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Review: Dynamic Memory Allocation

Application

Dynamic Memory Allocator

Heap

m Programmers use dynamic

memory allocators (such as
malloc) to acquire virtual

memory (VM) at runtime

For data structures whose size

is only known at runtime

m Dynamic memory allocators
manage an area of process
VM known as the heap
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Review: Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

Untsed et e eemme Need to tag
m; 3'2’ ‘Zé" ";2/ :6 each block as
% allocated/free

m Method 2: Explicit list among the free blocks using pointers

/—\ /\ Need space
7 2 77 16 "

for pointers

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

® Can use a balanced tree (e.g., Red-Black tree) with pointers within
each free block, and the length used as a key
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Review: Implicit Lists Summary

m Implementation: very simple

m Allocate cost:
® |inear time worst case

m Free cost:
= constant time worst case
= even with coalescing

m Memory Overhead:
" Depends on placement policy
= Strategies include first fit, next fit, and best fit

m Not used in practice formalloc/free because of linear-
time allocation

= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators
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Today

m Explicit free lists
m Segregated free lists
m Memory-related perils and pitfalls
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Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

------
aaaaaaa

VA 32 48 32 16

m Method 2: Explicit list among the free blocks using pointers

T~
732 T | |48 2. 77 | 16

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

® Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key
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Explicit Free Lists

Allocated (as before) Free
Size a Size a
Next
Payload and Prev
padding

Optional

N

Size a Size a

m Maintain list(s) of free blocks, not all blocks
= Luckily we track only free blocks, so we can use payload area
" The “next” free block could be anywhere
= So we need to store forward/back pointers, not just sizes

= Still need boundary tags for coalescing
= To find adjacent blocks according to memory order
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Explicit Free Lists

m Logically:

\ 4

\ 4

A

m Physically: blocks can be in any order

I
1

/ Forward (next) links

32 — 32 32 3248 /| < 4832 3232 | 32

C \/
K Back (prev) links
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Allocating From Explicit Free Lists

conceptual graphic

Before

2 ;

After (with splitting)

Y

= malloc(..)
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Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly
freed block?
m Unordered
= LIFO (last-in-first-out) policy
= Insert freed block at the beginning of the free list
= FIFO (first-in-first-out) policy
= |nsert freed block at the end of the free list
" Pro: simple and constant time

" Con: studies suggest fragmentation is worse than address ordered

m Address-ordered policy

" |nsert freed blocks so that free list blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

= Con:requires search

"  Pro: studies suggest fragmentation is lower than LIFO/FIFO
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Freeing With a LIFO Policy (Case 1)

Allocated Allocated

conceptual graphic

Before
free(p)

Root % o)

m Insert the freed block at the root of the list

After

Root I ‘@
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Freeing With a LIFO Policy (Case 2)

Allocated Free

conceptual graphic
®

Root ; I % o

m Splice out adjacent successor block, coalesce both memory
blocks, and insert the new block at the root of the list

After

Root Il W
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Freeing With a LIFO Policy (Case 3)

Free Allocated

conceptual graphic

%o

m Splice out adjacent predecessor block, coalesce both memory
blocks, and insert the new block at the root of the list

After P
Root I LO > % p
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Freeing With a LIFO Policy (Case 4)

Free Free

conceptual graphic

it

m Splice out adjacent predecessor and successor blocks, coalesce
all 3 blocks, and insert the new block at the root of the list

After

Before free (p)

Root i I

TR o
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Some Advice: An Implementation Trick

LIFO Insertion

FIFO Insertion " Point

POint \’\ / |

. > > >

A [0 B8 [ ¢ | b

Free E

Pointer Next fit

m Use circular, doubly-linked list
m Support multiple approaches with single data structure

m First-fit vs. next-fit
= Either keep free pointer fixed or move as search list

m LIFO vs. FIFO
" |nsert as next block (LIFO), or previous block (FIFO)
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Explicit List Summary

m Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full

= Slightly more complicated allocate and free because need to splice
blocks in and out of the list

= Some extra space for the links (2 extra words needed for each block)
= Does this increase internal fragmentation?
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Today

m Explicit free lists
m Segregated free lists
m Memory-related perils and pitfalls
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Segregated List (Seglist) Allocators

m Each size class of blocks has its own free list

\ 4
\ 4
\ 4

16

\ 4
\ 4

32-48

64-inf —

m Often have separate classes for each small size
m For larger sizes: One class for each size [2! + 1,2!11]
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Seglist Allocator

m Given an array of free lists, each one for some size class

m To allocate a block of size n:
= Search appropriate free list for block of size m > n (i.e., first fit)
= |f an appropriate block is found:

= Split block and place fragment on appropriate list

= If no block is found, try next larger class
= Repeat until block is found

m If no block is found:
= Request additional heap memory from OS (using sbrk ())
= Allocate block of n bytes from this new memory
= Place remainder as a single free block in appropriate size class.
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Seglist Allocator (cont.)

m To free a block:
® Coalesce and place on appropriate list

m Advantages of seglist allocators vs. non-seglist allocators
(both with first-fit)
® Higher throughput
= |og time for power-of-two size classes vs. linear time
= Better memory utilization

= First-fit search of segregated free list approximates a best-fit
search of entire heap.

= Extreme case: Giving each block its own size class is equivalent to
best-fit.
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More Info on Allocators

m D. Knuth, The Art of Computer Programming, vol 1, 39 edition,
Addison Wesley, 1997

" The classic reference on dynamic storage allocation

m Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’| Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.

= Comprehensive survey
= Available from CS:APP student site (csapp.cs.cmu.edu)
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Quiz Time!

Check out:

https://canvas.cmu.edu/courses/24383/quizzes/67225
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Today

m Explicit free lists
m Segregated free lists
m Memory-related perils and pitfalls
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Memory-Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks
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Dereferencing Bad Pointers

m The classic scanf bug

int wval;

scanf ("$4d", wval);
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Reading Uninitialized Memory

m Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec(int **A, int *x) {
int *y = malloc(N*sizeof (int));
int i, j;

for (i=0; i<N; i++)
for (j=0; Jj<N; j++)
yl[il += A[i][J1*x[]];
return y;

m Can avoid by using calloc
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Overwriting Memory

m Allocating the (possibly) wrong sized object

int **p;
p = malloc (N*sizeof (int)) ;
for (i=0; i<N; i++) {

pl[i] = malloc (M*sizeof (int)) ;

}

m Can you spot the bug?
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Overwriting Memory

m Off-by-one errors

char **p;
p = malloc (N*sizeof (int *));

for (i=0; i<=N; i++) {
p[i] = malloc (M*sizeof (int)) ;

char *p;

p = malloc(strlen(s));
strcpy (p,s) ;
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Overwriting Memory

m Not checking the max string size

char s[8];
int 1i;

gets(s); /* reads “123456789” from stdin */

m Basis for classic buffer overflow attacks
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Overwriting Memory

m Misunderstanding pointer arithmetic

int *search(int *p, int wval) {

while (p && *p !'= val)
p += sizeof (int) ;

return p;
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Overwriting Memory

m Referencing a pointer instead of the object it points to

int *BinheapDelete (int **binheap, int *size) ({
int *packet;
packet = binheap[O0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify (binheap, *size, 0);
return (packet) ;

m What gets decremented?
= (See next slide)
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C operators

Postfix

Operators Associativity
() [] left to right
1~ * @(type) sizeof right to left
* left to right
Unary Unary .

. Prefix left to right
<< > e left to right
< <= > >= left to right
= I= left to right

@ left to right
A S left to right
| left to right
&& left to right
| | left to right
?: right to left
= += -= *= [= %= g§= = I= <<= >>= right to left
, left to right

m ->, (), and [] have high precedence, with * and & just below
m Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53, updated ,

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Carnegie Mellon

Overwriting Memory

m Referencing a pointer instead of the object it points to

int *BinheapDelete (int **binheap, int *size) ({
int *packet;
packet = binheap[O0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify (binheap, *size, 0);
return (packet) ;
Operators Associativity

} 0 gl =» . ¥ left to right
I ~ pp == = & (type) sizeof right to left

* /% left to right

+ = left to right

<< >> left to right

m Same effect as sl it
. . = I= left to right

" size-- ’ & left to right

. 2 left to right

| Rewrlte ds I left to right
&& left to right

= (*Size)——; I left to right

f 2 right to left

= 4= == *= [= F= &= = 1= <<= >>= right to left

left to right
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Referencing Nonexistent Variables

m Forgetting that local variables disappear when a function
returns

int *foo () {
int wval;

return &val;
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Freeing Blocks Multiple Times

m Nasty!

X = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int)) ;
<manipulate y>
free (x) ;
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Referencing Freed Blocks

m Evil!

X = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int)) ;
for (i=0; i<M; i++)
y[i] = x[i]++;
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Failing to Free Blocks (Memory Leaks)

m Slow, long-term killer!

foo() {
int *x = malloc (N*sizeof (int)) ;

return;
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Failing to Free Blocks (Memory Leaks)

m Freeing only part of a data structure

struct list {
int wval;
struct list *next;

};

foo () {
struct list *head = malloc(sizeof (struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return;
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Dealing With Memory Bugs
m Debugger: gdb

" Good for finding bad pointer dereferences
" Hard to detect the other memory bugs

m Data structure consistency checker
= Runs silently, prints message only on error
= Use as a probe to zero in on error
m Binary translator: valgrind
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
® Checks each individual reference at runtime
= Bad pointers, overwrites, refs outside of allocated block

m glibc malloc contains checking code
" setenv MALLOC CHECK 3
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Supplemental slides
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Conservative Mark & Sweep in C

m A “conservative garbage collector” for C programs

" is ptr () determines if a word is a pointer by checking if it points to
an allocated block of memory

= But, in C pointers can point to the middle of a block
ptr
Header 1 Assumes ptr in middle can be
used to reach anywhere in
the block, but no other block

m To mark header, need to find the beginning of the block

® Can use a balanced binary tree to keep track of all allocated blocks (key
is start-of-block)

= Balanced-tree pointers can be stored in header (use two additional

words
) Head Data
Size
// \\ Left: smaller addresses
Left Right Right: larger addresses
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Assumptions For a Simple Implementation

m Application
" new (n): returns pointer to new block with all locations cleared
" read (b, i) : read location i of block b into register
" write(b,i,v): write vinto location i of block b

m Each block will have a header word
® addressed asb[-1], for a blockb

= Used for different purposes in different collectors

m Instructions used by the Garbage Collector
" is ptr(p) : determines whether p is a pointer
= length (b): returns the length of block b, not including the header
" get roots(): returns all the roots
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is _ptr(p)) return;
if (markBitSet(p)) return;
setMarkBit (p) ;
for (i=0; i < length(p); i++)
mark (p[i]) ;
return;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return;
setMarkBit (p) ;
for (i=0; i < length(p); i++)
mark (p[i]) ;
return;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ;
for (i=0; i < length(p); i++)
mark (p[i]) ;
return;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph
ptr mark (ptr p) {

if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit

for (i=0; i < length(p); i++)
mark (p[i]) ;
return;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph
ptr mark (ptr p) {

if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit

for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[1]);
return;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph
ptr mark (ptr p) {

if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call

return;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
while (p < end) { // for entire heap
if markBitSet (p)
clearMarkBit () ;
else if (allocateBitSet(p))
free (p) ;
p += length (p+1) ;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ;
else if (allocateBitSet(p))
free (p) ;

p += length (p+1) ;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ; // yes -> so just clear mark bit
else if (allocateBitSet(p))
free (p) ;

p += length (p+1) ;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ; // yes -> so just clear mark bit
else if (allocateBitSet(p)) // never reached: is it allocated?
free (p) ;

p += length (p+1) ;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ; // yes -> so just clear mark bit
else if (allocateBitSet(p)) // never reached: is it allocated?
free(p) ; // yes -> its garbage, free it

p += length (p+1) ;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ; // yes -> so just clear mark bit
else if (allocateBitSet(p)) // never reached: is it allocated?
free(p) ; // yes -> its garbage, free it

p += length(p+l); // goto next block
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C Pointer Declarations: Test Yourself!

int *p p is a pointer to int

int *p[13] p is an array[13] of pointer to int

int *(p[13]) p is an array[13] of pointer to int

int **p p is a pointer to a pointer to an int
int (*p) [13] p is a pointer to an array[13] of int
int *£() f is a function returning a pointer to int
int (*£f) () f is a pointer to a function returning int
int (*(*x[3]) ()) [5] X is an array[3] of pointers to functions

returning pointers to array[5] of ints

Source: K&R Sec 5.12
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C Pointer Declarations: Test Yourself!

int *p p is a pointer to int

int *p[13] p is an array[13] of pointer to int

int *(p[13]) p is an array[13] of pointer to int

int **p p is a pointer to a pointer to an int
int (*p) [13] p is a pointer to an array[13] of int
int *£() f is a function returning a pointer to int
int (*f) () fis a pointer to a function returning int
int (*(*x[3]1) ()) [5] X is an array[3] of pointers to functions

returning pointers to array[5] of ints

int (*(*£())[13]) () fis a function returning ptr to an array[13]
of pointers to functions returning int

Source: K&R Sec 5.12
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Parsing: int (*(*£()) [13]) ()

int (*(*£()) [13]) () £
int (*(*£())[13]) () f is a function
int (*(* ) [13]) () f is a function

that returns a ptr

int ( [13]) () f 1is a function
that returns a ptr to an
array of 13

int (* [137) () f is a function that returns
a ptr to an array of 13 ptrs

int (*(*£()) [13]) () f 1is a function that returns
a ptr to an array of 13 ptrs
to functions returning an int
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