
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System-Level I/O

15-213/14-513/15-513: Introduction to Computer Systems
19th Lecture, November 4, 2021

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Unix I/O

 Metadata, sharing, and redirection

 Standard I/O

 RIO (robust I/O) package

 Closing remarks

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Unix I/O and C Standard I/O

 Two sets: system-level and C-level

 Robust I/O (RIO): 213 special wrappers
good coding practice: handles error checking, signals, and
“short counts”

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen

fread fwrite

fscanf fprintf

sscanf sprintf

fgets fputs

fflush fseek

fclose

open read

write lseek

stat close

rio_readn

rio_writen

rio_readinitb

rio_readlineb

rio_readnb

RIO
functions

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O Overview

 A Linux file is a sequence of m bytes:
▪ B0 , B1 , , Bk , , Bm-1

 Cool fact: All I/O devices are represented as files:
▪ /dev/sda2 (/usr disk partition)

▪ /dev/tty2 (terminal)

 Even the kernel is represented as a file:
▪ /boot/vmlinuz-3.13.0-55-generic (kernel image)

▪ /proc (kernel data structures)

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O Overview

 Elegant mapping of files to devices allows kernel to export
simple interface called Unix I/O:
▪ Opening and closing files

▪ open()and close()

▪ Reading and writing a file

▪ read() and write()

▪ Changing the current file position (seek)

▪ indicates next offset into file to read or write

▪ lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Types

 Each file has a type indicating its role in the system
▪ Regular file: Contains arbitrary data

▪ Directory: Index for a related group of files

▪ Socket: For communicating with a process on another machine

 Other file types beyond our scope
▪ Named pipes (FIFOs)

▪ Symbolic links

▪ Character and block devices

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Regular Files

 A regular file contains arbitrary data

 Applications often distinguish between text files and binary
files
▪ Text files are regular files with only ASCII or Unicode characters

▪ Binary files are everything else

▪ e.g., object files, JPEG images

▪ Kernel doesn’t know the difference!

 Text file is sequence of text lines
▪ Text line is sequence of chars terminated by newline char (‘\n’)

▪ Newline is 0xa, same as ASCII line feed character (LF)

 End of line (EOL) indicators in other systems
▪ Linux and Mac OS: ‘\n’ (0xa)

▪ line feed (LF)

▪ Windows and Internet protocols: ‘\r\n’ (0xd 0xa)

▪ Carriage return (CR) followed by line feed (LF)

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Directories

 Directory consists of an array of links
▪ Each link maps a filename to a file

 Each directory contains at least two entries
▪ . (dot) is a link to itself

▪ .. (dot dot) is a link to the parent directory in the directory
hierarchy (next slide)

 Commands for manipulating directories
▪ mkdir: create empty directory

▪ ls: view directory contents

▪ rmdir: delete empty directory

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Directory Hierarchy

 All files are organized as a hierarchy anchored by root directory
named / (slash)

 Kernel maintains current working directory (cwd) for each process
▪ Modified using the cd command

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pathnames

 Locations of files in the hierarchy denoted by pathnames
▪ Absolute pathname starts with ‘/’ and denotes path from root

▪ /home/droh/hello.c

▪ Relative pathname denotes path from current working directory

▪ ../home/droh/hello.c

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

cwd: /home/bryant

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Opening Files

 Opening a file informs the kernel that you are getting ready to
access that file

 Returns a small identifying integer file descriptor
▪ fd == -1 indicates that an error occurred

 Each process created by a Linux shell begins life with three
open files associated with a terminal:
▪ 0: standard input (stdin)

▪ 1: standard output (stdout)

▪ 2: standard error (stderr)

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {

perror("open");

exit(1);

}

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Closing Files

 Closing a file informs the kernel that you are finished
accessing that file

 Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

 Moral: Always check return codes, even for seemingly
benign functions such as close()

int fd; /* file descriptor */

int retval; /* return value */

if ((retval = close(fd)) < 0) {

perror("close");

exit(1);

}

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Files

 Reading a file copies bytes from the current file position to
memory, and then updates file position

 Returns number of bytes read from file fd into buf
▪ Return type ssize_t is signed integer

▪ nbytes < 0 indicates that an error occurred

▪ Short counts (nbytes < sizeof(buf)) are possible and are not
errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");

exit(1);

}

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing Files

 Writing a file copies bytes from memory to the current file
position, and then updates current file position

 Returns number of bytes written from buf to file fd
▪ nbytes < 0 indicates that an error occurred

▪ As with reads, short counts are possible and are not errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */

if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

perror("write");

exit(1);

}

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Unix I/O example
 Copying file to stdout, one byte at a time

 Demo:
linux> strace ./showfile1_nobuf names.txt

#include "csapp.h"

int main(int argc, char *argv[])

{

char c;

int infd = STDIN_FILENO;

if (argc == 2) {

infd = Open(argv[1], O_RDONLY, 0);

}

while(Read(infd, &c, 1) != 0)

Write(STDOUT_FILENO, &c, 1);

exit(0);

} showfile1_nobuf.c

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

On Short Counts

 Short counts can occur in these situations:
▪ Encountering (end-of-file) EOF on reads

▪ Reading text lines from a terminal

▪ Reading and writing network sockets

 Short counts never occur in these situations:
▪ Reading from disk files (except for EOF)

▪ Writing to disk files

 Best practice is to always allow for short counts

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Home-Grown Buffered I/O Code
 Copying file to stdout, BUFSIZE bytes at a time

 Demo:
linux> strace ./showfile2_buf names.txt

#include "csapp.h"

#define BUFSIZE 64

int main(int argc, char *argv[])

{

char buf[BUFSIZE];

int infd = STDIN_FILENO;

if (argc == 2) {

infd = Open(argv[1], O_RDONLY, 0);

}

while((nread = Read(infd, buf, BUFSIZE)) != 0)

Write(STDOUT_FILENO, buf, nread);

exit(0);

} showfile2_buf.c

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Unix I/O

 Metadata, sharing, and redirection

 Standard I/O

 RIO (robust I/O) package

 Closing remarks

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Metadata
 Metadata is data about data, in this case file data

 Per-file metadata maintained by kernel
▪ Accessed by users with the stat and fstat functions

/* Metadata returned by the stat and fstat functions */

struct stat {

dev_t st_dev; /* Device */

ino_t st_ino; /* inode */

mode_t st_mode; /* Protection and file type */

nlink_t st_nlink; /* Number of hard links */

uid_t st_uid; /* User ID of owner */

gid_t st_gid; /* Group ID of owner */

dev_t st_rdev; /* Device type (if inode device) */

off_t st_size; /* Total size, in bytes */

unsigned long st_blksize; /* Blocksize for filesystem I/O */

unsigned long st_blocks; /* Number of blocks allocated */

time_t st_atime; /* Time of last access */

time_t st_mtime; /* Time of last modification */

time_t st_ctime; /* Time of last change */

};

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How the Unix Kernel Represents Open Files

 Two descriptors referencing two distinct open files.
Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in
stat

struct

File pos is maintained per open file

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Sharing
 Two distinct descriptors sharing the same disk file through

two distinct open file table entries
▪ e.g., calling open twice with the same filename argument

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File A (disk)

File B (disk)

Different logical but same physical file

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Processes Share Files: fork
 A child process inherits its parent’s open files

▪ Note: situation unchanged by exec functions (use fcntl to change)

 Before fork call:

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Processes Share Files: fork

 A child process inherits its parent’s open files

 After fork:
▪ Child’s table same as parent’s, and +1 to each refcnt

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=2

...

File pos

refcnt=2

...

File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

fd 0

fd 1

fd 2

fd 3

fd 4

Parent

Child

File is shared between processes

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection

 Question: How does a shell implement I/O redirection?
linux> ls > foo.txt

 Answer: By calling the dup2(oldfd, newfd) function
▪ Copies (per-process) descriptor table entry oldfd to entry newfd

a

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
after dup2(4,1)

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection Example

 Step #1: open file to which stdout should be redirected
▪ Happens in child executing shell code, before exec

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File A

File pos

refcnt=1

...

File access

...

File size

File type

File B

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection Example (cont.)

 Step #2: call dup2(4,1)
▪ Cause fd=1 (stdout) to refer to disk file pointed at by fd=4

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=0

...

File pos

refcnt=2

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A

File B

Two descriptors point to the same file

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Warm-Up: I/O and Redirection Example

 What would this program print for file containing “abcde”?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1, fd2, fd3;

char c1, c2, c3;

char *fname = argv[1];

fd1 = Open(fname, O_RDONLY, 0);

fd2 = Open(fname, O_RDONLY, 0);

fd3 = Open(fname, O_RDONLY, 0);

Dup2(fd2, fd3);

Read(fd1, &c1, 1);

Read(fd2, &c2, 1);

Read(fd3, &c3, 1);

printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);

return 0;

} ffiles1.c

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Warm-Up: I/O and Redirection Example

 What would this program print for file containing “abcde”?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1, fd2, fd3;

char c1, c2, c3;

char *fname = argv[1];

fd1 = Open(fname, O_RDONLY, 0);

fd2 = Open(fname, O_RDONLY, 0);

fd3 = Open(fname, O_RDONLY, 0);

Dup2(fd2, fd3);

Read(fd1, &c1, 1);

Read(fd2, &c2, 1);

Read(fd3, &c3, 1);

printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);

return 0;

} ffiles1.c

c1 = a, c2 = a, c3 = b

dup2(oldfd, newfd)

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Master Class: Process Control and I/O

 What would this program print for file containing “abcde”?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1;

int s = getpid() & 0x1;

char c1, c2;

char *fname = argv[1];

fd1 = Open(fname, O_RDONLY, 0);

Read(fd1, &c1, 1);

if (fork()) { /* Parent */

sleep(s);

Read(fd1, &c2, 1);

printf("Parent: c1 = %c, c2 = %c\n", c1, c2);

} else { /* Child */

sleep(1-s);

Read(fd1, &c2, 1);

printf("Child: c1 = %c, c2 = %c\n", c1, c2);

}

return 0;

} ffiles2.c

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Master Class: Process Control and I/O

 What would this program print for file containing “abcde”?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1;

int s = getpid() & 0x1;

char c1, c2;

char *fname = argv[1];

fd1 = Open(fname, O_RDONLY, 0);

Read(fd1, &c1, 1);

if (fork()) { /* Parent */

sleep(s);

Read(fd1, &c2, 1);

printf("Parent: c1 = %c, c2 = %c\n", c1, c2);

} else { /* Child */

sleep(1-s);

Read(fd1, &c2, 1);

printf("Child: c1 = %c, c2 = %c\n", c1, c2);

}

return 0;

} ffiles2.c

Child: c1 = a, c2 = b

Parent: c1 = a, c2 = c

Parent: c1 = a, c2 = b

Child: c1 = a, c2 = c

Bonus: Which way does it go?

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz

https://canvas.cmu.edu/courses/24383/quizzes/67219

https://canvas.cmu.edu/courses/24383/quizzes/67219

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Unix I/O

 Metadata, sharing, and redirection

 Standard I/O

 RIO (robust I/O) package

 Closing remarks

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Functions

 The C standard library (libc.so) contains a collection of
higher-level standard I/O functions
▪ Documented in Appendix B of K&R

 Examples of standard I/O functions:
▪ Opening and closing files (fopen and fclose)

▪ Reading and writing bytes (fread and fwrite)

▪ Reading and writing text lines (fgets and fputs)

▪ Formatted reading and writing (fscanf and fprintf)

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Streams

 Standard I/O models open files as streams
▪ Abstraction for a file descriptor and a buffer in memory

 C programs begin life with three open streams
(defined in stdio.h)
▪ stdin (standard input)

▪ stdout (standard output)

▪ stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */

extern FILE *stdout; /* standard output (descriptor 1) */

extern FILE *stderr; /* standard error (descriptor 2) */

int main() {

fprintf(stdout, "Hello, world\n");

}

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered I/O: Motivation

 Applications often read/write one character at a time
▪ getc, putc, ungetc

▪ gets, fgets

▪ Read line of text one character at a time, stopping at newline

 Implementing as Unix I/O calls expensive
▪ read and write require Unix kernel calls

▪ > 10,000 clock cycles

 Solution: Buffered read
▪ Use Unix read to grab block of bytes

▪ User input functions take one byte at a time from buffer

▪ Refill buffer when empty

unreadalready readBuffer

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffering in Standard I/O

 Standard I/O functions use buffered I/O

 Buffer flushed to output fd on “\n”, call to fflush or
exit, or return from main

printf("h");

h e l l o \n . .

printf("e");

printf("l");

printf("l");

printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf, 6);

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Buffering in Action

 You can see this buffering in action for yourself, using the
always fascinating Linux strace program:

linux> strace ./hello

execve("./hello", ["hello"], [/* ... */]).

...

write(1, "hello\n", 6) = 6

...

exit_group(0) = ?

#include <stdio.h>

int main()

{

printf("h");

printf("e");

printf("l");

printf("l");

printf("o");

printf("\n");

fflush(stdout);

exit(0);

}

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Example
 Copying file to stdout, line-by-line with stdio

 Demo:
linux> strace ./showfile3_stdio names.txt

#include "csapp.h"

#define MLINE 1024

int main(int argc, char *argv[])

{

char buf[MLINE];

FILE *infile = stdin;

if (argc == 2) {

infile = fopen(argv[1], "r");

if (!infile) exit(1);

}

while(fgets(buf, MLINE, infile) != NULL)

fprintf(stdout, buf);

exit(0);

} showfile3_stdio.c

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Unix I/O

 Metadata, sharing, and redirection

 Standard I/O

 RIO (robust I/O) package

 Closing remarks

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Unix I/O, C Standard I/O, and RIO

 Two incompatible libraries building on Unix I/O

 Robust I/O (RIO): 213 special wrappers
good coding practice: handles error checking, signals, and
“short counts”

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen

fread fwrite

fscanf fprintf

sscanf sprintf

fgets fputs

fflush fseek

fclose

open read

write lseek

stat close

rio_readn

rio_writen

rio_readinitb

rio_readlineb

rio_readnb

RIO
functions

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O Recap

 Short counts can occur in these situations:
▪ Encountering (end-of-file) EOF on reads

▪ Reading text lines from a terminal

▪ Reading and writing network sockets

 Short counts never occur in these situations:
▪ Reading from disk files (except for EOF)

▪ Writing to disk files

 Best practice is to always allow for short counts

/* Read at most max_count bytes from file into buffer.

Return number bytes read, or error value */

ssize_t read(int fd, void *buffer, size_t max_count);

/* Write at most max_count bytes from buffer to file.

Return number bytes written, or error value */

ssize_t write(int fd, void *buffer, size_t max_count);

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The RIO Package (213/CS:APP Package)

 RIO is a set of wrappers that provide efficient and robust I/O
in apps, such as network programs that are subject to short
counts

 RIO provides two different kinds of functions
▪ Unbuffered input and output of binary data

▪ rio_readn and rio_writen

▪ Buffered input of text lines and binary data

▪ rio_readlineb and rio_readnb

▪ Buffered RIO routines are thread-safe and can be interleaved
arbitrarily on the same descriptor

 Download from http://csapp.cs.cmu.edu/3e/code.html
→ src/csapp.c and include/csapp.h

http://csapp.cs.cmu.edu/public/code.html

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unbuffered RIO Input and Output

 Same interface as Unix read and write

 Especially useful for transferring data on network sockets

▪ rio_readn returns short count only if it encounters EOF

▪ Only use it when you know how many bytes to read

▪ rio_writen never returns a short count

▪ Calls to rio_readn and rio_writen can be interleaved arbitrarily on
the same descriptor

#include "csapp.h"

ssize_t rio_readn(int fd, void *usrbuf, size_t n);

ssize_t rio_writen(int fd, void *usrbuf, size_t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation of rio_readn
/*

* rio_readn - Robustly read n bytes (unbuffered)

*/

ssize_t rio_readn(int fd, void *usrbuf, size_t n)

{

size_t nleft = n;

ssize_t nread;

char *bufp = usrbuf;

while (nleft > 0) {

if ((nread = read(fd, bufp, nleft)) < 0) {

if (errno == EINTR) /* Interrupted by sig handler return */

nread = 0; /* and call read() again */

else

return -1; /* errno set by read() */

}

else if (nread == 0)

break; /* EOF */

nleft -= nread;

bufp += nread;

}

return (n - nleft); /* Return >= 0 */

} csapp.c

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered RIO Input Functions

 Efficiently read text lines and binary data from a file partially
cached in an internal memory buffer

▪ rio_readlineb reads a text line of up to maxlen bytes from file
fd and stores the line in usrbuf
▪ Especially useful for reading text lines from network sockets

▪ Stopping conditions
▪ maxlen bytes read
▪ EOF encountered
▪ Newline (‘\n’) encountered

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered RIO Input Functions (cont.)

▪ rio_readnb reads up to n bytes from file fd

▪ Stopping conditions
▪ maxlen bytes read
▪ EOF encountered

▪ Calls to rio_readlineb and rio_readnb can be interleaved
arbitrarily on the same descriptor

▪ Warning: Don’t interleave with calls to rio_readn

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

unread

Buffered I/O: Implementation

 For reading from file

 File has associated buffer to hold bytes that have been read
from file but not yet read by user code

 Layered on Unix file:

already readBuffer

rio_buf
rio_bufptr

rio_cnt

unreadalready readno longer in buffer unseen

Current File Position

Buffered Portion

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered I/O: Declaration

 All information contained in struct

typedef struct {

int rio_fd; /* descriptor for this internal buf */

int rio_cnt; /* unread bytes in internal buf */

char *rio_bufptr; /* next unread byte in internal buf */

char rio_buf[RIO_BUFSIZE]; /* internal buffer */

} rio_t;

unreadalready readBuffer

rio_buf
rio_bufptr

rio_cnt

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Example
 Copying file to stdout, line-by-line with rio

 Demo:
linux> strace ./showfile4_rio names.txt

#include "csapp.h"

#define MLINE 1024

int main(int argc, char *argv[])

{

rio_t rio;

char buf[MLINE];

int infd = STDIN_FILENO;

ssize_t nread = 0;

if (argc == 2) {

infd = Open(argv[1], O_RDONLY, 0);

}

Rio_readinitb(&rio, infd);

while((nread = Rio_readlineb(&rio, buf, MLINE)) != 0)

Rio_writen(STDOUT_FILENO, buf, nread);

exit(0);

} showfile4_stdio.c

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Unix I/O

 Metadata, sharing, and redirection

 Standard I/O

 RIO (robust I/O) package

 Closing remarks

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Example
 Copying file to stdout, loading entire file with mmap

 Demo:
linux> strace ./showfile5_mmap names.txt

#include "csapp.h"

int main(int argc, char **argv)

{

struct stat stat;

if (argc != 2) exit(1);

int infd = Open(argv[1], O_RDONLY, 0);

Fstat(infd, &stat);

size_t size = stat.st_size;

char *bufp = Mmap(NULL, size, PROT_READ,

MAP_PRIVATE, infd, 0);

Write(1, bufp, size);

exit(0);

} showfile5_mmap.c

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O vs. Standard I/O vs. RIO

 Standard I/O and RIO are implemented using low-level Unix I/O

 Which ones should you use in your programs?

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen

fread fwrite

fscanf fprintf

sscanf sprintf

fgets fputs

fflush fseek

fclose

open read

write lseek

stat close

rio_readn

rio_writen

rio_readinitb

rio_readlineb

rio_readnb

RIO
functions

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Unix I/O

 Pros
▪ Unix I/O is the most general and lowest overhead form of I/O

▪ All other I/O packages are implemented using Unix I/O functions

▪ Unix I/O provides functions for accessing file metadata

▪ Unix I/O functions are async-signal-safe and can be used safely in signal
handlers

 Cons
▪ Dealing with short counts is tricky and error prone

▪ Efficient reading of text lines requires some form of buffering, also tricky
and error prone

▪ Both of these issues are addressed by the standard I/O and RIO packages

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Standard I/O

 Pros:
▪ Buffering increases efficiency by decreasing the number of read and
write system calls

▪ Short counts are handled automatically

 Cons:
▪ Provides no function for accessing file metadata

▪ Standard I/O functions are not async-signal-safe, and not appropriate for
signal handlers

▪ Standard I/O is not appropriate for input and output on network sockets

▪ There are poorly documented restrictions on streams that interact
badly with restrictions on sockets (CS:APP3e, Sec 10.11)

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Choosing I/O Functions

 General rule: use the highest-level I/O functions you can
▪ Many C programmers are able to do all of their work using the standard

I/O functions

▪ But, be sure to understand the functions you use!

 When to use standard I/O
▪ When working with disk or terminal files

 When to use raw Unix I/O
▪ Inside signal handlers, because Unix I/O is async-signal-safe

▪ In rare cases when you need absolute highest performance

 When to use RIO
▪ When you are reading and writing network sockets

▪ Avoid using standard I/O on sockets

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside: Working with Binary Files

 Binary File
▪ Sequence of arbitrary bytes

▪ Including byte value 0x00

 Functions you should never use on binary files
▪ Text-oriented I/O: such as fgets, scanf, rio_readlineb

▪ Interpret EOL characters.

▪ Use functions like rio_readn or rio_readnb instead

▪ String functions

▪ strlen, strcpy, strcat

▪ Interprets byte value 0 (end of string) as special

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Extra Slides

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fun with File Descriptors (3)

 What would be the contents of the resulting file?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1, fd2, fd3;

char *fname = argv[1];

fd1 = Open(fname, O_CREAT|O_TRUNC|O_RDWR, S_IRUSR|S_IWUSR);

Write(fd1, "pqrs", 4);

fd3 = Open(fname, O_APPEND|O_WRONLY, 0);

Write(fd3, "jklmn", 5);

fd2 = dup(fd1); /* Allocates descriptor */

Write(fd2, "wxyz", 4);

Write(fd3, "ef", 2);

return 0;

} ffiles3.c

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Accessing Directories
 Only recommended operation on a directory: read its entries

▪ dirent structure contains information about a directory entry

▪ DIR structure contains information about directory while stepping
through its entries

#include <sys/types.h>

#include <dirent.h>

{

DIR *directory;

struct dirent *de;

...

if (!(directory = opendir(dir_name)))

error("Failed to open directory");

...

while (0 != (de = readdir(directory))) {

printf("Found file: %s\n", de->d_name);

}

...

closedir(directory);

}

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of Accessing File Metadata

int main (int argc, char **argv)

{

struct stat stat;

char *type, *readok;

Stat(argv[1], &stat);

if (S_ISREG(stat.st_mode)) /* Determine file type */

type = "regular";

else if (S_ISDIR(stat.st_mode))

type = "directory";

else

type = "other";

if ((stat.st_mode & S_IRUSR)) /* Check read access */

readok = "yes";

else

readok = "no";

printf("type: %s, read: %s\n", type, readok);

exit(0);

}

linux> ./statcheck statcheck.c

type: regular, read: yes

linux> chmod 000 statcheck.c

linux> ./statcheck statcheck.c

type: regular, read: no

linux> ./statcheck ..

type: directory, read: yes

statcheck.c

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

For Further Information
 The Unix bible:

▪ W. Richard Stevens & Stephen A. Rago, Advanced Programming in the
Unix Environment, 3rd Edition, Addison Wesley, 2013

▪ Updated from Stevens’s 1993 classic text

 The Linux bible:
▪ Michael Kerrisk, The Linux Programming Interface, No Starch Press, 2010

▪ Encyclopedic and authoritative

