Carnegie Mellon

15-213
o sessaip i

< il A g vt

i RGN, W
AR Nl
O :‘ﬂ- o _4:-“ -

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Bits, Bytes and Integers — Part 1

15-213/14-513/15-513: Introduction to Computer Systems
2"d L ecture, September 2, 2021

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Announcements

m Recitations are on Mondays, but next Monday (Sep 6) is
Labor Day, so recitations are cancelled

m Linux Boot Camp Sunday (Sep 5), 7-9pm EDT

m Lab 0is now available via course web page and Autolab.
® Due Tuesday Sept. 7, 11:59pm EDT
" No grace days

" No late submissions
= Should take you less than five hours

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

https://autolab.andrew.cmu.edu/courses/15213-f21

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Representing information as bits
m Bit-level manipulations

m Integers
= Representation: unsigned and signed
" Conversion, casting
" Expanding, truncating

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Everything is bits

m EachbitisOor1l
m By encoding/interpreting sets of bits in various ways

= Computers determine what to do (instructions)
= .. and represent and manipulate numbers, sets, strings, etc...

m Why bits? Electronic Implementation
= Easy to store with bistable elements
= Reliably transmitted on noisy and inaccurate wires

v

— 0 > < 1 =0 —

1.1V —

O.gv] M

P A

/—-\,-/\J
0.0v —

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Everything is bits

m EachbitisOor1l

m By encoding/interpreting sets of bits in various ways
= Computers determine what to do (instructions)

= .. and represent and manipulate numbers, sets, strings, etc...

m Why bits? Electronic Implementation

An Amazing & Successful Abstraction.

(which we won’t dig into in 213)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

For example, can count in binary

m Base 2 Number Representation
= 0,1,10,11,100, 101, ...
" Represent 15213,,as11101101101101,
" Represent 1.20,,as 1.0011001100110011[0011]...,
= Represent (1.5213 x 10%),as (1.1101101101101 x 213),

m Represent negative numbers as ...?
= (we’ll come back to this)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Encoding Byte Values R
R

= Byte = 8 bits 0 10 10000

= Binary 000000002 to 11111111, 2 |2 |0010

: 3|13]0011

= Decimal: 010 to 25510 4 | 4 | 0100

m ' 5151|0101

Hexadecimal 0016 to FFie ¢ 6 0110

= Base 16 number representation 7 |7 | 0111

= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F 8 18 | 1000

9 19 |1001

= Write FA1D37B1s in C as A |10 1010

B (11| 1011

— OxFA1D37B C |12 1 1100

_ D [13] 1101

Oxfald37b = 112 11110

F |15 1111

15213: 0011 1011 011Q 1101

3 B 6 D

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit

char 1 1
short 2 2
int 4 4
long 4 8
float 4 4
double 8 8
pointer 4 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit

char 1 1
short 2 2
int 4 4
long 4 8
float 4 4
double 8 8
pointer 4 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit

char 1 1
short 2 2
int 4 4
long 4 8
float 4 4
double 8 8
pointer 4 8
“ILP32” “LP64”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Bit-level manipulations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
" Encode “True” as 1 and “False” as O

And Or
A&B =1 when both A=1 and B=1 A|B =1 when either A=1 or B=1 or both
&0 1 | {0 1
0(0 O 0(0 1
110 1 111 1
Not Exclusive-Or (Xor)
~A =1 when A=0 A7B =1 when A=1 or B=1, but not both
~|0 1 Ao

10 00
111 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

General Boolean Algebras

m Operate on Bit Vectors

= (QOperations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 “~ 01010101 ~ 01010101

01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Example: Sets of Small Integers

m Width w bit vector represents subsets of {0,1, ..., w — 1}
" Let a be a bit vector representing set 4, thenbita; = 1ifj € A

= Examples:
= 01101001 {0,3,5,6}
76543210
= 01010101 {0,2,4,6}
76543210

m Operations

= & [ntersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Bit-Level Operations in C

AN
>
o 66\6\’\006
m Operations &, |, ~, " Available in C ‘g‘ ? o%oo
= Apply to any “integral” data type 1|1 0001
] . . 2 [2 [0010
long, int, short, char, unsigned 3 13 [0011
= View arguments as bit vectors 4 |4 |0100
= Arguments applied bit-wise > | 5 1 0102
g Pp 6 | 6 | 0110
7 |7 | 0111
m Examples (Char data type) 8 18 11000
= ~Ox4l S 9 19 11001
A |10 1010
B [11] 1011
= ~0x00 - C |12 | 1100
D [13] 1101
E (14| 1110
= 0x69 & 0x55 - F [15]| 1111

= 0x69 | 0x55 >

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Bit-Level Operations in C

+

L] [[) e e
m Operations &, |, ~, " Availablein C R 07
= Apply to any “integral” data type

= long, int, short, char, unsigned

= View arguments as bit vectors

= Arguments applied bit-wise

m Examples (Char data type)
= ~0x41 - OxBE
= ~0100 0001; - 1011 11102
= ~0x00 - OxFF
= ~0000 00002 - 1111 1111>
" 0x69 & 0x55 - 0x41
= 01101001, & 0101 01012 - 0100 0001;
= 0x69 | 0x55 - 0x7D
= 01101001, | 0101 0101, - 0111 1101;

1 HEO QWP olodou|dwN RO
RR KRR
e S R Y R S R I I (S RS M L
|_l
o
|_l
o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Contrast: Logic Operations in C

m Contrast to Bit-Level Operators
" Logic Operations: &&, ||, !
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor 1
= Early termination

m Examples (char data type)
= 10x41 - 0x00

I0x00 - 0x01

= 1lI0x41-> 0x01

Watch out for && vs. & (and || vs. |)...
Super common C programming pitfall!

= 0Ox69 && 0x55 - 0x01
= 0x69 || 0x55 - 0x01

" p&&*p (avoids null pointer access)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Shift Operations
m Left Shift: x << y Argument x| 01100010
"= Shift bit-vector x left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right

= Right Shift: x >> y
= Shift bit-vector x right y positions

Log.>> 2 | 00011000

Arith. >> 2| 00011000

« Throw away extra bits on right Argument x(10100010

" Logical shift << 3 00010000
= Fill with 0’s on left

= Arithmetic shift
= Replicate most significant bit on left

Log.>> 2 | 00101000

Arith. >> 2] 11101000

m Undefined Behavior

= Shift amount < 0 or > word size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Today: Bits, Bytes, and Integers

O
u
m Integers
= Representation: unsigned and signed
o
o
o
o
u
u

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Encoding Integers

Unsigned Two’s Complement
w—1) w=2 .
BRUKX) = Y x -2 BT(X) = —x,,2" "+ x -2
i=0 i=0
short int x = 15213; \
short int y = -15213; Sign Bit

m Cdoes not mandate using two’s complement
® But, most machines do, and we will assume so

m Cshort 2 bytes long

Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
Y -15213| C4 93| 11000100 10010011

m Sign Bit
" For 2’s complement, most significant bit indicates sign
0 for nonnegative
= 1 for negative

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Two-complement: Simple Example

-16 8 4 2 1

Il

o
=
o
=
o

10 8+2 10

-16 8 4 2 1
-10=1 0 1 1 O -16+4+2 = -10

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Two-complement Encoding Example (Cont.)

X = 15213: 00111011 01101101

y = -15213: 11000100 10010011
Weight 15213 -15213

1 1 1 1 1

2 0 0 1 2

4 1 4 0 0

3 1 8 0 0

16 0 0 1 16

32 1 32 0 0

64 1 64 0 0

128 0 0 1 128

256 1 256 0 0

512 1 512 0 0

1024 0 0 1 1024

2048 1 2048 0 0

4096 1 4096 0 0

8192 1 8192 0 0

16384 0 0 1 16384

-32768 0 0 1 -32768

Sum 15213 -15213

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Numeric Ranges

= Unsigned Values m Two’s Complement Values

[| 1 —
UMin 0 = TMin = -2
000...0 100...0
m - w_
UMax 2" " TMax = 2%i-1
111..1 011..1
" Minus 1
111..1
Values for W =16
Decimal Hex Binary
UMax 65535(FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMin -32768| 80 00| 10000000 0000OOQOO
-1 -1 FF FF| 11111111 11111111
0 O| 00 00| 00000000 00OOOOOO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Values for Different Word Sizes

W
8 16 32 64
UMax | 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax | 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin | -128| -32,768 -2,147,483,648 -9,223,372,036,854,775,808
m Observations m CProgramming
= |TMin | = TMax+1 = f#include <limits.h>
= Asymmetric range "= Declares constants, e.g.,
" UMax = 2*TMax+1 = ULONG_MAX
= Question: abs(TMin)? = LONG_MAX

= LONG_MIN
= Values platform specific

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Unsigned & Sighed Numeric Values

X B2U(X) | B2T(X)
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 R
1010 10 -6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14 -2
1111 15 il

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m Equivalence

= Same encodings for nonnegative
values

m Uniqueness

= Every bit pattern represents
unique integer value

= Each representable integer has
unique bit encoding

m = Can Invert Mappings

= U2B(x) = B2U(x)

= Bit pattern for unsigned
integer

= T2B(x) = B2T(x)

= Bit pattern for two’s comp
integer

26

Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/24383/quizzes/67213

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Today: Bits, Bytes, and Integers

O
N
m Integers
o
= Conversion, casting
o
o
o
u

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Mapping Between Signed & Unsigned

Two’s Complement

X

Unsigned
ux

T2U

> T2B

> B2U

X

Maintain Same Bit Pattern

*| U2B

U2T

—

X

B2T

Maintain Same Bit Pattern

Unsigned

> Ux

Two’s Complement

> X

m Mappings between unsigned and two’s complement numbers:

Keep bit representations and reinterpret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

29

Mapping Sighed < Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 — Jul— 5
0110 6 6
0111 7 —1U2T} 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Mapping Sighed < Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 - 3
0100 4 <_> 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 +/- 16 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Relation between Signed & Unsigned

Two’s Complement - Unsigned

X > T2B > B2U > UX
X

Maintain Same Bit Pattern

w—1 0
ux |+|+|+ ° 00 +|+|+

x [oee T+[+[+

Large negative weight
becomes
Large positive weight

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Conversion Visualized

m 2’s Comp. —> Unsigned

= Ordering Inversion ® UMax

o —
" Negative — Big Positive UMax =1

_ /_:. TMax +1 [unsigned
TMax ® "® TMax Range

2’s Complement
Range

TLJ;;D

. TMin

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers
= Unsigned if have “U” as suffix
0U, 4294967259U

m Casting
= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;

uy = (unsigned) ty;

= Implicit casting also occurs via assignments and procedure calls
tx = ux; int fun(unsigned u) ;
uy = ty; uy = fun(tx) ’

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Casting Surprises

m Expression Evaluation

= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

® Including comparison operations <, >, ==, <=, >=
= Examples for W=32: TMIN =-2,147,483,648, TMAX=2,147,483,647

m Constant, Constant, Relation Evaluation
0 ou == unsigned
1 0 < signed
1 ou > unsigned
2147483647 -2147483647-1 > signed
2147483647V -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Summary
Casting Sighed € Unsigned: Basic Rules

m Bit pattern is maintained
m But reinterpreted
m Can have unexpected effects: adding or subtracting 2%

m Expression containing signed and unsigned int
" intiscasttounsigned!!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Today: Bits, Bytes, and Integers

O
u
m Integers
o
o
= Expanding, truncating
o
o
u

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Sign Extension

m Task:

" Given w-bit signed integer x
= Convert it to w+k-bit integer with same value

m Rule:
= Make k copies of sign bit:

= X = Xpyqseeer Xpye1 s Xpye1 s Xz 11 X
|]
k copies of MSB < w >
o 00
X’ () (3)
<€ k >€ ", >

Bryant and O’Hallaron, Computer Systems: A Programmer’st , ctive, Third Edition 39

Carnegie Mellon

Sign Extension: Simple Example

Positive number Negative number
-16 8 4 2 1 -16 8 4 2 1
10 = 1 0 1 0 -10 = 0 1 1 0
-3 1l6 8 4 2 1 -3 16 8 4 2 1
10 = O EIS 1 0 1 0 -10 = 1 { 0 1 1 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Larger Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y:

Decimal Hex Binary

X 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 O1101101
y -15213 C4 93 11000100 10010011
iy -15213(FF FF C4 93 11111111 11111111 11000100 10010011

m Converting from smaller to larger integer data type
m C automatically performs sign extension

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Truncation

m Task:

= Given k+w-bit signed or unsigned integer X

= Convert it to w-bit integer X’ with same value for “small enough” X
m Rule:

" Drop top k bits:

I —
X' = X1 Xy s X

<€ k > <€ ", >
X o000 ()
XI ()

<€ W >

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Truncation: Simple Example

No sign change Sign change

-16 8 4 2 1 -16 8 4 2 1

2 = 0 0 0 1 0 10 = 0 1 0 1 0

-8 4 2 1 -8 4 2 1

2 = 0 0 1 0 -6 = 1 0 1 0
2 mod 16 = 2 10 mod 16 = 10U mod 16 = 10U = -6

-16 8 4 2 1 -16 8 4 2 1

-6 = 1 1 0 1 0 -10 = 1 0 1 1 0

-8 4 2 1 -8 4 2 1

-6 = 1 0 1 0 6 = 0 1 1 0
-6 mod 16 = 26U mod 16 = 10U = -6 -10 mod 16 = 22U mod 16 = 6U = 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added
= Signed: sign extension
= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
" Unsigned: mod operation
= Signed: similar to mod
= For small (in magnitude) numbers yields expected behavior

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Summary of Today: Bits, Bytes, and Integers

m Representing information as bits
m Bit-level manipulations

m Integers
= Representation: unsigned and signed
= Conversion, casting
= Expanding, truncating

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

