Thread uses a semaphore operation to notify
another thread that some condition has become true
= Use counting semaphores to keep track of resource state.
= Use binary semaphores to notify other threads.

m The Producer-Consumer Problem

" Mediating interactions between processes that generate
information and that then make use of that information

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Producer-Consumer Problem

| shared _»{ consumer
buffer thread

producer
thread

m Common synchronization pattern:
" Producer waits for empty slot, inserts item in buffer, and notifies consumer
= Consumer waits for item, removes it from buffer, and notifies producer

m Examples
" Multimedia processing:

= Producer creates video frames, consumer renders them
= Event-driven graphical user interfaces

= Producer detects mouse clicks, mouse movements, and keyboard hits
and inserts corresponding events in buffer

= Consumer retrieves events from buffer and paints the display

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Producer-Consumer on 1l-element

Buffer

m Maintain two semaphores: full + empty

full
0
| empty o
empty buffer
1
full
1
R full -
empty buffer
0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Producer-Consumer on 1-element Buffer

#include "csapp.h int main(int argc, char** argv) ({

pthread t tid producer;

#define NITERS 5 pthread t tid consumer;

void *producer (void *arg) ;

_ _ /* Initialize the semaphores */
void *consumer (void *arq) ;

Sem init(&shared.empty, 0, 1);

Sem init (&shared.full, 0, 0);
struct { -

int buf; /* shared var */
sem t full; /* sems */
sem t empty;

} shared;

/* Create threads and wait */
Pthread create(&tid producer, NULL,
producer, NULL) ;
Pthread create(&tid consumer, NULL,
consumer, NULL) ;
Pthread join (tid producer, NULL) ;
Pthread join(tid consumer, NULL) ;

return 0;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Producer-Consumer on 1-element Buffer

Initially: empty==1, full==
Producer Thread Consumer Thread
void *producer (void *arg) ({ void *consumer (void *arg) ({
int i, item; int i, item;
for (i=0; i<NITERS; i++) { for (i=0; i<NITERS; i++) {
/* Produce item */ /* Read item from buf */
item = i; P (&shared. full) ;
printf ("produced %d\n", item = shared.buf;
item) ; V(&shared.empty) ;

/* Write item to buf */
P (&shared.empty) ;
shared.buf = item;
V(&shared. full) ;

}
return NULL;

}

}

/* Consume item */
printf ("consumed %d\n"“, item) ;

return NULL;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

56

Carnegie Mellon

Why 2 Semaphores for 1-Entry Buffer?

m Consider multiple producers & multiple consumers

e

e ————| shared -~
. buffer

m Producers will contend with each to get empty
m Consumers will contend with each other to get full

Producers Consumers

P (&shared.empty) ; empty full P (&shared. full) ;
shared.buf = item; item = shared.buf;

V (&shared. full) ; V(&shared.empty) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Producer-Consumer on an n-element Buffer

en 0 and n elements @
[] / [)

coo /%

m Implemented using a shared buffer package called sbuf.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Circular Buffer (n = 10)

m Store elements in array of size n
m items: number of elements in buffer
m Empty buffer:

= front =rear

m Nonempty buffer
" rear: index of most recently inserted element
" front: (index of next element to remove — 1) mod n

m Initially:

rear 0
items 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

Circular Buffer Operation (n = 10)

m Insert 7 elements

front| O o 1 2 3 4 5 6 7 8 9
rear 7
items 7

m Remove 5 elements
front| 5 o 1 2 3 4 5 6 7 8 9
rear 7
items 2

m Insert 6 elements
front| 5 o 1 2 3 4 5 6 7 8 9
rear 3
items 8

m Remove 8 elements
front| 3 o 1 2 3 4 5 6 7 8 9
rear 3

items 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

Sequential Circular Buffer Code

init(int v)

{

items = front = rear = 0;

}

insert (int v)
{
if (items >= n)
error () ;
if (++rear >= n) rear = 0;
buf[rear] = v;
items++;

}

int remove ()
{
if (items == 0)
error () ;
if (++front >= n) front = 0;
int v = buf[front];
items--;
return v;

}

Bryant and O’ Hamaror, COMpUTET SYSTENTST A PTOETATTITIET S PETSPECUVE, TITTT EOTTOT 61

Carnegie Mellon

Producer-Consumer on an n-element Buffer

en 0 and n elements @
[] / [)
[)

« YY) _——

. \©
m Requires a mutex and two counting semaphores:
" mutex:enforces mutually exclusive access to the buffer and counters

" s]ots: counts the available slots in the buffer
" jtems: counts the available items in the buffer

m Makes use of general semaphores

= Will range in value from O to n

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Carnegie Mellon

sbuf Package - Declarations

#include "csapp.h”

typedef struct {

int *buf; /* Buffer array */
int n; /* Maximum number of slots * /
int front; /* buf[front+l (mod n)] is first item */
int rear; /* buf[rear] is last item *x/
pthread mutex t mutex; /* Protects accesses to buf */
sem t slots; /* Counts available slots * /
sem t items; /* Counts available items *x /
} sbuf t;

void sbuf init(sbuf t *sp, int n);
void sbuf deinit(sbuf t *sp);

void sbuf insert(sbuf t *sp, int item);
int sbuf remove (sbuf t *sp);

sbuf.h

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Carnegie Mellon

sbuf Package - Implementation

Initializing and deinitializing a shared buffer:

/* Create an empty, bounded, shared FIFO buffer with n slots */

void sbuf init(sbuf t *sp, int n)

{
sp->buf = Calloc(n, sizeof(int));
sp->n = n; /* Buffer holds max of n items */
sp->front = sp->rear = 0; /* Empty buffer iff front == rear */
pthread mutex init (&sp->mutex, NULL); /* lock */
Sem init(&sp->slots, 0, n); /* Initially, buf has n empty slots */
Sem init(&sp->items, 0, 0); /* Initially, buf has zero items */

}

/* Clean up buffer sp */
void sbuf deinit(sbuf t *sp)
{

Free (sp->buf) ;
}

sbuf.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

sbuf Package - Implementation

Inserting an item into a shared buffer:

/* Insert item onto the rear of shared buffer sp */
void sbuf insert(sbuf t *sp, int item)

{

P (&sp->slots) ; /* Wait for available slot */

pthread mutex lock (&sp->mutex); /* Lock the buffer */

if (++sp->rear >= sp->n) /* Increment index (mod n) */
sp->rear = 0;

sp->buf [sp->rear] = item; /* Insert the item */

pthread mutex unlock (&sp->mutex); /* Unlock the buffer */

V (&sp->items) ; /* Announce available item */

sbuf.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon

sbuf Package - Implementation

Removing an item from a shared buffer:

/* Remove and return the first item from buffer sp */
int sbuf remove (sbuf t *sp)

{

int item;

P (&sp->items) ; /* Wait for available item */
pthread mutex lock (&sp->mutex); /* Lock the buffer */
if (++sp->front >= sp->n) /* Increment index (mod n) */

sp->front = 0;

item = sp->buf[sp->front]; /* Remove the item */
pthread mutex unlock (&sp->mutex); /* Unlock the buffer */
V (&sp->slots) ; /* Announce available slot */

return item;

} sbuf.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

Carnegie Mellon

Demonstration

m See program produce-consume.c in code directory
m 10-entry shared circular buffer
m 5 producers

= Agent i generates numbers from 20%*i to 20*i — 1.
= Puts them in buffer

m 5 consumers

= Each retrieves 20 elements from buffer
m Main program

= Makes sure each value between 0 and 99 retrieved once

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

Carnegie Mellon

Summary

m Programmers need a clear model of how variables are
shared by threads.

m Variables shared by multiple threads must be protected
to ensure mutually exclusive access.

m Semaphores are a fundamental mechanism for enforcing
mutual exclusion.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68

