Carnegie Mellon

Dynamic Memory Allocation:
Basic Concepts

15-213/18-213/15-513: Introduction to Computer Systems
13t Lecture, October 12, 2021

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Announcements

m No lecture on Thursday October 14

m Malloclab out today
" Checkpoint due on Tuesday October 26 (+ up to 2 grace days)
" Final submission due on Tuesday November 2 (+ up to 2 grace days)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Today

m Basic concepts
m Implicit free lists

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Dynamic Memory Allocation

Application

Dynamic Memory Allocator

Heap

m Programmers use dynamic
memory allocators (such as
malloc) to acquire virtual
memory (VM) at runtime

" For data structures whose size
is only known at runtime

m Dynamic memory allocators
manage an area of process
VM known as the heap

0x400000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 0

Kernel virtual memory

User stack
(created at runtime)

'
f

Memory-mapped region for
shared libraries

T

|

Carnegie Mellon

Memory
invisible to
user code

+«—3rsp

(stack
pointer)

brk

Run-time heap
(created by malloc)

A

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Unused

Loaded
from

the
executable
file

Carnegie Mellon

Dynamic Memory Allocation

m Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free

m Types of allocators

= Explicit allocator: application allocates and frees space
= e.g., mallocand freeinC

= Implicit allocator: application allocates, but does not free space
= e.g., new and garbage collection in Java

m Will discuss simple explicit memory allocation today

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

The malloc Package

#include <stdlib.h>

void *malloc(size t size)
= Successful:

= Returns a pointer to a memory block of at least size bytes
aligned to a 16-byte boundary (on x86-64)

» [fsize == O, returns NULL
= Unsuccessful: returns NULL (0) and sets errno

void free (void *p)
= Returns the block pointed at by p to pool of available memory
= p must come from a previous calltomalloc, calloc, or realloc

Other functions
" calloc: Version of malloc that initializes allocated block to zero

"= realloc: Changes the size of a previously allocated block
= sbrk: Used internally by allocators to grow or shrink the heap

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

malloc Example

#include <stdio.h>
#include <stdlib.h>

void foo(long n) {
long i, *p;

/* Allocate a block of n longs */
p = (long *) malloc(n * sizeof (long));
if (p == NULL) {
perror ("malloc") ;
exit (0);
}

/* Initialize allocated block */
for (i=0; i<n; i++)

pli] = 1i;
/* Do something with p */

/* Return allocated block to the heap */
free(p) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Visualization Conventions

m Show 8-byte words as squares
m Allocations are double-word aligned

\ Y J g ,_I
Allocated block Free block
(4 words) (2 words) Free word

Allocated word

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

A||Ocati0n Example #define SIZ sizeof(size t)

(Conceptual)

malloc (4*SIZ)

o
=
I

malloc (5*SIZ)

'O
N
I

p3 = malloc (6*SIZ)

free (p2)

p4 = malloc (2*SIZ)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Constraints

m Applications
= Canissue arbitrary sequence of malloc and £ree requests
= freerequest must betoamalloc’d block

m Explicit Allocators

= Can’t control number or size of allocated blocks

" Must respond immediately to malloc requests
= j.e., can’t reorder or buffer requests

" Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory

= Must align blocks so they satisfy all alignment requirements
= 16-byte (x86-64) alignment on 64-bit systems

= Can manipulate and modify only free memory

= Can’t move the allocated blocks once they aremalloc’d

= j.e.,compaction is not allowed. Why not?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Performance Goal: Throughput

m Given some sequence of malloc and free requests:
* Ro,Ri,...Ry, o, Ry q

m Goals: maximize throughput and peak memory utilization

" These goals are often conflicting

m Throughput:
" Number of completed requests per unit time
= Example:
= 5,000 malloc calls and 5,000 £ree calls in 10 seconds

= Throughput is 1,000 operations/second

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Performance Goal: Minimize Overhead

m Given some sequence of malloc and free requests:
= Ro,Ry, ..., Ry, ... Rpy_q

m After k requests we have:

m Def: Aggregate payload P,
= malloc (p) resultsin a block with a payload of p bytes
" The aggregate payload P;, is the sum of currently allocated payloads
" The peak aggregate payload max Py P; is the maximum aggregate payload
at any point in the sequence up to request

m Def: Current heap size H,,
= Assume heap only grows when allocator uses sbrk, never shrinks

m Def: Overhead, Oy,

" Fraction of heap space NOT used for program data
" Oy = (Hi/max;<x P;) — 1.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Benchmark Example

Step Command Delta Allocated Peak
M Benchmark 1 a 0 9904 9904 9904 9904
2 a 1 50084 50084 59988 59988
syn-array-short 3 a2 20 20 60008 60008
= Trace provided with 4 a 3 16784 16784 76792 76792
loc lab 5 £ 3 16784 60008 76792
malloc la 6 a 4 840 840 60848 76792
" Allocate & free 10 blocks 7 a 5 3244 3244 64092 76792
= 2= allocate 8 £ 0 9904 54188 76792
9 a 6 2012 2012 56200 76792
" f=free 10 £ 2 -20 56180 76792
= Bias toward allocate at 11 a 7 33856 33856 90036 90036
becinning & f t end 12 £ 1 50084 39952 90036
eginning & free at en 13 a 8 136 136 40088 90036
" Blocks number 1-10 14 £ 7 33856 6232 90036
15 £ 6 2012 4220 90036

[.

Allocated: Sum of all = o -0 T6TTy G
allocated amounts 17 £ 4 -840 3400 90036
= peak: Max so far of 18 £ 8 136 3264 90036
Allocated 19 £ 5 3244 20 90036
20 £ 9 20 0 90036

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Benchmark Visualization

Step Command Delta Allocated Peak 1

1 a0 9904 9904 9904 9904

2 a1 50084 50084 59988 59988 _

3 a2 20 20 60008 oo o 08

4 a 3 16784 16784 76792 76792 2

5 £ 3 -16784 60008 76792 2 o,

6 a 4 840 840 60848 76792

7 a5 3244 3244 64092 76792 3

8 £0 9904 54188 76792 I 04

9 a 6 2012 2012 56200 76792 &

10 £ 2 -20 56180 76792 £

11 a 7 33856 33856 90036 90036 o 02

12 £1 -50084 39952 90036

13 a 8 136 136 40088 90036 0

L ~33856 6232 90036 12345678 91011121314 1516 17 18 19 20

15 £ 6 -2012 4220 90036 Step

16 a 9 20 20 4240 90036

17 £ 4 -840 3400 90036 —o—Allocated —e—Peak

18 £ 8 -136 3264 90036

19 £5 -3244 20 90036

20 £9 -20 0 %036 ® P|ot P, (allocated) and max Py, (peak)
i<

as a function of k (step)
= Y-axis normalized — fraction of maximum

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Typical Benchmark Behavior

Memory Used / Peak Data
o

0.6

0.3 0.4 0.5 0.6 0.7
Operation / Operation Count

m Longer sequence of mallocs & frees (40,000 blocks)

= Starts with all mallocs, and shifts toward all frees

m Allocator must manage space efficiently the whole time

m Production allocators can shrink the heap

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

16

Carnegie Mellon

Fragmentation

m Poor memory utilization caused by fragmentation
" Internal fragmentation
= External fragmentation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Internal Fragmentation

m For a given block, internal fragmentation occurs if payload is
smaller than block size

Block
A
a N
Internal Internal
fragmentation fragmentation

m Caused by
® Qverhead of maintaining heap data structures
= Padding for alignment purposes

= Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

m Depends only on the pattern of previous requests
" Thus, easy to measure

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Internal Fragmentation Effect

1.2

@mmm Peak + Internal Frag
@ Peak

Memory Used / Peak Data
o

o
~

J

0.0 Y
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Operati ion / Operation Count

m Purple line: additional heap size due to
allocator’s data + padding for alignment
" For this benchmark, 1.5% overhead
= Cannot achieve in practice
= Especially since cannot move allocated blocks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

#define SIZ sizeof(size t)

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

malloc (4*SIZ)

o
=
I

malloc (5*SIZ)

O
N
I

p3 = malloc (6*SIZ)

free (p2)

p4 = malloc(7*s1z) Yikes! (what would happen now?)

m Depends on the pattern of future requests
" Thus, difficult to measure

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

External Fragmentation Effect

1.4

1.2

p—
1.0
8
©
a
= 0.8
&
~ @ Peak + All Frag (Best Fit)
°
% @mmm Peak + Internal Frag
Zos AN am Peak
£
2 // \ @ Allocated
) / \\
0.2 \
0.0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Operation / Operation Count

m Green line: additional heap size due to external fragmentation
m Best Fit: One allocation strategy

" (To be discussed later)
= Total overhead = 8.3% on this benchmark

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Implementation Issues

m How do we know how much memory to free given just a
pointer?

m How do we keep track of the free blocks?

m What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

m How do we pick a block to use for allocation -- many
might fit?

m How do we reuse a block that has been freed?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Knowing How Much to Free

m Standard method

= Keep the length (in bytes) of a block in the word preceding the
block.

= Including the header
= This word is often called the header field or header
= Requires an extra word for every allocated block

pO
pO = malloc (4*SIZ) 1

48
VRN
block size Payload Padding

(aligned) (for alignment)

free (p0)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks
Need to tag

—————

Unused s S

7 s A each block as
» % 32 48 32 16 allocated/free

ﬂﬂﬂﬂﬂ

m Method 2: Explicit list among the free blocks using pointers

/\/\

7739 48 39| 16 Need space
Z for pointers

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g., Red-Black tree) with pointers within
each free block, and the length used as a key

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Today

m Basic concepts
m Implicit free lists

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Method 1: Implicit Free List

m For each block we need both size and allocation status

® Could store this information in two words: wasteful!
m Standard trick

= When blocks are aligned, some low-order address bits are always O
" |nstead of storing an always-0 bit, use it as an allocated/free flag
" When reading the Size word, must mask out this bit

1 word
A
~ ™
Size a a = 1: Allocated block
a = 0: Free block
Format of
allocated and Payload Size: total block size
free blocks o
Payload: application data
(allocated blocks only)
Optional
padding

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Detailed Implicit Free List Example

~~~~~~~~~~
- N, -, N
-, N, .
.

, N T T T End
Unused NN T T . Block
Start / I ¥ A X
of ‘ ‘16/0 ‘32/1 ‘64/0 ‘32/1 ‘8/1|I
heap
heap start heap end
' Double-word Allocated blocks: shaded
' aligned Free blocks: unshaded

Headers: labeled with “size in words/allocated bit”
Headers are at non-aligned positions
=» Payloads are aligned

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27



Carnegie Mellon

Implicit List: Data Structures

header

payload

m Block declaration

uint64_t word t;

typedef struct block
{

word t header;

unsigned char payload[0]; // Zero length array
} block t;

m Getting payload from block pointer // block t *block

return (void *) (block->payload);

m Getting header from payload // bp points to a payload

return (block t *) ((unsigned char *) bp
- offsetof (block t, payload));

C function offsetof (struct, member) returns offset of member within struct

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28



Carnegie Mellon

Implicit List: Header access

Size a
m Getting allocated bit from header
return header & 0x1;
m Getting size from header
return header & ~0xfL;
m Initializing header // block t *block

block->header = size | alloc;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29



Carnegie Mellon

Implicit List: Traversing list

header | payload |unused header| payload
block size >
m Find next block
static block t * (block t *block)
{
return (block t *) ((unsigned char *) block
+ get_size(block));
}
y - \\ TN " T T i L End
Unused " ST N ™ Block

‘ ‘16/0 ‘32/1 ‘64/0 D32/1 ‘ 8/1 ﬂ

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30




Carnegie Mellon

Implicit List: Finding a Free Block

m First fit:
= Search list from beginning, choose first free block that fits:
® Finding space for asize bytes (including header):

static block t *find fit(size t asize)
{
block t *block;
for (block = heap start; block !'= heap end;
block = find next(block)) ({
{
if (!'(get_alloc(block))
&& (asize <= get size(block)))
return block;
}
return NULL; // No fit found
}
heap starkt- = T _heap_end

\
/
/ \

- ~—~
- ~
- ~~o
e ~~
- ~
- ~
- ~.
- ~..
- ~,
PR ~
- SS
- ~.
- ~.
- ~.
- ~,
- ~,
R ~
-

4
4

4 N,
\ 'l, \\‘
4 € .

16/0 32/1 ‘64/0 [:::]32/1 8/1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31




Implicit List: Finding a Free Block

m First fit:
= Search list from beginning, choose first free block that fits:
= Can take linear time in total number of blocks (allocated and free)
® |n practice it can cause “splinters” at beginning of list

m Next fit:
= Like first fit, but search list starting where previous search finished
= Should often be faster than first fit: avoids re-scanning unhelpful blocks
= Some research suggests that fragmentation is worse

m Best fit:
= Search the list, choose the best free block: fits, with fewest bytes left over
= Keeps fragments small—usually improves memory utilization
= Will typically run slower than first fit
= Still a greedy algorithm. No guarantee of optimality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32



Carnegie Mellon

Comparing Strategies

N /
L—
g

1.0
s
©
a
%08 F
[
a
~ @ First Fit
k-
3 \ @ Best Fit
g 0.6 Perfect Fit
§ / @ Data Fit

@ Data

M / \\

0.2 \

0.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Operation / Operation Count

m Total Overheads (for this benchmark)
= Perfect Fit: 1.6%
= Best Fit: 8.3%
= First Fit: 11.9%
= Next Fit: 21.6%

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33



Carnegie Mellon

Implicit List: Allocating in Free Block

m Allocating in a free block: splitting

= Since allocated space might be smaller than free space, we might want
to split the block

-y -y ——
- ~ - ~Ny e T T N am,

. o N‘\‘,/’ s \b,r" ~~N‘,/’-~;/‘
7/, 32 32 418 16 2
p
split block(p, 32)
,z*"—--~‘~~~,¢"—--~‘~~Q,¢"—_--~‘~~A,z"‘~A,r"‘~A
[ o
77,32 32 32 16 |16 7/

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34



Implicit List: Splitting Free Block

split block(p, 32)

---------- —— -
_——————— ~~~~~* v‘” -~ ~~\\A74/”‘ ~~\~\
64 16 32 32 16]
p

// Warning: This code is incomplete

static void split block(block t *block, size t asize) {
size t block size = get_ size(block);

if ((block size - asize) >= min block size) ({
write header (block, asize, true);
block t *block next = find next(block);
write header (block next, block size - asize, false);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35



Carnegie Mellon

Implicit List: Freeing a Block

m Simplest implementation:
= Need only clear the “allocated” flag
= But can lead to “false fragmentation”

—————————
~~~~~~~~~

77,32 32 22 16 16 &
free (p) p
,/”’ ~~‘\~¢”’ ~~‘~Q¢’ - ~~‘\v/’-~\‘,’ Sa
7 v
732 32 32 16 16| &)

malloc (5*s1z) Yikes! . .
There is enough contiguous

free space, but the allocator
won’t be able to find it

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Implicit List: Coalescing

m Join (coalesce) with next/previous blocks, if they are free

= Coalescing with next block

- ,/ \‘,/
7 32 32 .
logically
free (p) S gone
i ol \\‘,/
7/ 32 32

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Implicit List: Coalescing

m Join (coalesce) with next block, if it is free
= Coalescing with next block

- —~
~~~~~

7/ 64

logically

free (p) gone

--------
- —~
~~~~~

%621

= How do we coalesce with previous block?
= How do we know where it starts?
= How can we determine whether its allocated?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Implicit List: Bidirectional Coalescing

m Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
= |mportant and general technique!

”—--~~ ”—--~ ——————

-
-, ~ - SS -

. i Sa” Sa-" ~\ /A
%) 32 32|32 32 48 48 32 3278
A28 ,”‘\\ ,f’m“~~ =7 &”
Header —} Size - a = 1: Allocated block
a = 0: Free block
Format of . .
allocated and Payload and Size: Total block size
padding
free blocks Payload: Application data
(allocated blocks only)
Boundary tag > Size a
(footer)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Quiz

https://canvas.cmu.edu/courses/24383/quizzes/67237

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

https://canvas.cmu.edu/courses/24383/quizzes/67237

Carnegie Mellon

Implementation with Footers

header| payload | unused | footer | header] payload
asize >
asize >
«——— dsize
m Locating footer of current block
const size t dsize = 2*sizeof (word t);
static word t *header to footer(block t *)

{
size t asize = get size(block);
return (word t *) (block->payload + asize - dsize);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Implementation with Footers

header footer | header] payload

payload | unused

(_
1 word

m Locating footer of previous block

static word t *find prev footer(block t *)

{
return &(block->header) - 1;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Splitting Free Block: Full Version

split block(p, 32)

i,

—,——’—— "‘~~~* e ~\\A,4”’ N
64 64(16 32 32 32 32/ 16
P

static void split block(block t *block, size t asize) {
size t block size = get size(block);

if ((block size - asize) >= min block size) ({
write header (block, asize, true);
write footer(block, asize, true);
block t *block next = find next(block);
write header (block next, block size - asize, false);
write footer (block next, block size - asize, false);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4
] Allocated Allocated Free Free
Block being
freed
Allocated Free Allocated Free

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Constant Time Coalescing (Case 1)

ml 1 ml 1

ml 1 ml 1

n 1 n 0
—

n 1 n 0

m2 1 m2 1

m2 1 m2 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Constant Time Coalescing (Case 2)

ml 1 ml 1
ml 1 ml 1
n 1 n+m?2 0
—
n 1
m2 0
m2 0 n+m?2 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Constant Time Coalescing (Case 3)

ml 0 n+ml 0
ml 0
n 1
—
n 1 n+ml 0
m2 1 m2 1
m2 1 m2 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Constant Time Coalescing (Case 4)

ml 0 n+ml+m2 0
ml 0
n 1
—(
n 1
m2 0
m2 0 n+ml+m?2 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Heap Structur

———

P pm——— -~ ~.

’ N, R ‘~~
~,

Dummy . . T T Dummy
Footer / LT T Header
Start 2 I Lt - {
of ‘ 8/1 ‘16/0 ‘32/1 ‘64/0 32/1 ‘ 8/1 |I
heap
heap start heap end

m Dummy footer before first header
= Marked as allocated
= Prevents accidental coalescing when freeing first block

m Dummy header after last footer
= Prevents accidental coalescing when freeing final block

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Top-Level Malloc Code

const size t dsize = 2*sizeof(word t);

void *mm malloc(size t)
{ = — round up(n, m)
size t = round up(size + dsize, dsize); =
m *((n+m-1) /m)
block t * = find fit(asize);
if (block ==)
return ;
size t = get size(block);
write header (block, block size,)
write footer (block, block size,)

split block (block, asize);

return header to payload(block) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Top-Level Free Code

{

void mm free (void *bp)

block t * = payload to header (bp) ;
size t = get_size(block);

write header (block, size,
write footer (block, size,

-
N

Ne

coalesce_block (block) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

51

Carnegie Mellon

Disadvantages of Boundary Tags

m Internal fragmentation

Size a
m Can it be optimized?
= Which blocks need the footer tag? Payload and
" What does that mean? padding
Size a

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

No Boundary Tag for Allocated Blocks

m Boundary tag needed only for free blocks
m When sizes are multiples of 16, have 4 spare bits

1 word 1 word
~ —"~ ~ / —" ~
Size b1 a = 1: Allocated block Size b0
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free
Payload
Unallocated
Size: block size
Optional Payload: application data
padding Size b0
Allocated Free
Block Block

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

No Boundary Tag for Allocated Blocks
(Case 1)

_ m1l ?1 m1l ?1
previous
block
block n 11 n 10
being —
freed n 10
m2 11 m2 01
next
block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

No Boundary Tag for Allocated Blocks
(Case 2)

_ m1l ?1 m1l ?1
previous
block
block n 11 n+m2 10
being —
freed
m2 10

next
block m2 10 n+m2 10

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

No Boundary Tag for Allocated Blocks
(Case 3)

_ ml ?0 n+ml ?0
previous
block
ml ?0
block n 01
being —
freed n+ml 20
m2 11 m2 01
next
block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

No Boundary Tag for Allocated Blocks
(Case 4)

orevious m1l ?0 n+ml+m?2 ?0
block
ml ?0
block n 01
being —_—
freed
m2 10
next
block m2 10 n+ml+m?2 ?0

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Summary of Key Allocator Policies

m Placement policy:
= First-fit, next-fit, best-fit, etc.
" Trades off lower throughput for less fragmentation

= |nteresting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search
entire free list

m Splitting policy:
= When do we go ahead and split free blocks?
" How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
" Immediate coalescing: coalesce each time free is called

= Deferred coalescing: try to improve performance of £ree by deferring
coalescing until needed.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Implicit Lists: Summary

m Implementation: very simple

m Allocate cost:
" [inear time worst case

m Free cost:
= constant time worst case
= even with coalescing

m Memory Overhead
= will depend on placement policy
" First-fit, next-fit or best-fit

m Not used in practice for malloc/free because of linear-
time allocation

= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

