Carnegie Mellon

Dynamic Memory Allocation:
Advanced Concepts

15-213/14-513/15-513: Introduction to Computer Systems
14t Lecture, October 19, 2021

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Dynamic Memory Allocation

Application

Dynamic Memory Allocator

Heap

m Programmers use dynamic

memory allocators (such as
malloc) to acquire virtual

memory (VM) at runtime

For data structures whose size

is only known at runtime

m Dynamic memory allocators
manage an area of process
VM known as the heap

0x400000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 0

Kernel virtual memory

User stack
(created at runtime)

|
f

Memory-mapped region for
shared libraries

T

|

Carnegie Mellon

Memory
invisible to
user code

+«——53rsp

(stack
pointer)

brk

Run-time heap
(created by malloc)

A

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Unused

Loaded
from

the
executable
file

Carnegie Mellon

Review: Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

Untsed et e eemme Need to tag
m; 3'2’ ‘Zé" ";2/ :6 each block as
% allocated/free

m Method 2: Explicit list among the free blocks using pointers

/—\ /\ Need space
7 2 77 16 "

for pointers

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

® Can use a balanced tree (e.g., Red-Black tree) with pointers within
each free block, and the length used as a key

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Review: Implicit Lists Summary

m Implementation: very simple

m Allocate cost:
® |inear time worst case

m Free cost:
= constant time worst case
= even with coalescing

m Memory Overhead:
" Depends on placement policy
= Strategies include first fit, next fit, and best fit

m Not used in practice formalloc/free because of linear-
time allocation

= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

m Explicit free lists
m Segregated free lists
m Memory-related perils and pitfalls

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

aaaaaaa

VA 32 48 32 16

m Method 2: Explicit list among the free blocks using pointers

T~
732 T | |48 2. 77 | 16

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

® Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Explicit Free Lists

Allocated (as before) Free
Size a Size a
Next
Payload and Prev
padding

Optional

N

Size a Size a

m Maintain list(s) of free blocks, not all blocks
= Luckily we track only free blocks, so we can use payload area
" The “next” free block could be anywhere
= So we need to store forward/back pointers, not just sizes

= Still need boundary tags for coalescing
= To find adjacent blocks according to memory order

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Explicit Free Lists

m Logically:

\ 4

\ 4

A

m Physically: blocks can be in any order

I
1

/ Forward (next) links

32 — 32 32 3248 /| < 4832 3232 | 32

C \/
K Back (prev) links

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Allocating From Explicit Free Lists

conceptual graphic

Before

2 ;

After (with splitting)

Y

= malloc(..)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly
freed block?
m Unordered
= LIFO (last-in-first-out) policy
= Insert freed block at the beginning of the free list
= FIFO (first-in-first-out) policy
= |nsert freed block at the end of the free list
" Pro: simple and constant time

" Con: studies suggest fragmentation is worse than address ordered

m Address-ordered policy

" |nsert freed blocks so that free list blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

= Con:requires search

" Pro: studies suggest fragmentation is lower than LIFO/FIFO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Freeing With a LIFO Policy (Case 1)

Allocated Allocated

conceptual graphic

Before
free(p)

Root % o)

m Insert the freed block at the root of the list

After

Root I ‘@

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Freeing With a LIFO Policy (Case 2)

Allocated Free

conceptual graphic
®

Root ; I % o

m Splice out adjacent successor block, coalesce both memory
blocks, and insert the new block at the root of the list

After

Root Il W

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Before free (p)

Freeing With a LIFO Policy (Case 3)

Free Allocated

conceptual graphic

%o

m Splice out adjacent predecessor block, coalesce both memory
blocks, and insert the new block at the root of the list

After P
Root I LO > % p

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Before free(p)

Root i I

Freeing With a LIFO Policy (Case 4)

Free Free

conceptual graphic

it

m Splice out adjacent predecessor and successor blocks, coalesce
all 3 blocks, and insert the new block at the root of the list

After

Before free (p)

Root i I

TR o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Root Il———p

i

Carnegie Mellon

Some Advice: An Implementation Trick

LIFO Insertion

FIFO Insertion " Point

POint \’\ / |

. > > >

A [0 B8 [¢ | b

Free E

Pointer Next fit

m Use circular, doubly-linked list
m Support multiple approaches with single data structure

m First-fit vs. next-fit
= Either keep free pointer fixed or move as search list

m LIFO vs. FIFO
" |nsert as next block (LIFO), or previous block (FIFO)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Explicit List Summary

m Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full

= Slightly more complicated allocate and free because need to splice
blocks in and out of the list

= Some extra space for the links (2 extra words needed for each block)
= Does this increase internal fragmentation?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Today

m Explicit free lists
m Segregated free lists
m Memory-related perils and pitfalls

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Segregated List (Seglist) Allocators

m Each size class of blocks has its own free list

\ 4
\ 4
\ 4

16

\ 4
\ 4

32-48

64-inf —

m Often have separate classes for each small size
m For larger sizes: One class for each size [2! + 1,2!11]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Seglist Allocator

m Given an array of free lists, each one for some size class

m To allocate a block of size n:
= Search appropriate free list for block of size m > n (i.e., first fit)
= |f an appropriate block is found:

= Split block and place fragment on appropriate list

= If no block is found, try next larger class
= Repeat until block is found

m If no block is found:
= Request additional heap memory from OS (using sbrk ())
= Allocate block of n bytes from this new memory
= Place remainder as a single free block in appropriate size class.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Seglist Allocator (cont.)

m To free a block:
® Coalesce and place on appropriate list

m Advantages of seglist allocators vs. non-seglist allocators
(both with first-fit)
® Higher throughput
= |og time for power-of-two size classes vs. linear time
= Better memory utilization

= First-fit search of segregated free list approximates a best-fit
search of entire heap.

= Extreme case: Giving each block its own size class is equivalent to
best-fit.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

More Info on Allocators

m D. Knuth, The Art of Computer Programming, vol 1, 39 edition,
Addison Wesley, 1997

" The classic reference on dynamic storage allocation

m Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’| Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.

= Comprehensive survey
= Available from CS:APP student site (csapp.cs.cmu.edu)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/24383/quizzes/67225

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

https://canvas.cmu.edu/courses/24383/quizzes/67225

Carnegie Mellon

Today

m Explicit free lists
m Segregated free lists
m Memory-related perils and pitfalls

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Memory-Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Dereferencing Bad Pointers

m The classic scanf bug

int wval;

scanf ("$4d", wval);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Reading Uninitialized Memory

m Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec(int **A, int *x) {
int *y = malloc(N*sizeof (int));
int i, j;

for (i=0; i<N; i++)
for (j=0; Jj<N; j++)
yl[il += A[i][J1*x[]];
return y;

m Can avoid by using calloc

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Overwriting Memory

m Allocating the (possibly) wrong sized object

int **p;
p = malloc (N*sizeof (int)) ;
for (i=0; i<N; i++) {

pl[i] = malloc (M*sizeof (int)) ;

}

m Can you spot the bug?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Overwriting Memory

m Off-by-one errors

char **p;
p = malloc (N*sizeof (int *));

for (i=0; i<=N; i++) {
p[i] = malloc (M*sizeof (int)) ;

char *p;

p = malloc(strlen(s));
strcpy (p,s) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Overwriting Memory

m Not checking the max string size

char s[8];
int 1i;

gets(s); /* reads “123456789” from stdin */

m Basis for classic buffer overflow attacks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Overwriting Memory

m Misunderstanding pointer arithmetic

int *search(int *p, int wval) {

while (p && *p !'= val)
p += sizeof (int) ;

return p;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Overwriting Memory

m Referencing a pointer instead of the object it points to

int *BinheapDelete (int **binheap, int *size) ({
int *packet;
packet = binheap[O0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify (binheap, *size, 0);
return (packet) ;

m What gets decremented?
= (See next slide)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

C operators

Postfix

Operators Associativity
() [] left to right
1~ * @(type) sizeof right to left
* left to right
Unary Unary .

. Prefix left to right
<< > e left to right
< <= > >= left to right
= I= left to right

@ left to right
A S left to right
| left to right
&& left to right
| | left to right
?: right to left
= += -= *= [= %= g§= = I= <<= >>= right to left
, left to right

m ->, (), and [] have high precedence, with * and & just below
m Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53, updated ,

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Overwriting Memory

m Referencing a pointer instead of the object it points to

int *BinheapDelete (int **binheap, int *size) ({
int *packet;
packet = binheap[O0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify (binheap, *size, 0);
return (packet) ;
Operators Associativity

} 0 gl =» . ¥ left to right
I ~ pp == = & (type) sizeof right to left

* /% left to right

+ = left to right

<< >> left to right

m Same effect as sl it
. . = I= left to right

" size-- ’ & left to right

. 2 left to right

| Rewrlte ds I left to right
&& left to right

= (*Size)——; I left to right

f 2 right to left

= 4= == *= [= F= &= = 1= <<= >>= right to left

left to right

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Referencing Nonexistent Variables

m Forgetting that local variables disappear when a function
returns

int *foo () {
int wval;

return &val;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Freeing Blocks Multiple Times

m Nasty!

X = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int)) ;
<manipulate y>
free (x) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Referencing Freed Blocks

m Evil!

X = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int)) ;
for (i=0; i<M; i++)
y[i] = x[i]++;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Failing to Free Blocks (Memory Leaks)

m Slow, long-term killer!

foo() {
int *x = malloc (N*sizeof (int)) ;

return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Failing to Free Blocks (Memory Leaks)

m Freeing only part of a data structure

struct list {
int wval;
struct list *next;

};

foo () {
struct list *head = malloc(sizeof (struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Dealing With Memory Bugs
m Debugger: gdb

" Good for finding bad pointer dereferences
" Hard to detect the other memory bugs

m Data structure consistency checker
= Runs silently, prints message only on error
= Use as a probe to zero in on error
m Binary translator: valgrind
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
® Checks each individual reference at runtime
= Bad pointers, overwrites, refs outside of allocated block

m glibc malloc contains checking code
" setenv MALLOC CHECK 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Supplemental slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Conservative Mark & Sweep in C

m A “conservative garbage collector” for C programs

" is ptr () determines if a word is a pointer by checking if it points to
an allocated block of memory

= But, in C pointers can point to the middle of a block
ptr
Header 1 Assumes ptr in middle can be
used to reach anywhere in
the block, but no other block

m To mark header, need to find the beginning of the block

® Can use a balanced binary tree to keep track of all allocated blocks (key
is start-of-block)

= Balanced-tree pointers can be stored in header (use two additional

words
) Head Data
Size
// \\ Left: smaller addresses
Left Right Right: larger addresses

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Assumptions For a Simple Implementation

m Application
" new (n): returns pointer to new block with all locations cleared
" read (b, i) : read location i of block b into register
" write(b,i,v): write vinto location i of block b

m Each block will have a header word
® addressed asb[-1], for a blockb

= Used for different purposes in different collectors

m Instructions used by the Garbage Collector
" is ptr(p) : determines whether p is a pointer
= length (b): returns the length of block b, not including the header
" get roots(): returns all the roots

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is _ptr(p)) return;
if (markBitSet(p)) return;
setMarkBit (p) ;
for (i=0; i < length(p); i++)
mark (p[i]) ;
return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return;
setMarkBit (p) ;
for (i=0; i < length(p); i++)
mark (p[i]) ;
return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ;
for (i=0; i < length(p); i++)
mark (p[i]) ;
return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph
ptr mark (ptr p) {

if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit

for (i=0; i < length(p); i++)
mark (p[i]) ;
return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph
ptr mark (ptr p) {

if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit

for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[1]);
return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph
ptr mark (ptr p) {

if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call

return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
while (p < end) { // for entire heap
if markBitSet (p)
clearMarkBit () ;
else if (allocateBitSet(p))
free (p) ;
p += length (p+1) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ;
else if (allocateBitSet(p))
free (p) ;

p += length (p+1) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ; // yes -> so just clear mark bit
else if (allocateBitSet(p))
free (p) ;

p += length (p+1) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ; // yes -> so just clear mark bit
else if (allocateBitSet(p)) // never reached: is it allocated?
free (p) ;

p += length (p+1) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ; // yes -> so just clear mark bit
else if (allocateBitSet(p)) // never reached: is it allocated?
free(p) ; // yes -> its garbage, free it

p += length (p+1) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ; // yes -> so just clear mark bit
else if (allocateBitSet(p)) // never reached: is it allocated?
free(p) ; // yes -> its garbage, free it

p += length(p+l); // goto next block

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

C Pointer Declarations: Test Yourself!

int *p p is a pointer to int

int *p[13] p is an array[13] of pointer to int

int *(p[13]) p is an array[13] of pointer to int

int **p p is a pointer to a pointer to an int
int (*p) [13] p is a pointer to an array[13] of int
int *£() f is a function returning a pointer to int
int (*£f) () f is a pointer to a function returning int
int (*(*x[3]) ()) [5] X is an array[3] of pointers to functions

returning pointers to array[5] of ints

Source: K&R Sec 5.12

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

C Pointer Declarations: Test Yourself!

int *p p is a pointer to int

int *p[13] p is an array[13] of pointer to int

int *(p[13]) p is an array[13] of pointer to int

int **p p is a pointer to a pointer to an int
int (*p) [13] p is a pointer to an array[13] of int
int *£() f is a function returning a pointer to int
int (*f) () fis a pointer to a function returning int
int (*(*x[3]1) ()) [5] X is an array[3] of pointers to functions

returning pointers to array[5] of ints

int (*(*£())[13]) () fis a function returning ptr to an array[13]
of pointers to functions returning int

Source: K&R Sec 5.12

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Parsing: int (*(*£()) [13]) ()

int (*(*£()) [13]) () £
int (*(*£())[13]) () f is a function
int (*(*) [13]) () f is a function

that returns a ptr

int ([13]) () f 1is a function
that returns a ptr to an
array of 13

int (* [137) () f is a function that returns
a ptr to an array of 13 ptrs

int (*(*£()) [13]) () f 1is a function that returns
a ptr to an array of 13 ptrs
to functions returning an int

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

