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Review: Dynamic Memory Allocation

 Programmers use dynamic 
memory allocators (such as 
malloc) to acquire virtual 
memory (VM) at runtime
▪ For data structures whose size 

is only known at runtime

 Dynamic memory allocators 
manage an area of process 
VM known as the heap
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Review: Keeping Track of Free Blocks

 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
▪ Different free lists for different size classes

 Method 4: Blocks sorted by size
▪ Can use a balanced tree (e.g., Red-Black tree) with pointers within 

each free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused
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Review: Implicit Lists Summary
 Implementation: very simple

 Allocate cost: 
▪ linear time worst case

 Free cost: 
▪ constant time worst case

▪ even with coalescing

 Memory Overhead: 
▪ Depends on placement policy

▪ Strategies include first fit, next fit, and best fit

 Not used in practice for malloc/free because of linear-
time allocation
▪ used in many special purpose applications

 However, the concepts of splitting and boundary tag 
coalescing are general to all allocators
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Today

 Explicit free lists

 Segregated free lists

 Memory-related perils and pitfalls
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Keeping Track of Free Blocks

 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
▪ Different free lists for different size classes

 Method 4: Blocks sorted by size
▪ Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key

Unused
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Explicit Free Lists

 Maintain list(s) of free blocks, not all blocks
▪ Luckily we track only free blocks, so we can use payload area

▪ The “next” free block could be anywhere

▪ So we need to store forward/back pointers, not just sizes

▪ Still need boundary tags for coalescing

▪ To find adjacent blocks according to memory order

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

Optional
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Explicit Free Lists

 Logically:

 Physically: blocks can be in any order

A B C

32 32 32 32 4848 3232 32 32

Forward (next) links

Back (prev) links

A B

C



Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic
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Freeing With Explicit Free Lists

 Insertion policy: Where in the free list do you put a newly 
freed block?

 Unordered
▪ LIFO (last-in-first-out) policy

▪ Insert freed block at the beginning of the free list

▪ FIFO (first-in-first-out) policy

▪ Insert freed block at the end of the free list

▪ Pro: simple and constant time

▪ Con: studies suggest fragmentation is worse than address ordered

 Address-ordered policy

▪ Insert freed blocks so that free list blocks are always in address order: 

addr(prev) < addr(curr) < addr(next)

▪ Con: requires search

▪ Pro: studies suggest fragmentation is lower than LIFO/FIFO
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Freeing With a LIFO Policy (Case 1)

 Insert the freed block at the root of the list

free( )

Root

Root

Before

After

conceptual graphic
Allocated Allocated
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Freeing With a LIFO Policy (Case 2)

 Splice out adjacent successor block, coalesce both memory 
blocks, and insert the new block at the root of the list

free( )

Root

Before

Root

After

conceptual graphicAllocated Free
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Freeing With a LIFO Policy (Case 3)

 Splice out adjacent predecessor block, coalesce both memory 
blocks, and insert the new block at the root of the list

free( )

Root

Before

Root

After

conceptual graphic
AllocatedFree
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Freeing With a LIFO Policy (Case 4)

 Splice out adjacent predecessor and successor blocks, coalesce 
all 3 blocks, and insert the new block at the root of the list

free( )

Root

Before

Root

After

conceptual graphic
Free Free
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Some Advice: An Implementation Trick

 Use circular, doubly-linked list

 Support multiple approaches with single data structure

 First-fit vs. next-fit
▪ Either keep free pointer fixed or move as search list

 LIFO vs. FIFO
▪ Insert as next block (LIFO), or previous block (FIFO)

A B C D

Free
Pointer

FIFO Insertion
Point

LIFO Insertion
Point

Next fit
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Explicit List Summary

 Comparison to implicit list:
▪ Allocate is linear time in number of free blocks instead of all blocks

▪ Much faster when most of the memory is full 

▪ Slightly more complicated allocate and free because need to splice 
blocks in and out of the list

▪ Some extra space for the links (2 extra words needed for each block)

▪ Does this increase internal fragmentation?



Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Explicit free lists

 Segregated free lists

 Memory-related perils and pitfalls
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Segregated List (Seglist) Allocators

 Each size class of blocks has its own free list

 Often have separate classes for each small size

 For larger sizes: One class for each size [𝟐𝒊 + 𝟏,𝟐𝒊+𝟏]

16

32-48

64–inf
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Seglist Allocator

 Given an array of free lists, each one for some size class

 To allocate a block of size n:
▪ Search appropriate free list for block of size m > n (i.e., first fit)

▪ If an appropriate block is found:

▪ Split block and place fragment on appropriate list 

▪ If no block is found, try next larger class

▪ Repeat until block is found

 If no block is found:
▪ Request additional heap memory from OS (using sbrk())

▪ Allocate block of n bytes from this new memory

▪ Place remainder as a single free block in appropriate size class.
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Seglist Allocator (cont.)

 To free a block:
▪ Coalesce and place on appropriate list 

 Advantages of seglist allocators vs. non-seglist allocators 
(both with first-fit)
▪ Higher throughput

▪ log time for power-of-two size classes vs. linear time

▪ Better memory utilization

▪ First-fit search of segregated free list approximates a best-fit 

search of entire heap.

▪ Extreme case: Giving each block its own size class is equivalent to 

best-fit.
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More Info on Allocators

 D. Knuth, The Art of Computer Programming, vol 1, 3rd edition, 
Addison Wesley, 1997
▪ The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey and 
Critical Review”, Proc. 1995 Int’l Workshop on Memory 
Management, Kinross, Scotland, Sept, 1995.
▪ Comprehensive survey

▪ Available from CS:APP student site (csapp.cs.cmu.edu)
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Quiz Time!

Check out:

https://canvas.cmu.edu/courses/24383/quizzes/67225

https://canvas.cmu.edu/courses/24383/quizzes/67225
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Today

 Explicit free lists

 Segregated free lists

 Memory-related perils and pitfalls
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Memory-Related Perils and Pitfalls

 Dereferencing bad pointers

 Reading uninitialized memory

 Overwriting memory

 Referencing nonexistent variables

 Freeing blocks multiple times

 Referencing freed blocks

 Failing to free blocks
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Dereferencing Bad Pointers

 The classic scanf bug

int val;

...

scanf("%d", val);
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Reading Uninitialized Memory

 Assuming that heap data is initialized to zero

 Can avoid by using calloc

/* return y = Ax */

int *matvec(int **A, int *x) { 

int *y = malloc(N*sizeof(int));

int i, j;

for (i=0; i<N; i++)

for (j=0; j<N; j++)

y[i] += A[i][j]*x[j];

return y;

}
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Overwriting Memory

 Allocating the (possibly) wrong sized object

 Can you spot the bug?

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {

p[i] = malloc(M*sizeof(int));

}
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Overwriting Memory

 Off-by-one errors

char **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {

p[i] = malloc(M*sizeof(int));

}

char *p;

p = malloc(strlen(s));

strcpy(p,s);
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Overwriting Memory
 Not checking the max string size

 Basis for classic buffer overflow attacks

char s[8];

int i;

gets(s);  /* reads “123456789” from stdin */ 
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Overwriting Memory

 Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (p && *p != val)

p += sizeof(int);

return p;

}
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Overwriting Memory

 Referencing a pointer instead of the object it points to

 What gets decremented?
▪ (See next slide)

int *BinheapDelete(int **binheap, int *size) {

int *packet;

packet = binheap[0];

binheap[0] = binheap[*size - 1];

*size--;

Heapify(binheap, *size, 0);

return(packet);

}
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C operators
Operators Associativity
()  []  -> . ++ -- left to right
!  ~  ++ -- +  - *  & (type) sizeof right to left
*  /  % left to right
+  - left to right
<<  >> left to right
<  <=  >  >= left to right
==  != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= &= ^= != <<= >>= right to left
, left to right

 ->, (), and [] have high precedence, with * and & just below

 Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53, updated

Unary

Postfix

Binary
Prefix

Unary

Binary
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Overwriting Memory

 Referencing a pointer instead of the object it points to

 Same effect as
▪ size--;

 Rewrite as
▪ (*size)--;

int *BinheapDelete(int **binheap, int *size) {

int *packet;

packet = binheap[0];

binheap[0] = binheap[*size - 1];

*size--;

Heapify(binheap, *size, 0);

return(packet);

}
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Referencing Nonexistent Variables

 Forgetting that local variables disappear when a function 
returns

int *foo () {

int val;

return &val;

}  
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Freeing Blocks Multiple Times

 Nasty!

x = malloc(N*sizeof(int));

<manipulate x>

free(x);

y = malloc(M*sizeof(int));

<manipulate y>

free(x);
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Referencing Freed Blocks

 Evil! 

x = malloc(N*sizeof(int));

<manipulate x>

free(x);

...

y = malloc(M*sizeof(int));

for (i=0; i<M; i++)

y[i] = x[i]++;
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Failing to Free Blocks (Memory Leaks)

 Slow, long-term killer! 

foo() {

int *x = malloc(N*sizeof(int));

...

return;

}
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Failing to Free Blocks (Memory Leaks)

 Freeing only part of a data structure

struct list {

int val;

struct list *next;

};

foo() {

struct list *head = malloc(sizeof(struct list));

head->val = 0;

head->next = NULL;

<create and manipulate the rest of the list>

...

free(head);

return;

}
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Dealing With Memory Bugs
 Debugger: gdb

▪ Good for finding  bad pointer dereferences

▪ Hard to detect the other memory bugs

 Data structure consistency checker
▪ Runs silently, prints message only on error

▪ Use as a probe to zero in on error

 Binary translator:  valgrind
▪ Powerful debugging and analysis technique

▪ Rewrites text section of executable object file

▪ Checks each individual reference at runtime

▪ Bad pointers, overwrites, refs outside of allocated block

 glibc malloc contains checking code
▪ setenv MALLOC_CHECK_ 3 
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Supplemental slides
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Conservative Mark & Sweep in C

 A “conservative garbage collector” for C programs
▪ is_ptr() determines if a word is a pointer by checking if it points to 

an allocated block of memory

▪ But, in C pointers can point to the middle of a block

 To mark header, need to find the beginning of the block
▪ Can use a balanced binary tree to keep track of all allocated blocks (key 

is start-of-block)

▪ Balanced-tree pointers can be stored in header (use two additional 
words)

Header

ptr

Head Data

Left Right

Size
Left: smaller addresses
Right: larger addresses

Assumes ptr in middle can be
used to reach anywhere in

the block, but no other block
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Assumptions For a Simple Implementation

 Application
▪ new(n):  returns pointer to new block with all locations cleared

▪ read(b,i): read location i of block b into register

▪ write(b,i,v): write v into location i of block b

 Each block will have a header word
▪ addressed as b[-1], for a block b

▪ Used for different purposes in different collectors

 Instructions used by the Garbage Collector
▪ is_ptr(p): determines whether p is a pointer

▪ length(b):  returns the length of block b, not including the header

▪ get_roots():  returns all the roots
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Mark and Sweep Pseudocode

ptr mark(ptr p) {

if (!is_ptr(p)) return;        // if not pointer -> do nothing

if (markBitSet(p)) return;     // if already marked -> do nothing

setMarkBit(p);                 // set the mark bit

for (i=0; i < length(p); i++)  // recursively call mark on all words

mark(p[i]); //   in the block

return;

}      

Mark using depth-first traversal of the memory graph 
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Mark and Sweep Pseudocode

ptr mark(ptr p) {

if (!is_ptr(p)) return;        // if not pointer -> do nothing

if (markBitSet(p)) return;     // if already marked -> do nothing

setMarkBit(p);                 // set the mark bit

for (i=0; i < length(p); i++)  // recursively call mark on all words

mark(p[i]); //   in the block

return;

}      

Mark using depth-first traversal of the memory graph 
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Mark and Sweep Pseudocode

ptr mark(ptr p) {

if (!is_ptr(p)) return;        // if not pointer -> do nothing

if (markBitSet(p)) return;     // if already marked -> do nothing

setMarkBit(p);                 // set the mark bit

for (i=0; i < length(p); i++)  // recursively call mark on all words

mark(p[i]); //   in the block

return;

}      

Mark using depth-first traversal of the memory graph 
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Mark and Sweep Pseudocode

ptr mark(ptr p) {

if (!is_ptr(p)) return;        // if not pointer -> do nothing

if (markBitSet(p)) return;     // if already marked -> do nothing

setMarkBit(p);                 // set the mark bit

for (i=0; i < length(p); i++)  // recursively call mark on all words

mark(p[i]); //   in the block

return;

}      

Mark using depth-first traversal of the memory graph 
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Mark and Sweep Pseudocode

ptr mark(ptr p) {

if (!is_ptr(p)) return;        // if not pointer -> do nothing

if (markBitSet(p)) return;     // if already marked -> do nothing

setMarkBit(p);                 // set the mark bit

for (i=0; i < length(p); i++)  // for each word in p’s block

mark(p[i]); 

return;

}      

Mark using depth-first traversal of the memory graph 
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Mark and Sweep Pseudocode

ptr mark(ptr p) {

if (!is_ptr(p)) return;        // if not pointer -> do nothing

if (markBitSet(p)) return;     // if already marked -> do nothing

setMarkBit(p);                 // set the mark bit

for (i=0; i < length(p); i++)  // for each word in p’s block

mark(p[i]);                  //  make recursive call 

return;

}      

Mark using depth-first traversal of the memory graph 
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Mark and Sweep Pseudocode

ptr mark(ptr p) {

if (!is_ptr(p)) return;        // if not pointer -> do nothing

if (markBitSet(p)) return;     // if already marked -> do nothing

setMarkBit(p);                 // set the mark bit

for (i=0; i < length(p); i++)  // for each word in p’s block

mark(p[i]);                  //  make recursive call 

return;

}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap

if markBitSet(p)

clearMarkBit();

else if (allocateBitSet(p)) 

free(p);

p += length(p+1);

}     
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Mark and Sweep Pseudocode

ptr mark(ptr p) {

if (!is_ptr(p)) return;        // if not pointer -> do nothing

if (markBitSet(p)) return;     // if already marked -> do nothing

setMarkBit(p);                 // set the mark bit

for (i=0; i < length(p); i++)  // for each word in p’s block

mark(p[i]);                  //  make recursive call 

return;

}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap

if markBitSet(p) // did we reach this block?

clearMarkBit();

else if (allocateBitSet(p)) 

free(p);

p += length(p+1);

}     
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Mark and Sweep Pseudocode

ptr mark(ptr p) {

if (!is_ptr(p)) return;        // if not pointer -> do nothing

if (markBitSet(p)) return;     // if already marked -> do nothing

setMarkBit(p);                 // set the mark bit

for (i=0; i < length(p); i++)  // for each word in p’s block

mark(p[i]);                  //  make recursive call 

return;

}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap

if markBitSet(p) // did we reach this block?

clearMarkBit(); //  yes -> so just clear mark bit 

else if (allocateBitSet(p)) 

free(p);

p += length(p+1);

}     
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Mark and Sweep Pseudocode

ptr mark(ptr p) {

if (!is_ptr(p)) return;        // if not pointer -> do nothing

if (markBitSet(p)) return;     // if already marked -> do nothing

setMarkBit(p);                 // set the mark bit

for (i=0; i < length(p); i++)  // for each word in p’s block

mark(p[i]);                  //  make recursive call 

return;

}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap

if markBitSet(p) // did we reach this block?

clearMarkBit(); //  yes -> so just clear mark bit 

else if (allocateBitSet(p)) // never reached: is it allocated?

free(p);

p += length(p+1);

}     
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Mark and Sweep Pseudocode

ptr mark(ptr p) {

if (!is_ptr(p)) return;        // if not pointer -> do nothing

if (markBitSet(p)) return;     // if already marked -> do nothing

setMarkBit(p);                 // set the mark bit

for (i=0; i < length(p); i++)  // for each word in p’s block

mark(p[i]);                  //  make recursive call 

return;

}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap

if markBitSet(p) // did we reach this block?

clearMarkBit(); //  yes -> so just clear mark bit 

else if (allocateBitSet(p)) // never reached: is it allocated?

free(p); //  yes -> its garbage, free it

p += length(p+1);

}     
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Mark and Sweep Pseudocode

ptr mark(ptr p) {

if (!is_ptr(p)) return;        // if not pointer -> do nothing

if (markBitSet(p)) return;     // if already marked -> do nothing

setMarkBit(p);                 // set the mark bit

for (i=0; i < length(p); i++)  // for each word in p’s block

mark(p[i]);                  //  make recursive call 

return;

}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap

if markBitSet(p) // did we reach this block?

clearMarkBit(); //  yes -> so just clear mark bit 

else if (allocateBitSet(p)) // never reached: is it allocated?

free(p); //  yes -> its garbage, free it

p += length(p+1);           // goto next block

}     
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C Pointer Declarations: Test Yourself!
int *p

int *p[13]

int *(p[13])

int **p

int (*p)[13]

int *f()

int (*f)()

int (*(*x[3])())[5]

p is a pointer to int

p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

x is an array[3] of pointers  to functions 
returning pointers to array[5] of ints

Source: K&R Sec 5.12
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C Pointer Declarations: Test Yourself!
int *p

int *p[13]

int *(p[13])

int **p

int (*p)[13]

int *f()

int (*f)()

int (*(*x[3])())[5]

int (*(*f())[13])()

p is a pointer to int

p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

f is a function returning ptr to an array[13]
of pointers to functions returning int

x is an array[3] of pointers  to functions 
returning pointers to array[5] of ints

Source: K&R Sec 5.12
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Parsing:  int (*(*f())[13])()
int (*(*f())[13])() f

int (*(*f())[13])() f is a function

that returns a ptr

int (*(*f())[13])() f is a function that returns

a ptr to an array of 13 ptrs

int (*(*f())[13])() f is a function

that returns a ptr to an 

array of 13

int (*(*f())[13])() f is a function that returns

a ptr to an array of 13 ptrs

to functions returning an int

int (*(*f())[13])() f is a function


