
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Optimization and Linking

15-213/18-213/15-513: Introduction to Computer Systems
12th Lecture, October 7, 2021

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Basics of compiler optimization
▪ Principles and goals

▪ Some example optimizations

▪ Obstacles to optimization

 Linking: combining object files into programs
▪ Symbols and symbol resolution

▪ Relocation

▪ Static libraries

 Quiz

 If we have time
▪ Branch prediction

▪ Dynamic libraries

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What does it mean to compile code?

 The CPU only understands
machine code directly

 All other languages must
be either

▪ interpreted: executed
by software

▪ compiled: translated
to machine code
by software

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

There’s a story that starts like this:

Back in the Good Old Days,
when the term "software" sounded funny
and Real Computers were made out of drums

and vacuum tubes,
Real Programmers wrote in machine code.

Not FORTRAN. Not RATFOR. Not, even,
assembly language.

Machine Code.

Raw, unadorned, inscrutable hexadecimal numbers. Directly.

— “The Story of Mel, a Real Programmer”

Ed Nather, 1983

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Rear Admiral Grace Hopper
▪ Invented first compiler in 1951

(technically it was a linker)

▪ Coined “compiler” (and “bug”)

▪ Compiled for Harvard Mark I

▪ Eventually led to COBOL

(which ran the world for years)

▪ “I decided data processors ought to
be able to write their programs in
English, and the computers would
translate them into machine code”

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 John Backus
▪ Led team at IBM invented

the first commercially
available compiler in 1957

▪ Compiled FORTRAN code for
the IBM 704 computer

▪ FORTRAN still in use today
for high performance code

▪ “Much of my work has come
from being lazy. I didn't like
writing programs, and so,
when I was working on the
IBM 701, I started work on a
programming system to
make it easier to write
programs”

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Fran Allen
▪ Pioneer of many optimizing

compilation techniques

▪ Wrote a paper simply called
“Program Optimization” in 1966

▪ “This paper introduced the use
of graph-theoretic structures to
encode program content in
order to automatically and
efficiently derive relationships
and identify opportunities for
optimization”

▪ First woman to win the ACM
Turing Award (the “Nobel Prize
of Computer Science”)

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Goals of compiler optimization

 Minimize number of instructions
▪ Don’t do calculations more than once

▪ Don’t do unnecessary calculations at all

▪ Avoid slow instructions (multiplication, division)

 Avoid waiting for memory
▪ Keep everything in registers whenever possible

▪ Access memory in cache-friendly patterns

▪ Load data from memory early, and only once

 Avoid branching
▪ Don’t make unnecessary decisions at all

▪ Make it easier for the CPU to predict branch destinations

▪ “Unroll” loops to spread cost of branches over more instructions

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limits to compiler optimization

 Generally cannot improve algorithmic complexity
▪ Only constant factors, but those can be worth 10x or more…

 Must not cause any change in program behavior
▪ Programmer may not care about “edge case” behavior,

but compiler does not know that

▪ Exception: language may declare some changes acceptable

 Usually only analyze one function at a time
▪ Whole-program analysis is usually too expensive

▪ Exception: inlining merges many functions into one

 Cannot anticipate run-time inputs
▪ “Worst case” performance can be just as important as “normal”

▪ Especially for code exposed to malicious input
(e.g. network servers)

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Compilation is a pipeline

Preprocessing

Compilation

Assembling

Fold constants Inline functions
Eliminate
common

subexpressions

Restructure
loops

Move code out
of loops

Reduce control
flow to gotos

Eliminate dead
code

Reduce
operation
strength

Select
instructions

Schedule
instructions

Allocate
registers

Emit assembly
language

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two kinds of optimizations

 Local optimizations
work inside a single
basic block
▪ Constant folding,

strength reduction, (local)
CSE, …

 Global optimizations
process the entire
control flow graph of a
function
▪ Loop nest optimization,

code motion, (global)
CSE, dead code
elimination, …

setup

Easy?

entry

easy complex

loop

Done?

exit

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant Folding

 Do arithmetic in the compiler

long mask = 0xFF << 8; →
long mask = 0xFF00;

 Any expression with constant inputs can be folded

 Might even be able to remove library calls…

size_t namelen = strlen("Harry Bovik"); →
size_t namelen = 11;

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Strength reduction

 Replace expensive operations with cheaper ones

long a = b * 5; →
long a = (b << 2) + b;

 Multiplication and division are the usual targets

 Multiplication is often hiding in memory access
expressions

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dead code elimination

 Don’t emit code that will never be executed

if (0) { puts("Kilroy was here"); }
if (1) { puts("Only bozos on this bus"); }

 Don’t emit code whose result is overwritten

x = 0;
x = 23;

 These may look silly, but...
▪ Can be produced by other optimizations

▪ Assignments to x might be far apart

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common Subexpression Elimination

 Factor out repeated calculations, only do them once

norm[i] = v[i].x*v[i].x + v[i].y*v[i].y;
→

elt = &v[i];
x = elt->x;
y = elt->y;
norm[i] = x*x + y*y;

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inlining

 Copy body of a function into its caller(s)
▪ Can create opportunities for many other optimizations

▪ Can make code much bigger and therefore slower

int pred(int x) {
if (x == 0)

return 0;
else

return x - 1;
}

int func(int y) {
return pred(y)

+ pred(0)
+ pred(y+1);

}

int func(int y) {

int tmp;

if (y == 0) tmp = 0; else tmp = y - 1;

if (0 == 0) tmp += 0; else tmp += 0 - 1;

if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

return tmp;

}

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inlining

 Copy body of a function into its caller(s)
▪ Can create opportunities for many other optimizations

▪ Can make code much bigger and therefore slower

int pred(int x) {
if (x == 0)

return 0;
else

return x - 1;
}

int func(int y) {
return pred(y)

+ pred(0)
+ pred(y+1);

}

int func(int y) {

int tmp;

if (y == 0) tmp = 0; else tmp = y - 1;

if (0 == 0) tmp += 0; else tmp += 0 - 1;

if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

return tmp;

}

Always true Does nothing Can constant fold

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inlining

 Copy body of a function into its caller(s)
▪ Can create opportunities for many other optimizations

▪ Can make code much bigger and therefore slower

int func(int y) {

int tmp;

if (y == 0) tmp = 0; else tmp = y - 1;

if (0 == 0) tmp += 0; else tmp += 0 - 1;

if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

return tmp;

}

int func(int y) {

int tmp = 0;

if (y != 0) tmp = y - 1;

if (y != -1) tmp += y;

return tmp;

}

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Motion

 Move calculations out of a loop

 Only valid if every iteration would produce same result

long j;
for (j = 0; j < n; j++)

a[n*i+j] = b[j];

→
long j;

int ni = n*i;
for (j = 0; j < n; j++)

a[ni+j] = b[j];

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Loop Unrolling

 Amortize cost of loop condition by duplicating body

 Creates opportunities for CSE, code motion, scheduling

 Prepares code for vectorization

 Can hurt performance by increasing code size

for (size_t i = 0; i < nelts; i++) {
A[i] = B[i]*k + C[i];

}

for (size_t i = 0; i < nelts - 4; i += 4) {
A[i] = B[i]*k + C[i];
A[i+1] = B[i+1]*k + C[i+1];
A[i+2] = B[i+2]*k + C[i+2];
A[i+3] = B[i+3]*k + C[i+3];

}

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Loop Unrolling

 Amortize cost of loop condition by duplicating body

 Creates opportunities for CSE, code motion, scheduling

 Prepares code for vectorization

 Can hurt performance by increasing code size

for (size_t i = 0; i < nelts; i++) {
A[i] = B[i]*k + C[i];

}

for (size_t i = 0; i < nelts - 4; i += 4) {
A[i] = B[i]*k + C[i];
A[i+1] = B[i+1]*k + C[i+1];
A[i+2] = B[i+2]*k + C[i+2];
A[i+3] = B[i+3]*k + C[i+3];

}

When would this change be incorrect?

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scheduling

 Find the CPU something useful to do while it’s waiting for
memory, division unit, etc.

 Extremely machine-dependent, but here’s a basic
example:

for (size_t i = 0; i < nelts - 4; i += 4) {
B0 = B[i]; B1 = B[i+1]; B2 = B[i+2]; B3 = B[i+3];
C0 = C[i]; C1 = C[i+1]; C2 = C[i+2]; C3 = B[i+3];
A[i] = B0*k + C0;
A[i+1] = B1*k + C1;
A[i+2] = B2*k + C2;
A[i+3] = B3*k + C3;

}

for (size_t i = 0; i < nelts - 4; i += 4) {
A[i] = B[i]*k + C[i];
A[i+1] = B[i+1]*k + C[i+1];
A[i+2] = B[i+2]*k + C[i+2];
A[i+3] = B[i+3]*k + C[i+3];

}

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scheduling

 Find the CPU something useful to do while it’s waiting for
memory, division unit, etc.

 Extremely machine-dependent, but here’s a basic
example:

for (size_t i = 0; i < nelts - 4; i += 4) {
B0 = B[i]; B1 = B[i+1]; B2 = B[i+2]; B3 = B[i+3];
C0 = C[i]; C1 = C[i+1]; C2 = C[i+2]; C3 = B[i+3];
A[i] = B0*k + C0;
A[i+1] = B1*k + C1;
A[i+2] = B2*k + C2;
A[i+3] = B3*k + C3;

}

for (size_t i = 0; i < nelts - 4; i += 4) {
A[i] = B[i]*k + C[i];
A[i+1] = B[i+1]*k + C[i+1];
A[i+2] = B[i+2]*k + C[i+2];
A[i+3] = B[i+3]*k + C[i+3];

}

When would this change be incorrect?

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Aliasing

▪ Code updates b[i] on every iteration

▪ Why couldn’t compiler optimize this away?

sum_rows1 inner loop

.L4:

movsd (%rsi,%rax,8), %xmm0 # FP load

addsd (%rdi), %xmm0 # FP add

movsd %xmm0, (%rsi,%rax,8) # FP store

addq $8, %rdi

cmpq %rcx, %rdi

jne .L4

/* Sum rows of n X n matrix a

and store in vector b */

void sum_rows1(double *a, double *b, long n) {

long i, j;

for (i = 0; i < n; i++) {

b[i] = 0;

for (j = 0; j < n; j++)

b[i] += a[i*n + j];

}

}

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Aliasing

▪ Code updates b[i] on every iteration

▪ Must consider possibility that these updates will affect program behavior

/* Sum rows of n X n matrix a

and store in vector b */

void sum_rows1(double *a, double *b, long n) {

long i, j;

for (i = 0; i < n; i++) {

b[i] = 0;

for (j = 0; j < n; j++)

b[i] += a[i*n + j];

}

}

double A[9] =

{ 0, 1, 2,

4, 8, 16},

32, 64, 128};

double B[3] = A+3;

sum_rows1(A, B, 3);

i = 0: [3, 8, 16]

init: [4, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]

Value of B:
double A[9] =

{ 0, 1, 2,

0, 8, 16},

32, 64, 128};

double A[9] =

{ 0, 1, 2,

0, 8, 16},

32, 64, 128};

double A[9] =

{ 0, 1, 2,

1, 8, 16},

32, 64, 128};

double A[9] =

{ 0, 1, 2,

3, 8, 16},

32, 64, 128};

double A[9] =

{ 0, 1, 2,

3, 0, 16},

32, 64, 128};

double A[9] =

{ 0, 1, 2,

3, 3, 16},

32, 64, 128};

double A[9] =

{ 0, 1, 2,

3, 6, 16},

32, 64, 128};

double A[9] =

{ 0, 1, 2,

3, 22, 16},

32, 64, 128};

double A[9] =

{ 0, 1, 2,

3, 22, 0},

32, 64, 128};

double A[9] =

{ 0, 1, 2,

3, 22, 32},

32, 64, 128};

double A[9] =

{ 0, 1, 2,

3, 22, 96},

32, 64, 128};

double A[9] =

{ 0, 1, 2,

3, 22, 224},

32, 64, 128};

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Removing Aliasing

▪ Use a local variable for intermediate results

sum_rows2 inner loop

.L10:

addsd (%rdi), %xmm0 # FP load + add

addq $8, %rdi

cmpq %rax, %rdi

jne .L10

/* Sum rows of n X n matrix a

and store in vector b */

void sum_rows2(double *a, double *b, long n) {

long i, j;

for (i = 0; i < n; i++) {

double val = 0;

for (j = 0; j < n; j++)

val += a[i*n + j];

b[i] = val;

}

}

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Removing Aliasing
/* Sum rows of n X n matrix a

and store in vector b */

void sum_rows3(double *restrict a, double *restrict b, long n) {

long i, j;

for (i = 0; i < n; i++) {

b[i] = 0;

for (j = 0; j < n; j++)

b[i] += a[i*n + j];

}

}

sum_rows3 inner loop

.L12:

addsd (%rdi), %xmm0 # FP load + add

addq $8, %rdi

cmpq %rax, %rdi

jne .L12

▪ Use restrict qualifier to tell compiler that a and b cannot alias

▪ Less reliable than using local variables

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Removing Aliasing
subroutine sum_rows4(a, b, n)

implicit none
integer, parameter :: dp = kind(1.d0)
real(kind=dp), dimension(:), intent(in) :: a
real(kind=dp), dimension(:), intent(out) :: b
integer, intent(in) :: n
integer :: i, j
do i = 1,n

b(i) = 0
do j = 1,n

b(i) = b(i) + a(i*n + j)
end

end
end

sum_rows4 inner loop

.L5:

addsd (%rdi), %xmm0 # FP load + add

addq $8, %rdi

cmpq %rax, %rdi

jne .L5

▪ Use Fortran

▪ Array parameters in Fortran are assumed not to alias

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

When the compiler can’t move something

void lower1(char *s)

{

size_t i;

for (i = 0; i < strlen(s); i++)

if (s[i] >= 'A' && s[i] <= 'Z')

s[i] -= ('A' - 'a');

}

void lower2(char *s)

{

size_t i, n = strlen(s);

for (i = 0; i < n; i++)

if (s[i] >= 'A' && s[i] <= 'Z')

s[i] -= ('A' - 'a');

}

0

50

100

150

200

250

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

C
P

U
 s

e
c

o
n

d
s

String length

lower1

lower2

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Basics of compiler optimization
▪ Principles and goals

▪ Some example optimizations

▪ Obstacles to optimization

 Linking: combining object files into programs
▪ Symbols and symbol resolution

▪ Relocation

▪ Static libraries

 Quiz

 If we have time
▪ Branch prediction

▪ Dynamic libraries

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example C Program

int sum(int *a, int n);

int array[2] = {1, 2};

int main(int argc, char** argv)

{

int val = sum(array, 2);

return val;

}

int sum(int *a, int n)

{

int i, s = 0;

for (i = 0; i < n; i++) {

s += a[i];

}

return s;

}

main.c sum.c

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linking
 Programs are translated and linked using a compiler driver:

▪ linux> gcc -Og -o prog main.c sum.c

▪ linux> ./prog

Linker (ld)

Translators
(cpp, cc1, as)

main.c

main.o

Translators
(cpp, cc1, as)

sum.c

sum.o

prog

Source files

Separately compiled
relocatable object files

Fully linked executable object file
(contains code and data for all functions
defined in main.c and sum.c)

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What Do Linkers Do?

 Step 1: Symbol resolution

▪ Programs define and reference symbols (global variables and functions):

▪ void swap() {…} /* define symbol swap */

▪ swap(); /* reference symbol swap */

▪ int *xp = &x; /* define symbol xp, reference x */

▪ Symbol definitions are stored in object file (by assembler) in symbol table.

▪ Symbol table is an array of entries

▪ Each entry includes name, size, and location of symbol.

▪ During symbol resolution step, the linker associates each symbol reference
with exactly one symbol definition.

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Symbols in Example C Program

int sum(int *a, int n);

int array[2] = {1, 2};

int main(int argc, char** argv)

{

int val = sum(array, 2);

return val;

}

int sum(int *a, int n)

{

int i, s = 0;

for (i = 0; i < n; i++) {

s += a[i];

}

return s;

}

main.c sum.c

Definitions

Reference

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linker Symbols

 Every object file m has a table of symbols it defines or needs.
 Three types:
 Global definitions

▪ Symbols defined by m that can be referenced by other files.

▪ In C, non-static functions and global variables.

 Local definitions
▪ Symbols that are defined by m but cannot be referenced by other files.

▪ In C, functions and global variables defined with static.

▪ Local linker symbols are not local program variables

 External references
▪ Symbols that m uses but does not define.

▪ These must be defined by some other module.

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Symbol Resolution

int sum(int *a, int n);

int array[2] = {1, 2};

int main(int argc, char** argv)

{

int val = sum(array, 2);

return val;

}

int sum(int *a, int n)

{

int i, s = 0;

for (i = 0; i < n; i++) {

s += a[i];

}

return s;

}

main.c sum.c

???

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Relocation Entries

Source: objdump –r –d main.o

0000000000000000 <main>:

0: 48 83 ec 08 sub $0x8,%rsp

4: be 02 00 00 00 mov $0x2,%esi

9: bf 00 00 00 00 mov $0x0,%edi # %edi = &array

a: R_X86_64_32 array # Relocation entry

e: e8 00 00 00 00 callq 13 <main+0x13> # sum()

f: R_X86_64_PC32 sum-0x4 # Relocation entry

13: 48 83 c4 08 add $0x8,%rsp

17: c3 retq

main.o

int array[2] = {1, 2};

int main(int argc, char**

argv)

{

int val = sum(array, 2);

return val;

} main.c

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

• incr

• foo

• a

• argc

• argv

• b

• main

• printf

• Others?

Symbol Identification

Which of the following names will be in the symbol
table of symbols.o?

symbols.c:

int incr = 1;

static int foo(int a) {

int b = a + incr;

return b;

}

int main(int argc,

char* argv[]) {

printf("%d\n", foo(5));

return 0;

}

Names:
• incr

• foo

• a

• argc

• argv

• b

• main

• printf

• "%d\n"

Can find this with readelf:
linux> readelf –s symbols.o

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Local Symbols

 Local non-static C variables vs. local static C variables
▪ Local non-static C variables: stored on the stack

▪ Local static C variables: stored in either .bss or .data

static int x = 15;

int f() {

static int x = 17;

return x++;

}

int g() {

static int x = 19;

return x += 14;

}

int h() {

return x += 27;

}

Compiler allocates space in .data for
each definition of x

Creates local symbols in the symbol
table with unique names, e.g., x,
x.1721 and x.1724.

static-local.c

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What if you mess up?

int x;

p1() {}

int x;

p2() {}

int x=7;

int y=5;

p1() {}

extern double x;

p2() {}

int x=7;

p1() {}

extern int x;

p2() {}

int x=7;

p1() {}

int x=0;

p1() {}
Link error: two definitions of x and p1

Compiler-dependent. Might be considered
either one or two definitions of x.

Undefined behavior. No link error.
Writes to x in p2 may overwrite y!

Linker checks for two definitions of one symbol.
Linker does not check types of references.

Correct program.
Only one definition of x, p1, p2

char p1[]

= 0xC3;

extern void p1();

p2() { p1(); }

Undefined behavior. No link error.
Call to p1 may crash!

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

double x = 3.14;

Type Mismatch Example

 Compiles without any errors or warnings

 What gets printed?

extern long int x;

int main(int argc,

char *argv[]) {

printf("%ld\n", x);

return 0;

}

mismatch-variable.cmismatch-main.c

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

#include "mismatch.h"

double x = 3.14;

Detecting the Type Mismatch Example

 Now we get an error … from the compiler, not the linker.
mismatch-variable.c:3:8: conflicting types for ‘x’

mismatch.h:1:17: previous declaration of ‘x’

#include "mismatch.h"

int main(int argc,

char *argv[]) {

printf("%ld\n", x);

return 0;

} mismatch-variable.cmismatch-main.c

extern long int x;

mismatch.h

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Rules for avoiding type mismatches

 Avoid global variables as much as possible

 Use static as much as possible

 Declare everything that’s not static in a header file

▪ Make sure to include the header file everywhere it’s relevant

▪ Including the files that define those symbols

 Always put extern on declarations in header files

▪ Unnecessary but harmless for function declarations

▪ Avoids the quirky behavior of extern-less global variables

 Always write (void) when a function takes no args
▪ extern void no_args(void);

▪ Leaving out the void means “I’m not saying what argument list
this function takes.” Turns off argument type checking!

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What Do Linkers Do? (cont’d)

 Step 2: Relocation

▪ Merges separate code and data sections into single sections

▪ Relocates symbols from their relative locations in the .o files to
their final absolute memory locations in the executable.

▪ Updates all references to these symbols to reflect their new
positions.

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linking Example

int sum(int *a, int n);

int array[2] = {1, 2};

int main(int argc,char **argv)

{

int val = sum(array, 2);

return val;

} main.c

int sum(int *a, int n)

{

int i, s = 0;

for (i = 0; i < n; i++) {

s += a[i];

}

return s;

} sum.c

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Step 2: Relocation

main()

main.o

sum()

sum.o

System code

int array[2]={1,2}

System data

Relocatable Object Files

.text

.data

.text

.data

.text

Headers

main()

sum()

0

More system code

Executable Object File

.text

.symtab

.debug

.data

System code

System data

int array[2]={1,2}

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Relocated .text section

00000000004004d0 <main>:

4004d0: 48 83 ec 08 sub $0x8,%rsp

4004d4: be 02 00 00 00 mov $0x2,%esi

4004d9: bf 18 10 60 00 mov $0x601018,%edi # %edi = &array

4004de: e8 05 00 00 00 callq 4004e8 <sum> # sum()

4004e3: 48 83 c4 08 add $0x8,%rsp

4004e7: c3 retq

00000000004004e8 <sum>:

4004e8: b8 00 00 00 00 mov $0x0,%eax

4004ed: ba 00 00 00 00 mov $0x0,%edx

4004f2: eb 09 jmp 4004fd <sum+0x15>

4004f4: 48 63 ca movslq %edx,%rcx

4004f7: 03 04 8f add (%rdi,%rcx,4),%eax

4004fa: 83 c2 01 add $0x1,%edx

4004fd: 39 f2 cmp %esi,%edx

4004ff: 7c f3 jl 4004f4 <sum+0xc>

400501: f3 c3 repz retq

callq instruction uses PC-relative addressing for sum():
0x4004e8 = 0x4004e3 + 0x5

Source: objdump -d prog

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Libraries: Packaging a Set of Functions

 How to package functions commonly used by programmers?
▪ Math, I/O, memory management, string manipulation, etc.

 Awkward, given the linker framework so far:
▪ Option 1: Put all functions into a single source file

▪ Programmers link big object file into their programs

▪ Space and time inefficient

▪ Option 2: Put each function in a separate source file

▪ Programmers explicitly link appropriate binaries into their
programs

▪ More efficient, but burdensome on the programmer

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Old-Fashioned Solution: Static Libraries

 Static libraries (.a archive files)

▪ Concatenate related relocatable object files into a single file with an
index (called an archive).

▪ Enhance linker so that it tries to resolve unresolved external references
by looking for the symbols in one or more archives.

▪ If an archive member file resolves reference, link it into the executable.

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Creating Static Libraries

Translator

atoi.c

atoi.o

Translator

printf.c

printf.o

libc.a

Archiver (ar)

... Translator

random.c

random.o

unix> ar rs libc.a \

atoi.o printf.o … random.o

C standard library

 Archiver allows incremental updates

 Recompile function that changes and replace .o file in archive.

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Commonly Used Libraries

libc.a (the C standard library)

▪ 4.6 MB archive of 1496 object files.

▪ I/O, memory allocation, signal handling, string handling, data and time,
random numbers, integer math

libm.a (the C math library)

▪ 2 MB archive of 444 object files.

▪ floating point math (sin, cos, tan, log, exp, sqrt, …)

% ar –t /usr/lib/libc.a | sort

…

fork.o

…

fprintf.o

fpu_control.o

fputc.o

freopen.o

fscanf.o

fseek.o

fstab.o

…

% ar –t /usr/lib/libm.a | sort

…

e_acos.o

e_acosf.o

e_acosh.o

e_acoshf.o

e_acoshl.o

e_acosl.o

e_asin.o

e_asinf.o

e_asinl.o

…

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linking with
Static Libraries

#include <stdio.h>

#include "vector.h"

int x[2] = {1, 2};

int y[2] = {3, 4};

int z[2];

int main(int argc, char**

argv)

{

addvec(x, y, z, 2);

printf("z = [%d %d]\n”,

z[0], z[1]);

return 0;

}
main2.c

void addvec(int *x, int *y,

int *z, int n) {

int i;

for (i = 0; i < n; i++)

z[i] = x[i] + y[i];

}

void multvec(int *x, int *y,

int *z, int n)

{

int i;

for (i = 0; i < n; i++)

z[i] = x[i] * y[i];

} multvec.c

addvec.c

libvector.a

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linking with Static Libraries

Translators
(cpp, cc1, as)

main2.c

main2.o

libc.a

Linker (ld)

prog2c

printf.o and any other
modules called by printf.o

libvector.a

addvec.o

Static libraries

Relocatable
object files

Fully linked
executable object file
(861,232 bytes)

vector.h Archiver
(ar)

addvec.o multvec.o

“c” for “compile-time”

unix> gcc –static –o prog2c \

main2.o -L. -lvector

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using Static Libraries

 Linker’s algorithm for resolving external references:
▪ Scan .o files and .a files in the command line order.

▪ During the scan, keep a list of the current unresolved references.

▪ As each new .o or .a file, obj, is encountered, try to resolve each
unresolved reference in the list against the symbols defined in obj.

▪ If any entries in the unresolved list at end of scan, then error.

 Problem:
▪ Command line order matters!

▪ Moral: put libraries at the end of the command line.

unix> gcc -static -o prog2c -L. -lvector main2.o

main2.o: In function `main':

main2.c:(.text+0x19): undefined reference to `addvec'

collect2: error: ld returned 1 exit status

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/24383/quizzes/67220

https://canvas.cmu.edu/courses/24383/quizzes/67220

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

If we have time…

 Branch prediction

 Dynamic libraries

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Challenge
▪ Instruction Control Unit must work well ahead of Execution Unit

to generate enough operations to keep EU busy

▪When encounters conditional branch, cannot reliably determine where to
continue fetching

404663: mov $0x0,%eax

404668: cmp (%rdi),%rsi

40466b: jge 404685

40466d: mov 0x8(%rdi),%rax

. . .

404685: repz retq

What About Branches?

Executing

How to continue?

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Modern CPU Design

Execution

Functional
Units

Instruction Control

Branch Arith Arith Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

Arith

Operation Results

Retirement
Unit

Register
File

Register Updates

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Outcomes
▪When encounter conditional branch, cannot determine where to continue

fetching

▪ Branch Taken: Transfer control to branch target

▪ Branch Not-Taken: Continue with next instruction in sequence

▪ Cannot resolve until outcome determined by branch/integer unit

Branch Taken

Branch Not-Taken

404663: mov $0x0,%eax

404668: cmp (%rdi),%rsi

40466b: jge 404685

40466d: mov 0x8(%rdi),%rax

. . .

404685: repz retq

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Prediction
 Idea

▪ Guess which way branch will go

▪ Begin executing instructions at predicted position

▪ But don’t actually modify register or memory data

Predict Taken

Begin
Execution

404663: mov $0x0,%eax

404668: cmp (%rdi),%rsi

40466b: jge 404685

40466d: mov 0x8(%rdi),%rax

. . .

404685: repz retq

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

401029: vmulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

401029: vmulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

401029: vmulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

Branch Prediction Through Loop
401029: vmulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume
vector length = 100

Read
invalid
location

Executed

Fetched

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

401029: vmulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

401029: vmulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

401029: vmulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

401029: vmulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume
vector length = 100

Branch Misprediction Invalidation

Invalidate

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Misprediction Recovery

 Performance Cost
▪ Multiple clock cycles on modern processor

▪ Can be a major performance limiter

401029: vmulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

401036: jmp 401040

. . .

401040: vmovsd %xmm0,(%r12)

i = 99 Definitely not taken

Reload
Pipeline

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Prediction Numbers

 Default behavior:
▪ Backwards branches are often loops so predict taken

▪ Forwards branches are often if so predict not taken

 Predictors average better than 95% accuracy
▪ Most branches are already predictable.

 Annual branch predictor contests at top Computer
Architecture conferences
▪ https://www.jilp.org/jwac-2/program/JWAC-2-program.htm

▪ Winner: 34.1 mispredictions per kilo-instruction (!)

https://www.jilp.org/jwac-2/program/JWAC-2-program.htm

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Getting High Performance

 Good compiler and flags

 Don’t do anything sub-optimal
▪ Watch out for hidden algorithmic inefficiencies

▪ Write compiler-friendly code

▪ Watch out for optimization blockers:
procedure calls & memory references

▪ Look carefully at innermost loops (where most work is done)

 Tune code for machine
▪ Exploit instruction-level parallelism

▪ Avoid unpredictable branches

▪ Make code cache friendly

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Modern Solution: Shared Libraries

 Static libraries have the following disadvantages:
▪ Duplication in the stored executables (every function needs libc)

▪ Duplication in the running executables

▪ Minor bug fixes of system libraries require each application to explicitly
relink

▪ Rebuild everything with glibc?

▪ https://security.googleblog.com/2016/02/cve-2015-7547-glibc-
getaddrinfo-stack.html

 Modern solution: shared libraries
▪ Object files that contain code and data that are loaded and linked into

an application dynamically, at either load-time or run-time

▪ Also called: dynamic link libraries, DLLs, .so files

https://security.googleblog.com/2016/02/cve-2015-7547-glibc-getaddrinfo-stack.html

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Libraries (cont.)

 Dynamic linking can occur when executable is first loaded
and run (load-time linking)
▪ Common case for Linux, handled automatically by the dynamic linker

(ld-linux.so)

▪ Standard C library (libc.so) usually dynamically linked

 Dynamic linking can also occur after program has begun
(run-time linking)
▪ In Linux, this is done by calls to the dlopen() interface

▪ Distributing software

▪ High-performance web servers

▪ Runtime library interpositioning

 Shared library routines can be shared by multiple processes
▪ More on this when we learn about virtual memory

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What dynamic libraries are required?

 .interp section
▪ Specifies the dynamic linker to use (i.e., ld-linux.so)

 .dynamic section

▪ Specifies the names, etc of the dynamic libraries to use

▪ Follow an example of prog

(NEEDED) Shared library: [libm.so.6]

 Where are the libraries found?
▪ Use “ldd” to find out:

unix> ldd prog

linux-vdso.so.1 => (0x00007ffcf2998000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f99ad927000)

/lib64/ld-linux-x86-64.so.2 (0x00007f99adcef000)

