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Today

m Cache memory organization and operation
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Recall: Locality

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

m Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

C /

m Spatial locality:

" |tems with nearby addresses tend
to be referenced close together in time
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Recall: Memory

Hierarchy 0/ e
CPU registers hold words retrieved
Smaller, from the L1 cache.
faster, L1: / L1cache
and (SRAM) L1 cache holds cache lines retrieved
costlier L2 cache from the L2 cache.
(per byte) L2: (SRAM)
storage L2 cache holds cache lines
devices retrieved from L3 cache.
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger,
slower, L4: Main memory
and (DRAM)
cheaper Main memory holds disk blocks
(per byte) retrieved from local disks.
storage |g. Local secondary storage
devices (local disks)
Local disks hold files
retrieved from disks
on remote servers.
L6: Remote secondary storage

(e.g., Web servers)
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Recall: General Cache Concepts

Cache

Memory
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Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

4 9 14 3
Data is copied in block-sized
transfer units

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15
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General Cache Concepts: Hit

Request: 14 Data in block b is needed
Cach 2 5 2 3 Block b is in cache:
ache Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
0000000000000 O0COCOFO
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General Cache Concepts: Miss

Cache

Memory
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Request: 12

8 12 14 3
12 Request: 12

0 1 2 3

4 5 6 7
8 9 10 11
12 13 14 15

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)



Recall: General Caching Concepts:

3 Types of Cache Misses

m Cold (compulsory) miss
" Cold misses occur because the cache starts empty and this is the first
reference to the block.
m Capacity miss
® QOccurs when the set of active cache blocks (working set) is larger than
the cache.
m Conflict miss

" Most caches limit blocks at level k+1 to a small subset (sometimes a
singleton) of the block positions at level k.

= E.g.Block i at level k+1 must be placed in block (i mod 4) at level k.

® Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.

= E.g. Referencing blocks 0, 8,0, 8, 0, 8, ... would miss every time.
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Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware

" Hold frequently accessed blocks of main memory

m CPU looks first for data in cache
m Typical system structure:

CPU chip

Register file
Cache <—> |:> ALU
memory <1,:|
ﬁ Systembus  Memory bus
10 124 N
Bus interface < > I./O <:> ain
bridge memory
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General Cache Organization (S, E, B)

E = 2¢ lines per set

AL
'd N\

4 «—
eooe —
eooe

S=ZSSEtS< eoceoe

([ 3 B M )
\.

Cache size
=S X E x B data bytes

v tag 01112 ¢cccee B-1

T ~— —

- v

valid bit B = 2b bytes per cache block (the data)
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CaChe Read * Locate set

* Check if any line in set
has matching tag

E = 2¢ lines per set * Yes + line valid: hit
r A ~ * Locate data starting
4 at offset
o000

Address of word:
t bits s bits | b bits

S = 2 sets < D e gt

oo tag set block
index offset

data begins at this offset

Vv tag 0|12 ccce-- B-1

N— 7

valid bit B = 2" bytes per cache block (the data)
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

r t T 1121115 Address of int:
v ag thits | 0..01 | 100

\'} ta 011121]13|4)15]6]7 -
€ find set

S$=2 sets<

v tag 0]112)1314]|5]|6]7

Vv tag 0|l1]2]13]|4|5]|6]7
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Carnegie Mellon

Address of int:
id? + : = hi
valid match: assume yes (= hit) t bits 0..01 | 100
Vv tag 0l1]2)3]|4|5]|6]7
block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes (= hit)

v tag 011|2|3]|4]|5]|6]|7

block offset

int (4 Bytes) is here

If tag doesn’t match (= miss): old line is evicted and replaced
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Direct-Mapped Cache Simulation

t=1 s=2 b=l 4-bit addresses (address space size M=16 bytes)
X XX X S=4 sets, E=1 Blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] miss
v Tag Block
Set0 | 1 0 M[O-1]
Set1| O
Set2 | O
Set3 | 1 0 M[6-7]
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size B=8 bytes

Address of short int:

2 lines per set t bits 0..01 | 100
A
~
’
'} tag 01112)1314|5]|6|7 Vv tag 0|{1]12]3]4]|5]|6]7
vl [ tag | [o[2]2[3TalsT6[7ll |[v] [ tag | [o[2]2]3]a[5[6[7]] — find set
< vl | tag | |o]|1]2]|3]|a]5]|6]7 vl | tag | |o]|1]2]|3]|a]5]|6]7
OO0 000000000000 000000 0C0O0COCOCGCOGEOSNOSOEOSEONEONOEONOEONONOOOOEOOEOOO
'} tag 0]1|2]|314]|5]|6]|7 v tag 0|1]2|3]4]|5]|6]|7
\.
S sets
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

v tag 0|1]12|3|4]|5]6]7 v tag 0111213|4|5|6]|7]|| —

block offset
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

v tag 0|112|3]4]|5]|6]7 v tag 0111213|4|5|6]|7]|| —

block offset

short int (2 Bytes) is here

No match or not valid (= miss):
* Onelinein set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...
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2-Way Set Associative Cache Simulation

t=2 s=1 b=l
XX X X 4-bit addresses (M=16 bytes)

S=2 sets, E=2 blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit

v Tag Block
1 00 | M[0-1]
1 10 | M[8-9]

Set 0

cerq | L 101 [MI6-7]
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What about writes?

m Multiple copies of data exist: L‘" ‘; tag | |0f1]2] - 5
= 1,12, L3, Main Memory, Disk o "
y valid bit dirty bit B = 2% bytes

m What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Each cache line needs a dirty bit (set if data has been written to)

m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location will follow
= No-write-allocate (writes straight to memory, does not load into cache)

m Typical
= Write-through + No-write-allocate
= Write-back + Write-allocate
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Practical Write-back Write-allocate

. . . Vv d tag 011]|2] *ecc-- B-1
m A write to address X is issued T
N— __/
m Ifitisa hit valid bit dirty bit B = 2° bytes

= Update the contents of block
= Set dirty bit to 1 (bit is sticky and only cleared on eviction)

m Ifitisamiss
= Fetch block from memory (per a read miss)
" The perform the write operations (per a write hit)

m If alineis evicted and dirty bit is setto 1

" The entire block of 2° bytes are written back to memory
= Dirty bit is cleared (set to 0)
" Lineis replaced by new contents
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Intel Core i7 Cache Hierarchy

Processor package

Core 0 Core 3 L1 i-cache and d-cache:
R R 32 KB, 8-way,
€8s €gs Access: 4 cycles
L1 L1 L1 L1 L2 unified cache:
d-cache| |i-cache d-cache| |i-cache 256 KB, 8-way,
oo Access: 10 cycles
L2 unified cache L2 unified cache L3 unified cache:
8 MB, 16-way,

Access: 40-75 cycles

L3 unified cache _
(shared by all cores) Block size: 64 bytes for
all caches.

Main memory
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Cache Performance Metrics

m Miss Rate

" Fraction of memory references not found in cache (misses / accesses)
=1 - hit rate
= Typical numbers (in percentages):
= 3-10% for L1
= can be quite small (e.g., < 1%) for L2, depending on size, etc.
m HitTime
" Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 4 clock cycle for L1
= 10 clock cycles for L2
m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)
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Let’s think about those numbers

m Huge difference between a hit and a miss

= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider this simplified example:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 x 100 cycles =4 cycles
99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”
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Writing Cache Friendly Code

m Make the common case go fast

" Focus on the inner loops of the core functions

m Minimize the misses in the inner loops
= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories
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Today

m Performance impact of caches

" The memory mountain
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The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.
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Memory Mountain Test Function

long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of

* array '"data" with stride of "stride", Call test () with many
* L S CCERUI O L combinations of elems
*/

int test(int elems, int stride) ({ and stride.

long i, sx2=stride*2, sx3=stride*3, sx4d=stride*4;
long accO0 = 0, accl = 0, acc2 = 0, ace3 = 0; For each elems and
long length = elems, limit = length - sx4; stride:

/* Combine 4 elements at a time */

for (1 = 0; i < limit; i += sx4) { 1. Call test() once to

neEl = mEel o deis AT - warm up the caches.
accl = accl + data[i+stride];
acc2 = acc2 + data[i+sx2]; 2. Call test() again and

acc3 = acc3 + data[i+sx3]; measure the read

) throughput(MB/s)

/* Finish any remaining elements */
for (; i < length; i++) {
acc0 = accO0 + datal[i]:;

}

return ((accO + accl) + (acc2 + acc3l));

} mountain/mountain.c

28
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Core i7 Haswell
- 2.1 GHz
The Memory Mountaln 32 KB L1 d-cache
256 KB L2 cache

Aggressive 8 MB L3 cache
prefetching | ~-64 B block size
16000 -+
|
14000 -
z |
@ |
S 12000 -
2 10000 )
o
2 8000 - A Ridges
| -of temporal
8 6000 Z P
o | locality
4000
2000 + A
Slopes o
of spatial 3
locality T B R v2:
o5 el " 512
S7 ™ ey '_A___--"_/[ 2m
Stride (x8 bytes) 9 et &m Size (bytes)
' 32m
s11
128m
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Quiz

https://canvas.cmu.edu/courses/24383/quizzes/67224
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Today

= Rearranging loops to improve spatial locality
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Matrix Multiplication Example

m Description:

Multiply N x N matrices

Matrix elements are
doubles (8 bytes)

O(N3) total operations

N reads per source
element

N values summed per
destination

= but may be able to
hold in register

Variable sum

/* ijk */ held in register
for (i=0; i<n; i++)
for (j=0; j<n; Jj++) { /
sum = 0.0; <
for (k=0; k<n; k++)
sum += a[i] [k] * b[k]1[j];
c[i] [J] = sum;

matmult/mm. c
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Miss Rate Analysis for Matrix Multiply

m Assume:
= Block size = 32B (big enough for four doubles)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
" Cache is not even big enough to hold multiple rows

m Analysis Method:

" Look at access pattern of inner loop

C A B
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Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
" for (i = 0; i < N; i++)
sum += a[0][i];
" accesses successive elements
" if block size (B) > sizeof(a;) bytes, exploit spatial locality
= miss rate = sizeof(a;) / B
m Stepping through rows in one column:
" for (1 = 0; 1 < n; i++)
sum += a[i] [0];
= accesses distant elements
" no spatial locality!
= miss rate =1 (i.e. 100%)
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Matrix Multiplication (i jk)

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) { *)
sum = 0.0; ‘E;;; - ﬁ]i%: (&D
for (k=0; k<n; k++) (i,%)
sum += a[i] [k] * b[k][3]; A B C
c[il[3]

S = ]

} matmult/mm.c Row-wise Column- Fixed
wise

Inner loop:

Miss rate for inner loop iterations:
A B C

Block size = 32B (four doubles)
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Matrix Multiplication (i jk)

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) { *)
sum = 0.0; ‘E;;; - ﬁ]i%: (&D
for (k=0; k<n; k++) (%)
sum += a[i] [k] * b[k][3j]; A B

C
c[i][j] = sum; ‘ ‘ ‘
}

} matmult/mm.c Row-wise Column- Fixed
wise

Inner loop:

Miss rate for inner loop iterations:

A B C

0.25 1.0 0.0
Block size = 32B (four doubles)
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Matrix Multiplication (ki)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i k) E(k’*)g
r = a[i] [k]; 0 (i,*)
B C

for (j=0; j<n; j++) A
c[i]l[jJ] += r * b[k][]]~’ ‘ ‘

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Miss rate for inner loop iterations:

A B C

Block size = 32B (four doubles)
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Matrix Multiplication (ki)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i k) E(k’*)g
r = a[i] [k]; 0 (i,*)
B C

for (j=0; j<n; j++) A
c[i]l[jJ] += r * b[k][]]~’ ‘ ‘

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Miss rate for inner loop iterations:

A B ¢
0.0 0.25 0.25

Block size = 32B (four doubles)
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Matrix Multiplication (jki)

/* ki */ Inner loop:
for (j=0; j<n; Jj++) { (* k) (*)])
for (k=0; k<n; k++) { :[| (kj) |I
r = b[k][3]; n
for (i=0; i<n; i++) A B C
c[i] [J] += ali]l[k] * r; ‘ ‘
matmult/mm.cf Column- Fixed Column-
wise wise

Miss rate for inner loop iterations:
A B C

Block size = 32B (four doubles)
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Matrix Multiplication (jki)

/* ki */ Inner loop:
for (j=0; j<n; Jj++) { (* k) (*)])
for (k=0; k<n; k++) { :[| (kj) |I
r = b[k][3]; n
for (i=0; i<n; i++) A B C
c[i] [J] += ali]l[k] * r; ‘ ‘
matmult/mm.cf Column- Fixed Column-
wise wise

Miss rate for inner loop iterations:
A B C

1.0 0.0 1.0

Block size = 32B (four doubles)
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Summary of Matrix Multiplication

Bryant and O’Hallaron,

for (i=0; i<n; i++) {
for (3j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i] [k] * b[k][]j]-;
c[i][j] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k];
for (j=0; j<n; j++)
c[i]l[3] += r * b[k][]]’
}
}

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {
r = b[k] []J];
for (i=0; i<n; i++)
c[i][]J] += a[i][k] * r;

ijk (& jik):
¢ 2 loads, O stores
e avg misses/iter = 1.25

kij (& ikj):
¢ 2 loads, 1 store
* avg misses/iter = 0.5

jki (& kji):
e 2 |oads, 1 store
e avg misses/iter = 2.0
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Core i7 Matrix Multiply Performance

Cycles per inner loop iteration

100
jki/kji (2.0)

ki
—-kji
——ijk
—jik
——kij
——ikj

ijk /jik (1.25)

10

kij/ikj (0.5)

1 | || || || || || || || || || || || || ||

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)
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Today

= Using blocking to improve temporal locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43
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Example: Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (1 = 0; i < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
cl[i*n + j] += a[i*n + k] * b[k*n + j];

I
X
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Cache Miss Analysis

m Assume:

= Matrix elements are doubles
® Cache block = 8 doubles
® Cache size C << n (much smaller than n)

m Firstiteration: r ~N

" n/8+n=9n/8 misses

]
X

= Afterwards in cache:
(schematic) . e —

I
X

8 wide
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45
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Cache Miss Analysis

m Assume:

= Matrix elements are doubles
® Cache block = 8 doubles
® Cache size C << n (much smaller than n)

n
m Second iteration: —N—
= Again: :
n/8 + n =9n/8 misses _
- X
8 wide

m Total misses:
" 9n/8 n%=(9/8) n3
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Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (1 = 0; i < n; i+=B)

for (J = 0; jJ < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = i; il < i+B; il++)
for (41 = j; jl < j+B; jl++)
for (k1 = k; k1l < k+B; kl++)
c[il*n+jl] += a[il*n + k1l]*b[kl*n + jl];

} matmult/bmm.c

jl

C a b C
= X +
] i1 [
A

Block size B x B 47
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Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
® Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

] ] ] n/B blocks
m First (block) iteration: A
= B2/8 misses for each block M BEEEE B
= 2n/Bx BY/8 = nB/4 _ —
(omitting matrix c) - X ]

Block size Bx B

. .
Afterwards in cache [] EEEEE

(schematic)

X
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Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
® Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

. . n/B blocks
m Second (block) iteration: A
" Same as first iteration [] ] ]
= 2n/B x B2/8 =nB/4 _ X
m Total misses: Block size B x B

= nB/4 * (n/B)? = n3/(4B)
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Blocking Summary

m No blocking: (9/8) n®* misses
m Blocking: (1/(4B)) n® misses

m Use largest block size B, such that B satisfies 3B2< C

= Fit three blocks in cache! Two input, one output.

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly
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Cache Summary

m Cache memories can have significant performance impact

m You can write your programs to exploit this!
® Focus on the inner loops, where bulk of computations and memory
accesses occur.
" Try to maximize spatial locality by reading data objects sequentially
with stride 1.

" Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.
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Supplemental slides
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Recall: Modern CPU Design

Instruction Control
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oo Unit Instruction
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Register Instruction Instructions
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Execution
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What it Really Looks Like
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What it Really Looks lee (Cont )

Intel Sandy Bridge
Processor Die

L1: 32KB Instruction + 32KB Data
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Why Index Using Middle Bits?

Direct mapped: One line per set
Assume: cache block size 8 bytes

/Standard Method: \
Middle bit indexing

4 Address of int:
vi [ tae [[O]1f2]3]4]5]6]7 tbits | 0..01 | 100
v tag 0]112)1314]|5]|6]7 -
find set /
S$=25 sets<
i tag 011f2f3[415]6]7 /Alternative Method: \
High bit indexing
00000 0000O0OCOGEOGCEOGOEOGOEOSEEOSOSOSONO
Address of int:
v tag 0|1]|2|3|4]|5]|6]|7 1..11 t bits 100
\. .
find set

\_ J
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lllustration of Indexing 0000xx
Approaches Pon e
0010xx

m 64-byte memory 001 1xx
" 6-bit addresses 01005xx

m 16 byte, direct-mapped cache 01013
m Block size = 4. (Thus, 4 sets; why?) 0110xx
m 2 bits tag, 2 bits index, 2 bits offset 0111xx
1000xx

1001xx

Set 0 1010xx

Set 1 1011xx

Set 2 1100xx

Set 3 1101xx

1110xx

1111xx
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Middle Bit Indexing

m Addresses of form TTSSBB

= TT Tag bits
" SS Set index bits
= BB Offset bits

m Makes good use of spatial locality

Set 0

Set1

Set 2

Set 3
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High Bit Indexing

m Addresses of form SSTTBB

" SS Set index bits
= TT Tag bits
= BB Offset bits

m Program with high spatial locality
would generate lots of conflicts

Set 0

Set1

Set 2

Set 3
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Example: Core i7 L1 Data Cache

>
& O
.. E =2"lines per set \bd’. 000\0\00
32 kB 8-way set associative e - > 0 [0 [0000
64 bytes/block I I | SR I 513 8823
47 bit address range | | seee 1] 3 2 8‘1%3
5=I"SEE< I II Il-illu: 5 5 0101
B= 6 | 6 | 0110
(A A ER SRR R EREREEREEREREEEREENNENHNE] 7 7 0111
S= ,s= N 8 | 8 | 1000
E= e= - l I ! 9 |9 (1001
’ A [10] 1010
C= Cache size: B |11 1011
C=SxExBdatab C [12[ 1100
[1] [eee ] o[a[2[[o1] XExSdatadytes | = st iTo7
“Jh_t —_— E (14 | 1110
valid bi F |15 1111
Address of word:
thits | sbits | b bits
~— A
tag set block K i Block offset: 0x??
index offset Stack Address: ock offset: X?"
0x00007£7262a1e010 Set index: 0x??
Block offset: . bits Tag: 0x??
Set index: . bits
Tag: . bits
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Example: Core i7 L1 Data Cache .

RS
L. E = 2" lines per set \bd’. 000\0\00
32 kB 8-way set associative e - > 0 [0 [0000
64 bytes/block I | ™ e % % 88%
47 bit address range | | T — 3 2 8%3
S=2sets< | [ Jseee | 5 |5 [ 0101
B=64 6 | 6 | 0110
S=64’s=6 [ E AR RN EE N ENEEENEEEENENEEENENENN] -7 —7 0111
8 | 8 | 1000
E=8,e=3 q ) [\ M— 9 |9 [ 1001
C=64x64x8=32,768 i Bopdiiand
EI we | [o]1]2] =1 C =5 x E x B data bytes C |12 1100
D |13 ] 1101
“J o —— E |14 | 1110
valia ol F |15 1111
Address of word:
thits | sbits | b bits
A
block
tae i:;:x u;;t Stack Address: Block offset: 0x10
0x00007£7262al1le010 Set index: 0x0
Block offset: 6 bits Tag: O0x7£f7262ale
Set index: 6 bits
Tag: 35 bits 0000 0001 o00O0O0
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Core i5 Haswell
i 3.1 GHz
The Memory Mountain S cache
Aggressive 256 KB L2 cache

prefetching 8 MB L3 cache
64 B block size
= 24000
<
= 20000
Q .
S 16000 -
3 | Ridges
£ 12000 - of temporal
e] .
= localit
E 8000 + y
4000
Slopes
of spfatlal s3 T <7128k
locality s5 512k

s7 Ty
Stride (x8 bytes) s9

= Size (bytes)
SEoem

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62



Cache Capacity Effects from Core i7 Haswell

3.1 GHz

Memory Mountain 32 KB L1 d-cache

256 KB L2 cache
8 MB L3 cache

30000 64 B block size

25000 —
w
m |
] 20000
2 Main - n
= 15000 | | By & I._]. .
S Memory Slice through
e
= memor
® 10000 y .
2 mountain with

stride=8
5000
0 .

Working set size (bytes)
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Cache Block Size Effects from Core 7 Haswell
- 32 KB L1 d-cache
Memory Mountain e 1y ach:
8 MB L3 cache
Throughput for size = 128K 64 B block size
35000
30000 N\ /\
\Miss rate = s/8
25000 \/\
@ 20000 \ Miss rate = 1.0
N
g 15000 l =p=|\easured
/l \
10000 ¢
5000
0

sl s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 Strides
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Modeling Block Size Effects
from Memory Mountain

Throughput for size = 128K

Carnegie Mellon

Core i7 Haswell
2.26 GHz

32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

35000
6
30000 /\ _ 10
\ Throughput =
25000 / 8.0S + 24.3
8 20000
§ =(=leasured
2 15000 =#=Model
10000 %
5000
0
sl s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 Strides
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Core 2 Duo
2008 Memory Mountain 2.4 GHz

32 KB L1 d-cache
No

| 6MB L2 cache
20000  Prefetching \ g 64 B block size

18000
16000 _

14000

—

12000

10000
8000

—

Read throughput (MB/s)

6000

1

4000 +
2000

0 +iih
s1

r1 -

""I‘""’ 1 512k
Zm
Stride (x8 bytes ri\ .
( ytes) s9 T 32m Size (bytes)
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Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {

for (i=0; i<n; i++) { * |
sum = 0.0; g _ |ALLL @j)
for (k=0; k<n; k++) (i,%)
sum += a[i] [k] * b[k][j]; A B C

c[i][§] = sum ‘ ‘ ‘
}

matmult/mm.c Row-wise Column- Fixed
wise

Inner loop:

Misses per inner loop iteration:

A B C

0.25 1.0 0.0
Block size = 32B (four doubles)
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Matrix Multiplication (ikj)

/* ik]j */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (i,k) E(k'*)g
r = a[i] [k]; 0 (i,%)
B C

for (j=0; j<n; Jj++) A
c[i] [j] += r * b[k][]]; ‘ ‘ ‘

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B ¢
0.0 0.25 0.25

Block size = 32B (four doubles)
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Matrix Multiplication (ki)

/* kji */
for (k=0; k<n; k++) {

for (j=0; j<n; j++) { * k) *
r = b[k][j]; (&D

for (i=0; i<n; i++)

Inner loop:

A . A B C
c[i] [J] += a[i][k] * r; ‘ ‘ ‘
matmult/mm.c
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

Block size = 32B (four doubles)
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