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Today

m Basics of compiler optimization
" Principles and goals
= Some example optimizations

Obstacles to optimization
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What does it mean to compile code?

m The CPU only understands
machine code directly

Source Code (.c, .cpp, .h) file

m All other languages must

e cithe —

" jnterpreted: executed

by software | . .

= compiled: translated l pssembly Gode ()
to machine code I .
by software i "

Machine Code (.o, .obj)

Executable Machine
Code (.exe)
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There’s a story that starts like this:

Back in the Good Old Days,

when the term "software" sounded funny

and Real Computers were made out of drums
and vacuum tubes,

Real Programmers wrote in machine code.

Not FORTRAN. Not RATFOR. Not, even,
assembly language.

Machine Code.
Raw, unadorned, inscrutable hexadecimal numbers. Directly.

— “The Story of Mel, a Real Programmer”
Ed Nather, 1983
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m Rear Admiral Grace Hopper

= |nvented first compiler in 1951
(technically it was a linker)

= Coined “compiler” (and “bug”)

= Compiled for Harvard Mark |

= Eventually led to COBOL
(which ran the world for years)

= “] decided data processors ought to
be able to write their programs in
English, and the computers would
translate them into machine code”
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m John Backus

" Led team at IBM invented
the first commercially
available compiler in 1957

= Compiled FORTRAN code for
the IBM 704 computer

= FORTRAN still in use today
for high performance code

= “Much of my work has come
from being lazy. | didn't like
writing programs, and so,
when | was working on the
IBM 701, | started work on a
programming system to
make it easier to write
programs”
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m Fran Allen
= Pioneer of many optimizing
compilation techniques

= Wrote a paper simply called
“Program Optimization” in 1966

= “This paper introduced the use
of graph-theoretic structures to
encode program content in
order to automatically and
efficiently derive relationships
and identify opportunities for
optimization”

= First woman to win the ACM
Turing Award (the “Nobel Prize
of Computer Science”)
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Goals of compiler optimization

m Minimize number of instructions
= Don’t do calculations more than once
" Don’t do unnecessary calculations at all
= Avoid slow instructions (multiplication, division)

m Avoid waiting for memory
= Keep everything in registers whenever possible
= Access memory in cache-friendly patterns
" Load data from memory early, and only once
m Avoid branching
= Don’t make unnecessary decisions at all

= Make it easier for the CPU to predict branch destinations
= “Unroll” loops to spread cost of branches over more instructions
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Limits to compiler optimization

m Generally cannot improve algorithmic complexity
= Only constant factors, but those can be worth 10x or more...

m Must not cause any change in program behavior

" Programmer may not care about “edge case” behavior,
but compiler does not know that

= Exception: language may declare some changes acceptable

m Usually only analyze one function at a time
= Whole-program analysis is usually too expensive
= Exception: inlining merges many functions into one

m Cannot anticipate run-time inputs

= “Worst case” performance can be just as important as “normal”

= Especially for code exposed to malicious input
(e.g. network servers)
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Compilation is a pipeline

Preprocessing ——
Fold constants |—>| Inline functions |—> common
subexpressions
|
v
Restructure | .| Movecodeout | .| Reduce control
loops of loops flow to gotos
OMPIiatic V7 |
- Reduce
EImn;gLeedead —~|  operation > ins?rﬁlci?;ns
strength
|
v
Schedule | Allocate | Emitassembly
instructions registers language
Assembling
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Two kinds of optimizations

entry
m Local optimizations |
work inside a single setup
basic block |
= Constant folding, Easy?
strength reduction, (local) [
CSE, ... —
m Global optimizations easy complex
process the entire i
control flow graph of a 1000
function
" Loop nest optimization, l
code motion, (global) Done? —
CSE, dead code .
elimination, ... v
exit
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Constant Folding

m Do arithmetic in the compiler

long mask = OxFF << 8; -2
long mask = OxFF00;

m Any expression with constant inputs can be folded
m Might even be able to remove library calls...

size t namelen = strlen("Harry Bovik"); -
size t namelen = 11;
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Strength reduction

m Replace expensive operations with cheaper ones

long a = b * 5; -
long a = (b << 2) + b;

m Multiplication and division are the usual targets

m Multiplication is often hiding in memory access
expressions
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Dead code elimination

m Don’t emit code that will never be executed

ny 2 my o,
J

H{)—{ puts("Only bozos on this bus™); 3

m Don’t emit code whose result is overwritten

m These may look silly, but...
= Can be produced by other optimizations
= Assignments to X might be far apart
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Common Subexpression Elimination

m Factor out repeated calculations, only do them once

norm[i] = v[i].x*v[i].x + v[i].y*v[i].y;
9

elt = &v[i];

X = elt->x;

y = elt->y;

norm[i] = x*x + y*y;
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Inlining
m Copy body of a function into its caller(s)

= Can create opportunities for many other optimizations
= Can make code much bigger and therefore slower

int pred(int x) { int func(int y) {
if (x == 9) int tmp;
return 9; i - o) t _ 0 el " ~ 1:
else if (y ==0) tmp = 0; else tmp =y - 1;
return x - 1; if (0 == @) tmp += 0; else tmp += 0 - 1;
} if (y+1 == @) tmp += 0; else tmp += (y + 1) - 1;

int func(int y) { return tmp;

return pred(y) ¥
+ pred(0)
+ pred(y+1);
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Inlining
m Copy body of a function into its caller(s)

= Can create opportunities for many other optimizations
= Can make code much bigger and therefore slower

int pred(int x) { int func(int y) {
if (x == 9) int tmp;
return 9; i - o) t _ 0 el " ~ 1:
else if (y ==0) tmp = 0; else tmp =y - 1;
return x - 1; if (0 == @) tmp += @; else tmp += 0 - 1;
} if (y+1 == 0) tmp += @; else tmp += (y + 1) - 1;

int func(int y) { return tmp;

return pred(y) ¥
+ pred(0)

+ pred(y+1); Always true Does nothing Can constant fold
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Inlining

m Copy body of a function into its caller(s)
= Can create opportunities for many other optimizations
= Can make code much bigger and therefore slower

int func(int y) { int func(int y) {
int tmp; int tmp = 9;
if (y == 0) tmp = 0; else tmp =y - 1; if (y '=0) tmp =y - 1;
if (y+1 == 0) tmp += @; else tmp += (y + 1) - 1; if (y !'= -1) tmp += y;
return tmp; return tmp;

} }
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Code Motion

m Move calculations out of a loop

m Only valid if every iteration would produce same result

long 3J;

for (j = 0; j < n; Jj++)
a[n*i+j] = b[]];

9

long 3J;

int ni = n*i;

for (j = 0; j < n; Jj++)
alni+j] = b[J];
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Loop Unrolling

m Amortize cost of loop condition by duplicating body
m Creates opportunities for CSE, code motion, scheduling
m Prepares code for vectorization

m Can hurt performance by increasing code size

for (size_t i = @; i < nelts; i++) { for (size_t i = 0; i < nelts - 4; 1 += 4) {
A[i] = B[i]*k + C[i]; Al[i ] =B[i J*k + C[i 1];
} A[i+1] = B[i+1]*k + C[i+1];
A[i+2] = B[i+2]*k + C[i+2];
A[i+3] = B[i+3]*k + C[i+3];
}
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Loop Unrolling

m Amortize cost of loop condition by duplicating body
m Creates opportunities for CSE, code motion, scheduling
m Prepares code for vectorization

m Can hurt performance by increasing code size

for (size t i = @; i < nelts; i++) { for (size_t i = 0; i < nelts - 4; i += 4) {
A[i] = B[i]*k + C[i]; A[i ] =B[i I*k + C[i 1;
} A[i+1] = B[i+1]*k + C[i+1];
A[i+2] = B[i+2]*k + C[i+2];
A[i+3] = B[i+3]*k + C[i+3];
}

When would this change be incorrect?
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Scheduling

m Find the CPU something useful to do while it’s waiting for
memory, division unit, etc.

m Extremely machine-dependent, but here’s a basic

example:
for (size t i =0; i < nelts - 4; i +=4) { for (size t i = 0; i < nelts - 4; i +=4) {
A[i ] =B[i ]*k + C[1i 1]; BO = B[i]; Bl = B[i+1]; B2 = B[i+2]; B3 = B[i+3];
A[i+1] = B[i+1]*k + C[i+1]; Co = C[i]; C1 = C[i+1]; C2 = C[i+2]; C3 = B[i+3];
A[i+2] = B[i+2]*k + C[i+2]; A[i ] = Be*k + CO;
A[i+3] = B[i+3]*k + C[i+3]; A[i+1] = B1*k + C1;
} A[i+2] = B2*k + C2;
A[i+3] = B3*k + C3;
}
22
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Scheduling

m Find the CPU something useful to do while it’s waiting for
memory, division unit, etc.

m Extremely machine-dependent, but here’s a basic

example:
for (size t i =0; i < nelts - 4; i +=4) { for (size t i = 0; i < nelts - 4; i +=4) {
A[i ] =B[i ]*k + C[1i 1]; BO = B[i]; Bl = B[i+1]; B2 = B[i+2]; B3 = B[i+3];
A[i+1] = B[i+1]*k + C[i+1]; Co = C[i]; C1 = C[i+1]; C2 = C[i+2]; C3 = B[i+3];
A[i+2] = B[i+2]*k + C[i+2]; A[i ] = Be*k + CO;
A[i+3] = B[i+3]*k + C[i+3]; A[i+1] = B1*k + C1;
} A[i+2] = B2*k + C2;
A[i+3] = B3*k + C3;
}

When would this change be incorrect?
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Memory Aliasing

/* Sum rows of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i++) {
b[i] = 0;
for (jJ = 0; j < n; j++)
b[i] += a[i*n + j];

# sum rowsl inner loop
.L4:

movsd (%rsi, %$rax,8), %xmmO # FP load
addsd (%$rdi) , %$xmmO # FP add
movsd $xmm0, (%rsi,%rax,8) # FP store
addgq $8, %rdi

cmpgq $rcx, %Srdi

jne .L4

" Code updatesb [i] on every iteration

= Why couldn’t compiler optimize this away?
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Memory Aliasing

/* Sum rows of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) {
long i, j;
for (i = 0;

i< n; i++) {
b[i] = 0;
for (J = 0; j < n; j++)
b[i] += a[i*n + j];

Value of B:

double A[9] = double A[9] = init: [4, 8, 16]
{ OI 1/ 2’ { 0/ 1/ 2’
4, 8, 16}, 3 22, 224} :

’ ’ ’ i=20: 3, 8, 16

32, 64, 128}; 32, 64, 128}; : :

double B[3] = A+3; i=1: [3, 22, 16]

sum rowsl(A, B, 3);

= 2: [3, 22, 224]

I

" Code updatesb[i] on every iteration

= Must consider possibility that these updates will affect program behavior
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Removing Aliasing

/* Sum rows of n X n matrix a
and store in vector b */
void sum rows2 (double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i++) {
double val = 0;
for (j = 0; j < n; j++)
val += a[i*n + j];
b[i] = val;

# sum rows2 inner loop
.L10:

addsd ($rdi) , %$xmmO # FP load + add
addgq $8, %rdi

cmpgq $rax, %rdi

jne .L10

" Use alocal variable for intermediate results
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Removing Aliasing

/* Sum rows of n X n matrix a
and store in vector b */

void sum rows3(double *restrict a, double *restrict b, long n) ({

long i, j;
for (i =0; i
b[i] = 0;
for (jJ = 0; j < n; j++)
b[i] += a[i*n + j];

< n; i++) {

# sum rows3 inner loop
.L12:

addsd ($rdi) , %$xmmO # FP load + add
addgq $8, %rdi

cmpgq $rax, %rdi

jne .L12

= Use restrict qualifier to tell compiler that a and b cannot alias
= Less reliable than using local variables
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Removing Aliasing

subroutine sum_rows4(a, b, n)
implicit none
integer, parameter :: dp = kind(1.d9)
real(kind=dp), dimension(:), intent(in) :: a
real(kind=dp), dimension(:), intent(out) :: b
integer, intent(in) :: n
integer :: i, j
doi=1,
b(i) = 0
do j 1,n
b(i) = b(i) + a(i*n + j)
end
end

# sum rows4 inner loop
.L5:

addsd ($rdi) , %$xmmO # FP load + add
addgq $8, %rdi

cmpgq $rax, %rdi

jne .L5

= Use Fortran
" Array parameters in Fortran are assumed not to alias
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When the compiler can’t move something

void lowerl(char *s) void lower2(char *s)
{ {
size t i; size t i, n = strlen(s);
for (i = @; i < strlen(s); i++) for (i = 0; i < n; i++)
if (s[i] >= 'A' && s[i] <= 'Z") if (s[i] >= '"A' && s[i] <= 'Z")
s[i] -= ("A" - 'a'); s[i] -= ("A" - 'a');
} }
250
200
B 150
g lowerl
(&)
2 100
5
o 50
lower?2
0

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
String length
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Today

m Linking: combining object files into programs
= Symbols and symbol resolution
= Relocation
= Static libraries
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Example C Program

int sum(int *a, int n); int sum(int *a, int n)
{
int array[2] = {1, 2}; int i, s = 0;
int main(int argc, char** argv) for (i = 0; 1 < n; i++) {
{ s += a[i];
int val = sum(array, 2); }
return val; return s;
} }
main.c sum.cC
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Linking

m Programs are translated and linked using a compiler driver:
" linux> gcc -0g -0 prog main.c sum.cC

" linux> ./prog

main .C sum.cC Source files
Translators Translators
(cpp, cc1, as) (cpp, cc1, as)
mag.n o suln o Separately compiled
l l relocatable object files
Linker (Id)

1 Fully linked executable object file
prog (contains code and data for all functions
defined in main.c and sum. c)
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What Do Linkers Do?

m Step 1: Symbol resolution

® Programs define and reference symbols (global variables and functions):
= void swap() {..} /* define symbol swap */
= swap () ; /* reference symbol swap */
= int *xp = &x; /* define symbol xp, reference x */

= Symbol definitions are stored in object file (by assembler) in symbol table.
= Symbol table is an array of entries

= Each entry includes name, size, and location of symbol.

= During symbol resolution step, the linker associates each symbol reference
with exactly one symbol definition.
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Symbols in Example C Program

Definitions

el

in{iEEEZ)nt *a, int n)
{
int i, s = 0;
for (1 = 0; i < n; i++) {
s += al[i];
}
return val; return s;
} }
LN . sum.cC
N
Reference
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Linker Symbols

m Every object file m has a table of symbols it defines or needs.
m Three types:

m Global definitions
= Symbols defined by m that can be referenced by other files.
"= |InC, non-static functions and global variables.

m Local definitions
= Symbols that are defined by m but cannot be referenced by other files.
"= |n C, functions and global variables defined with static.
= Local linker symbols are not local program variables

m External references
= Symbols that m uses but does not define.
" These must be defined by some other module.
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Symbol Resolution

??7?
int sum(int *a, int n); int sum(int *a, int n)
{
int array([2] = {1, 2}; int i, s = 0;
v
int main(int argc, char** argv) for (i = 0; 1 < n; i++) {
{ s += a[i];
int val = sum(array, 2); }
return val; | return s;
} }
main.c sum.cC
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Relocation Entries

int array[2] = {1, 2};

int main(int argc, char**
argv)
{
int val = sum(array, 2);
return val;

} main.c

0000000000000000 <main>:

0: 48 83 ec 08 sub $0x8,%rsp
4: be 02 00 00 00 mov $0x2, %esi
9: bf 00 00 00 00 mov $0x0,%edi # %edi = &array
a: R X86 64 32 array # Relocation entry
e: e8 00 00 00 0O callg 13 <main+0x13> # sum()
f: R X86 64 PC32 sum-0x4 # Relocation entry
13: 48 83 c4 08 add $0x8,%rsp
17: c3 retqg

main.o
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Symbol Identification

Which of the following names will be in the symbol
table of symbols.o?

Names:
bol . * incr
Sympoils.C. . foo
int inecr = 1; * a
static int foo(int a) { * argce
int b = a + incr; * argv
return b; * b _
} * main
* printf
e "%d\n"

int main(int argc,
char* argv[]) {
printf ("$d\n", foo(5));
return O;

}

Can find this with readel £:
linux> readelf -s symbols.o
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Local Symbols

m Local non-static C variables vs. local static C variables

= Local non-static C variables: stored on the stack
® |ocal static C variables: stored in either .bss or .data

static int x = 15;

int £() {
static int x = 17; Compiler allocates space in .data for
return x++; ..

} each definition of x

int g() { Creates local symbols in the symbol
static int x = 19; table with unique names, e.g., x,
return x += 14; x.1721 and x.1724.

}

int h() {
return x += 27;

Bryant g } static-local.c Third Edition 39




What if you mess up?

int x=7; extern int x; Correct program.
pl() {} p2() {} Only one definition of x, pl, p2
int x=7; S £ Link error: two definitions of x and p1
pl() {} pl() {}
int x; int x; Compiler-dependent. Might be considered
pl() {} p2() {} either one or two definitions of x.
int x=7; extern double x; Undefined behavior. No link error.
int y=5; p2() {} Writes to x in p2 may overwrite y!
pl() {}
char pl[] extern void pl(); Undefined behavior. No link error.

= 0xC3; | p2() { p1(); } Call to p1 may crash!

Linker checks for two definitions of one symbol.
Linker does not check types of references.
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Type Mismatch Example

extern long int x; double = 3.14;
int main(int ,
char * [1) {
printf ( , X);

return 0;

mismatch-main.c mismatch-variable.c

m Compiles without any errors or warnings
m What gets printed? B ETyr ST I e Tay

l'a_ll+|

461425387/021498988 7
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Detecting the Type Mismatch Example

extern long int x;
mismatch.h

#include "mismatch.h"

int main(int ,
char * [1) {
printf ( , X);
return 0;
} mismatch-main.c

#include "mismatch.h"

double = 3.14;

mismatch-variable.c

m Now we get an error ... from the compiler, not the linker.

mismatch-variable.c:3:8: conflicting types for ‘x’
mismatch.h:1:17: previous declaration of ‘x’

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Rules for avoiding type mismatches

m Avoid global variables as much as possible
m Use static as much as possible

m Declare everything that’s not static in a header file
= Make sure to include the header file everywhere it’s relevant
" |ncluding the files that define those symbols

m Always put extern on declarations in header files
= Unnecessary but harmless for function declarations
= Avoids the quirky behavior of extern-less global variables

m Always write (void) when a function takes no args
" extern void no_args(void) ;

= Leaving out the void means “I’'m not saying what argument list
this function takes.” Turns off argument type checking!
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What Do Linkers Do? (cont’d)
m Step 2: Relocation

= Merges separate code and data sections into single sections

= Relocates symbols from their relative locations in the . o files to
their final absolute memory locations in the executable.

= Updates all references to these symbols to reflect their new
positions.
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Linking Example

int sum(int *a, int n); int sum(int *a, int n)
{

int array[2] = {1, 2}; int 1, s = 0;
int main(int argc,char **argv) for (i = 0; 1 < n; i++) {
{ s += a[1i];

int val = sum(array, 2); }

return val; return s;
} main.c } sum.c
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Step 2: Relocation

Relocatable Object Files Executable Object File
System code . text 0
Headers
System data -data System code )
\ main ()
. . text
main.o >
fext sum ()
main () -tex
q
int array[2]={1,2} .data More system code
Syst dat
sum.o Lkt .data
/ int array[2]={1,2}

sum () .text

.symtab
.debug

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46



Relocated .text section

00000000004004d0 <main>:

4004d0: 48 83 ec 08 sub $0x8,%rsp

4004d4: be 02 00 00 00 mov $0x2, %esi

400449: bf 18 10 60 00 mov $0x601018,%edi # %edi = &array
4004de: e8 callg 4004e8 <sum> # sum()

4004e3: 48 83 c4 08 add S0x8,%rsp

4004e7: c3 retqg

00000000004004e8 <sum>:

4004e8: b8 00 00 00 00 mov $0x0, %eax

4004ed: ba 00 00 00 00 mov $0x0, $edx

4004f2: eb 09 jmp 4004fd <sum+0x15>
4004f4: 48 63 ca movslqg %edx, %$rcx

4004£7: 03 04 8f add (%rdi, %rcx,4) ,%eax
4004fa: 83 c2 01 add $0x1, $edx

4004£d: 39 f2 cmp %esi, %edx

4004ff: 7c £3 jl 4004£f4 <sum+0xc>
400501: £3 c3 repz retq

callgqginstruction uses PC-relative addressing for sum():
0x4004e8 =0x4004e3 +
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Libraries: Packaging a Set of Functions

m How to package functions commonly used by programmers?

= Math, I/O, memory management, string manipulation, etc.

m Awkward, given the linker framework so far:
= Option 1: Put all functions into a single source file
= Programmers link big object file into their programs
= Space and time inefficient
= Option 2: Put each function in a separate source file

= Programmers explicitly link appropriate binaries into their
programs

= More efficient, but burdensome on the programmer
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Old-Fashioned Solution: Static Libraries

m Static libraries (.a archive files)

= Concatenate related relocatable object files into a single file with an
index (called an archive).

" Enhance linker so that it tries to resolve unresolved external references
by looking for the symbols in one or more archives.

= |f an archive member file resolves reference, link it into the executable.
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Creating Static Libraries

atoi.c printf.c random.c
Translator Translator Translator
atoi.o printf.o random. o

Archiver (ar)

l

libc.a C standard library

unix> ar rs libc.a \
atoi.o printf.o .. random.o

m Archiver allows incremental updates
m Recompile function that changes and replace .o file in archive.
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Commonly Used Libraries

libc. a (the C standard library)
= 4.6 MB archive of 1496 object files.

= /0O, memory allocation, signal handling, string handling, data and time,
random numbers, integer math

libm. a (the C math library)
= 2 MB archive of 444 object files.
= floating point math (sin, cos, tan, log, exp, sqrt, ...)

% ar -t /usr/lib/libc.a | sort $ ar -t /usr/lib/libm.a | sort
fork.o € _acos.o

. e acosf.o

fprintf.o e acosh.o

fpu control.o eZécoshf.o

fputc.o e _acoshl.o

freopen.o e acosl.o

fscanf.o eZésin.o

fseek.o e asinf.o

fstab.o e asinl.o
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Linking with
Static Libraries

libvector.a

void addvec (int *x, int *y,

#include <stdio.h> int *z, int n) {
#include "vector.h" int i;
int x[2] = {1, 2}; for (1 = 0; i < n; i++)
int y[2] = {3, 4}; z[i] = x[i] + yI[i];
int z[2]; } addvec.c
int main(int argc, char** void multvec (int *x, int *y,
argv) int *z, int n)
{ {

addvec(x, y, z, 2); int i;

printf("z = [%d %d]\n”,

z[0], z[1]); for (i = 0; i < n; i++)
return O; main2.c z[i] = x[i] * y[i]:;

} } multvec.c
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Linking with Static Libraries

addvec.o multvec.o

| |

main2.c vector.h Archiver

| e

Translators | o .
(cpp, ccl, as) libvector.a libc.a Static libraries
Rzloca;o;bh‘ainz o addvec .o pr:c'.’nltf . o” a;;l any ?thif;
object files \ modules called by printf.o
Linker (1d) unix> gcc -static -o prog2c \
main2.0 -L. -lvector
roq2c Fully linked
prog executable object file
(861,232 bytes)

“c” for “compile-time”
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Using Static Libraries

m Linker’s algorithm for resolving external references:
= Scan .o filesand . a files in the command line order.
= During the scan, keep a list of the current unresolved references.

= Aseach new .o or .afile, obj, is encountered, try to resolve each
unresolved reference in the list against the symbols defined in obj.

= |f any entries in the unresolved list at end of scan, then error.

m Problem:
"= Command line order matters!
= Moral: put libraries at the end of the command line.

unix> gcc -static -o prog2c -L. -lvector main2.o
main2.o0: In function main':

main2.c: (.text+0x19) : undefined reference to "addvec'
collect2: error: 1ld returned 1 exit status
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Quiz Time!

Check out:

https://canvas.cmu.edu/courses/24383/quizzes/67220
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If we have time...

m Branch prediction
m Dynamic libraries
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What About Branches?
m Challenge

® |nstruction Control Unit must work well ahead of Execution Unit
to generate enough operations to keep EU busy

404663: mov  $0x0,%eax :}_ :
404668: cmp %$rdi) ,%rsi Executlng
AUklos  gigm R < How to continue?

40466d: mov 0x8 (%$rdi) ,%rax

404685: repz retq

= When encounters conditional branch, cannot reliably determine where to
continue fetching
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Modern CPU Design

Carnegie Mellon

Instruction Control

: Retirement

; ...... Unit

: Register
File

Fetch Address
Control .
Instruction

WS{UTEEN Instructions

Decode

Operations

Cache

Register Updates Prediction OK?

S8 Functional
Units

Operation Results

Execution

Addr. Addr.

Data Data
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Branch Outcomes

= When encounter conditional branch, cannot determine where to continue
fetching

= Branch Taken: Transfer control to branch target
= Branch Not-Taken: Continue with next instruction in sequence
= Cannot resolve until outcome determined by branch/integer unit

404663: mov $0x0, %$eax
404668: cmp (%$rdi) , %rsi

Alelion  gigEm RIEED Branch Not-Taken
40466d: mov  0x8(%rdi) ,%rax ?’

Branch Taken

404685: repz retq
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Branch Prediction

m Ildea
® Guess which way branch will go
" Begin executing instructions at predicted position
= But don’t actually modify register or memory data

404663: mov $0x0, $eax
404668: cmp %$rdi) ,%rsi
40466b: jge 404685

40466d: mov  0x8(%rdi),%rax ) Predict Taken

404685: repz retq } Begin
Execution
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Branch Prediction Through Loop

401029: vmulsd (%rdx),%xmmO, $xmmO Assume
40102d: add $0x8, $rdx vector Iength =100
401031: cmp $rax, srdx .
401034: 3jne 401029 I =98
Predict Taken (OK)
401029: vmulsd (%$rdx) , $xmmO, $xmmO
40102d: add $0x8, $rdx
401031: cmp $rax, srdx .
401034: Jjne 401029 i =99
— 7 Predict Taken

401029: vmulsd (%rdx),%xmm0,%xmm0 (Oops) T
40102d: add $0x8, $rdx —~
401031: cmp $rax, srdx Read Executed
401034: jne 401029 i=100 invalid

7 location
401029: vmulsd (%rdx) , $xmmO, $xmmO
40102d: add  $0x8,%rdx Fetched
401031: cmp $rax,%rdx _l_
401034: jne 401029 =101
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Branch Misprediction Invalidation

401029: vmulsd (%rdx),%xmmO, $xmmO Assume

40102d: add $0x8, $rdx vector Iength =100
401031: cmp $rax, srdx .

401034: jne 401029 i =98

Predict Taken (OK)
401029: vmulsd (%$rdx) , $xmmO, $xmmO

40102d: add $0x8, $rdx
401031: cmp $rax, srdx .
401034: Jjne 401029 i =99

— Predict Taken
> N 7 (Oops)
40102d: add S0x8, $rdx h

401031: cmp srax, srdx
401034: jne 401029 i =100

¢ Invalidate

°

4010209 o 9
—401024d:. __add S0x8 Srdx

—401031 . _cmp Srax Srdx
401034+ jne 401029 =101
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Branch Misprediction Recovery

401029: vmulsd (%rdx) ,$xmmO, $xmmO

40102d: add $0x8, $rdx )

401031: cmp  %rax,%rdx I=33 Definitely not taken
401034: jne 401029

401036: jmp 401040 — Reload

401040: vmovsd $xmm0, ($rl2) } Pipeline

m Performance Cost

= Multiple clock cycles on modern processor
= Can be a major performance limiter
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Branch Prediction Numbers

m Default behavior:

= Backwards branches are often loops so predict taken
= Forwards branches are often if so predict not taken

m Predictors average better than 95% accuracy
= Most branches are already predictable.

m Annual branch predictor contests at top Computer
Architecture conferences

" https://www.jilp.org/iwac-2/program/JWAC-2-program.htm
= Winner: 34.1 mispredictions per kilo-instruction (!)
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Getting High Performance

m Good compiler and flags

m Don’t do anything sub-optimal
= Watch out for hidden algorithmic inefficiencies
= Write compiler-friendly code

= Watch out for optimization blockers:
procedure calls & memory references

= ook carefully at innermost loops (where most work is done)

m Tune code for machine
= Exploit instruction-level parallelism
= Avoid unpredictable branches
= Make code cache friendly
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Modern Solution: Shared Libraries

m Static libraries have the following disadvantages:
= Duplication in the stored executables (every function needs libc)
= Duplication in the running executables

= Minor bug fixes of system libraries require each application to explicitly
relink

= Rebuild everything with glibc?

= https://security.googleblog.com/2016/02/cve-2015-7547-glibc-
getaddrinfo-stack.html

m Modern solution: shared libraries

= QObject files that contain code and data that are loaded and linked into
an application dynamically, at either load-time or run-time

= Also called: dynamic link libraries, DLLs, .so files
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Shared Libraries (cont.)

m Dynamic linking can occur when executable is first loaded
and run (load-time linking)

= Common case for Linux, handled automatically by the dynamic linker
(ld-1linux.so)

= Standard C library (Libc. so) usually dynamically linked

m Dynamic linking can also occur after program has begun
(run-time linking)
= |n Linux, this is done by calls to the dlopen () interface
= Distributing software
= High-performance web servers
= Runtime library interpositioning

m Shared library routines can be shared by multiple processes
= More on this when we learn about virtual memory
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What dynamic libraries are required?

m .interp section
= Specifies the dynamic linker to use (i.e., 1d-1inux. so)
m .dynamic section

= Specifies the names, etc of the dynamic libraries to use

= Follow an example of prog
(NEEDED) Shared library: [libm.so.6]

m Where are the libraries found?
= Use “1dd” to find out:

unix> ldd prog
linux-vdso.so.l => (0x00007££c£2998000)
libc.so.6 => /1ib/x86 64-linux-gnu/libc.so.6 (0x00007£99ad927000)
/1ib64/1d-1linux-x86-64.s0.2 (0x00007£99adce£f000)
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