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Virtual Memory: Concepts
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Hmmm, How Does This Work?!

Process 1 Process 2 Process n

OOOO7FFFFFFFFFFF OOOO7FFFFFFFFFFF

400000
000000

Solution: Virtual Memory (today and next lecture)
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Today

m Address spaces CSAPP 9.1-9.2
m VM as a tool for caching CSAPP 9.3

m VM as a tool for memory management CSAPP 9.4

m VM as a tool for memory protection CSAPP 9.5

m Address translation CSAPP 9.6
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A System Using Physical Addressing

Main memory
0:

Physical address  2:

(PA)
CPU >

Data word

m Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames
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A System Using Virtual Addressing

Main memory

0:
CPU Chip 1:
Virtual address Physical address ;
(VA) (PA) '
CPU > MMU 7 > 4:
4100 5:
A

6:
7:
8:
M-1

Data word

m Used in all modern servers, laptops, and smart phones
m One of the great ideas in computer science
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Address Spaces

m Linear address space: Ordered set of contiguous non-negative integer
addresses:
{0,1,2,3...}

m Virtual address space: Set of N = 2" virtual addresses
{0,1,2,3, .., N-1}

m Physical address space: Set of M = 2™ physical addresses
{0,1, 2,3, .. M-1}
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Why Virtual Memory (VM)?

m Uses main memory efficiently

= Use DRAM as a cache for parts of a virtual address space

m Simplifies memory management
" Each process gets the same uniform linear address space

m Isolates address spaces

" One process can’t interfere with another’s memory
= User program cannot access privileged kernel information and code
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Today

Address spaces
VM as a tool for caching

|
|
m VM as a tool for memory management
m VM as a tool for memory protection

|

Address translation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8



Carnegie Mellon

VM as a Tool for Caching

m Conceptually, virtual memory is an array of N contiguous
bytes stored on disk.

m The contents of the array on disk are cached in physical
memory (DRAM cache)

" These cache blocks are called pages (size is P = 2P bytes)

Virtual memory Physical memory
0

VP 0| Unallocated
VP 1 | Cached \‘1 Empty | PP O
Uncached PP 1

Unallocated Empty

Cached
Uncached >< Empty
Cached PP 2MP.1

o M-1
VP 2"P-1 | Uncached N1
Virtual pages (VPs) Physical pages (PPs)
stored on disk cached in DRAM

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Carnegie Mellon

DRAM Cache Organization

m DRAM cache organization driven by the enormous miss penalty
= DRAM is about 10x slower than SRAM
= Disk is about 10,000x slower than DRAM
" Time to load block from disk > 1ms (> 1 million clock cycles)
= CPU can do a lot of computation during that time

m Consequences
= lLarge page (block) size: typically 4 KB
= Linux “huge pages” are 2 MB (default) to 1 GB
= Fully associative
= Any VP can be placed in any PP
= Requires a “large” mapping function — different from cache memories
= Highly sophisticated, expensive replacement algorithms
= Too complicated and open-ended to be implemented in hardware
= Write-back rather than write-through
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Enabling Data Structure: Page Table

m A page table is an array of page table entries (PTEs) that
maps virtual pages to physical pages.
® Per-process kernel data structure in DRAM
Physical memory

Physical page (DRAM)
number or
VP1 PPO

Valid disk address /

null VP 7
; VP4 PP3

R|lo|lo|r|Oo|kR |~
2
y
/
/|

null > Virtual memory
o« ~ (disk)
~
PTE7 o« ~ ] 71
. ~ ~
Memory resident ~. Se VP 2
age table S ~a
Pog TN VP 3
(DRAM) .
S - VP4
VP 6
, , . . . VP 7
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Page Hit

m Page hit: reference to VM word that is in physical memory
(DRAM cache hit)

. Physical memory
Physical page (DRAM)
number or p—
Valid disk address PPO

PTEO[ 0 n:u/_4 —
VP 4

Virtual address

1
PP3
> 1 o/_-‘
0 o
1 — < _
0 null D ¢ Virtual memory
Prerl C = T VP 1
Memory resident ~~_ . S . VP 2
age table RS ~a
Pag RN VP 3
(DRAM) ..
\\\ VP 4
VP 6
VP 7
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Page Fault

m Page fault: reference to VM word that is not in physical
memory (DRAM cache miss)
Physical memory

Physical page
Virtual address number or (DRAM)
VPl PPO

Valid disk address /
PTEO| 0 null ’///’//,,,,,,///w VP2

VP 7
- :::j::z VP4 PP3
1
0| e
1
0 null L Virtual memory
Prerl '/'\\‘\ T VP 1
Memory resident \\ \\ VP 2
age table e ~
p g \\ Am
(DRAM) Seo
‘\\ VP 4
VP 6
VP 7
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Triggering a Page Fault

m User writes to memory location

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
m That portion (page) of user’s memory int a[1000];
is currently on disk main ()
{

m MMU triggers page fault exception

a[500] = 13;
= (More details in later lecture) }

= Raise privilege level to supervisor mode
= Causes procedure call to software page fault handler

User code Kernel code

l Exception: page fault

movl
Execute page fault
handler
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Handling Page Fault

m Page miss causes page fault (an exception)

Virtual address

PTEO

PTE7

Carnegie Mellon

Physical memory

Physical page (DRAM)
number or T
Val(;d disk adtillress /: VP2
nu
VP 7
- ; VP 4
1
0 Q.
1 — < _
0 null D ¢ Virtual memory
0 o ~ S (disk)
1 A 1 N 5T
Memory resident ~~_ VP 2
page table ~a
(DRAM) VP3
- VP4
VP 6
VP 7
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Handling Page Fault

m Page miss causes page fault (an exception)

Carnegie Mellon

m Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE7

Physical memory

Physical page (DRAM)
number or T
Val(;d disk adtillress /: VP2
nu
VP 7
- :;44 VP 4
1
0 Q.
1 — < _
0 null D ¢ Virtual memory
0 o ~ S (disk)
1 A 1 N 5T
Memory resident ~~_ VP 2
page table ~a
(DRAM) vP3
- VP4
VP 6
VP 7
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Handling Page Fault

m Page miss causes page fault (an exception)

Carnegie Mellon

m Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE7

Physical memory

Physical page (DRAM)
number or T
. ik
Val(;d dis adtillress /: =
nu
VP 7
1 ; VP 3
1
1 0/_
0 0\
0 null Virtual memory
0 P / N o (dISk)
1 Tt 1 "~ VP 1
Memory resident ~~_ \\ VP 2
page table Sso ..
(DRAM) RETRIRN VP3
‘\\ VP 4
VP 6
VP 7
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Handling Page Fault

m Page miss causes page fault (an exception)
m Page fault handler selects a victim to be evicted (here VP 4)

m Offending instruction is restarted: page hit!
Physical memory
Physical page (DRAM)
Virtual address number or
VP 1 PP O

Valid disk address /
VP 2

VP 3 PP3

./4 VP 7
0/4
—

Virtual memory

=|oj|lo|o|r |k |=

null
o / (disk)
PTE7 e ] VP 1
Memory resident ~~_ . VP 2
page table RN
(DRAM) \\ .~ VP 3
~o VP 4

Key point: Waiting until the miss to copy the page to

VP 6
DRAM is known as demand paging

VP 7
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Completing page fault

int a[1000];
m Page fault handler executes return from main ()
interrupt (iret) instruction {
= Like ret instruction, but also restores privilege level }

a[500] = 13;

= Return to instruction that caused fault
= But, this time there is no page fault

80483b7: c7 05 10 9d 04 08 0d movl $0xd, 0x8049d10
User code Kernel code
Exception: page fault
movl
Copy page from
Return and disk to memory
' reexecute movl/

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19



Carnegie Mellon

Allocating Pages

m Allocating a new page (VP 5) of virtual memory.

Physical memory

Physical page (DRAM)
number or X
Valid disk address PPO
PTEO[ 0 vl L
1 ./4 VP 7
VP3 PP3
1 0/4
1 — |
0 .
0 « "~ Virtual memory
0 o ) < K (disk)
PTE7[1 /\\\\:\\ VP 1
Memory resident\\\\ \\ VP 2
page table oS0 .
(DRAM) VR NN L&
RV VP4
S~ VP 5
m Subsequent miss will bring it into memory VP 6
VP 7
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Locality to the Rescue Again!

m Virtual memory seems terribly inefficient, but it works
because of locality.

m At any pointin time, programs tend to access a set of active
virtual pages called the working set

" Programs with better temporal locality will have smaller working sets

m If (working set size < main memory size)
" Good performance for one process (after cold misses)

m If (working set size > main memory size)

® Thrashing: Performance meltdown where pages are swapped (copied)
in and out continuously

" |f multiple processes run at the same time, thrashing occurs if
their total working set size > main memory size
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Today

Address spaces
VM as a tool for caching

|
|
m VM as a tool for memory management
m VM as a tool for memory protection

|

Address translation
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VM as a Tool for Memory Management

m Key idea: each process has its own virtual address space
" |t can view memory as a simple linear array
" Mapping function scatters addresses through physical memory

= Well-chosen mappings can improve locality

Address .
Virtual 0 lati 0 Physical
Address VP 1 transiation Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
AP G library code)
. 0
Virtual 5/ pps
Address VP 1
Space for VP 2
Process 2: oo
N-1 M-1
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VM as a Tool for Memory Management

m Simplifying memory allocation
= Each virtual page can be mapped to any physical page

= Avirtual page can be stored in different physical pages at different times
m Sharing code and data among processes
= Map virtual pages to the same physical page (here: PP 6)

Address .
Virtual 0 lati 0 Physical
Address VP 1 transiation Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
il library code)
. 0
Virtual 5| pps
Address VP 1
Space for VP 2
Process 2:
N-1 M-1
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Simplifying Linking and Loading

Memory
. invisible to
Kernel virtual memory
L. user code
| Llnklng User stack
® Each program has similar virtual (e alt EIEIRE! «—3%rsp
address space (stack
" Code, data, and heap always start t pointer)
at the same addresses. Memory-mapped region for
shared libraries
m Loading T
= execve allocates virtual pages «— brk
for .text and .data sections & Run-time heap
creates PTEs marked as invalid (created bymalloc)
\
" The .text and .data sections Read/write segment Loaded
are copied, page by page, on (.data, .bss) fL°m
: } the
demand by the virtual memory Seska e executable
system (.init, .text, .rodata) file
0x400000 ’
Unused
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Today

Address spaces
VM as a tool for caching

|
|
m VM as a tool for memory management
m VM as a tool for memory protection

|

Address translation
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VM as a Tool for Memory Protection

m Extend PTEs with permission bits
m MMU checks these bits on each access

Physical
Processi: SUP READ WRITE EXEC Address Address Space
VP 0O: No Yes No Yes PP 6
VP 1: No Yes Yes Yes PP 4
VP 2: Yes Yes Yes No PP 2 —>__PP2
[ ]
. PP 4
o
PP 6
Process j: SUP READ WRITE EXEC Address Y
VP 0O: No Yes No Yes PP9 —| pp9
VP1l:| Yes Yes Yes Yes PP 6
VP2:| No Yes Yes Yes PP 11 > PP11
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Quiz Time!

Check out:

https://canvas.cmu.edu/courses/24383/quizzes/67221
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Today

Address spaces
VM as a tool for caching

|
|
m VM as a tool for memory management
m VM as a tool for memory protection

|

Address translation
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VM Address Translation

m Virtual Address Space
= v={0, 1,.. N-1}
m Physical Address Space
= P={0 1, .. M-1}
m Address Translation
= MAP: V—> P U {O}
= For virtual address a:
= MAP(a) = a’ if data at virtual address a is at physical address a’in P
= MAP(a) = if data at virtual address a is not in physical memory
— Either invalid or stored on disk
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Summary of Address Translation Symbols

m Basic Parameters
= N =2": Number of addresses in virtual address space
= M=2": Number of addresses in physical address space
= P =2P :Page size (bytes)

m Components of the virtual address (VA)

= VPO: Virtual page offset
= VPN: Virtual page number

m Components of the physical address (PA)
= PPO: Physical page offset (same as VPO)
" PPN: Physical page number
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Address Translation With a Page Table

Page table
base register (PTBR)
(CR3 in x86)

Virtual address

n-1

p p-1 0

Virtual page number (VPN)

Virtual page offset (VPO)

Page table
Valid  Physical page number (PPN)

Physical page table
address for the current
process

Valid bit = 0:

Page not in memory €
(page fault)

Valid bit = 1

m-1 v

p p'l \ 4

0

Physical page number (PPN)

Physical page offset (PPO)

Physical address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Address Translation: Page Hit
(2

CPU Chip PTEA .
3 P PTE
>
e AL © Cache/
PA > Memory

Data

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor
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Address Translation: Page Fault

Exception
j——— === > Page fault handler
| @
I
I
| 2 J\/L
dHe Chlp : PTEA Victim page
" ’ o
CPU V2 5 mMmu  e—FTE Cache/ ,
Disk
0 a Memory

New page

L6

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction
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Integrating VM and Cache

PTE
CPU Chip o p— PTE
hit
PTEA PTEA PTEA
> miss
CPU VA | MMU Memory
A PA PA PA
miss]
PA ~ Data
hit )
L1
Data cache

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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Speeding up Translation with a TLB

m Page table entries (PTEs) are cached in L1 like any other
memory word
" PTEs may be evicted by other data references

" PTE hit still requires a small L1 delay

m Solution: Translation Lookaside Buffer (TLB)
= Small set-associative hardware cache in MMU
" Maps virtual page numbers to physical page numbers
" Contains complete page table entries for small number of pages
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Summary of Address Translation Symbols

m Basic Parameters
= N =2": Number of addresses in virtual address space

= M=2": Number of addresses in physical address space
= P =2P :Page size (bytes)
m Components of the virtual address (VA)
" TLBI: TLB index
" TLBT: TLB tag
= VPO: Virtual page offset
= VPN: Virtual page number
m Components of the physical address (PA)
" PPO: Physical page offset (same as VPO)
" PPN: Physical page number
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Accessing the TLB

m MMU uses the VPN portion of the virtual address to
access the TLB:

T = 2t sets
VPN
TLBT matches tag — A —
of line within set n-1 p+t p+t-1 p p-1 0

TLB tag (TLBT) | TLB index (TLBI) | VPO

Set 0 v tdg PTE v tag PTE
! TLBI selects the set
Setl v tag PTE v tag PTE <
[ ]
[ ]
[
SetT-1 v tag PTE v tag PTE
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TLB Hit

CPU Chip
TLB
Q PTE
ven| [ €
VA PA
> >
CPU MMU a Cache/
Memory
Data

A TLB hit eliminates a cache/memory access
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TLB Miss

CPU Chip

TLB G

a PTE

VPN

VA PTEA
> >
CPU MMU Cache/
Pé\ s| Memory
Data

6/

A TLB miss incurs an additional cache/memory access (the PTE)
Fortunately, TLB misses are rare. Why?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40



Carnegie Mellon

Multi-Level Page Tables

m Suppose: Level 2
= 4KB (2!?) page size, 48-bit address space, 8-byte PTE Tables

m Problem:

Level 1
" Would need a 512 GB page table! Table
- 248 % 212 ¥ 23 = 239 pytes =

m Common solution: Multi-level page table

m Example: 2-level page table

= Level 1 table: each PTE points to a page table (always
memory resident)

= |Level 2 table: each PTE points to a page
(paged in and out like any other data)
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A Two-Level Page Table Hierarchy

Level 1 Level 2 Virtual
page table page tables memory
0
VPO h
PTE O — [ o
VP 1023 > 2K allocated VM pages
PTE 1 VP 1024 for code and data
PTE 2 (null) PTE 1023
PTE 3 (null)
VP 2047 |
PTE 4 (null) — N
PTE 5 (null)
PTE 7 (null) Gap > 6K unallocated VM pages
PTE S8 >
1023 null
(1K - 9) PTEs Y,
null PTEs PTE 1023 1023
unallocated 1023 unallocated pages
pages
VP 9215 1 allocated VM page

. for the stack
64 bit addresses, 8KB pages, 8-byte PTEs
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Translating with a k-level Page Table

Page table
base register
(PTBR)
VIRTUAL ADDRESS
n-1 p-1 0
VPN 1 VPN 2 VPN k VPO
the Level 1 a Level 2 a Level k
page table page table page table
> > pose oo >
] > PPN |} —
m-1 l p-1 1} 0
PPN PPO

PHYSICAL ADDRESS
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Summary

m Programmer’s view of virtual memory
= Each process has its own private linear address space
= Cannot be corrupted by other processes

m System view of virtual memory
= Uses memory efficiently by caching virtual memory pages
= Efficient only because of locality
= Simplifies memory management and programming
= Simplifies protection by providing a convenient interpositioning point
to check permissions
m Implemented via combination of hardware & software
= MMU, TLB, exception handling mechanisms part of hardware
= Page fault handlers, TLB management performed in software
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