Carnegie Mellon

-~

e - AN —
e, | L @ e L

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Course Overview

15-213/14-513/15-513:
Introduction to Computer Systems
15t Lecture, Aug. 31, 2021 Instructors:
Ts Seth Goldstein (15-213)

Brian Railing (15-513)
David Varodayan (14-513)
Zack Weinberg (15-213)

The course that gives CMU its “Zip”!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Overview

m Introductions
m Big Picture

= Course theme
" Five realities
" How the course fits into the CS/ECE/INI curriculum

m Academic integrity
m Logistics and Policies

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Instructors

Seth Goldstein Zack Weinberg

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

The Big Picture

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Course Theme:
(Systems) Knowledge is Power!

m Systems Knowledge
" How hardware (processors, memories, disk drives, network infrastructure)
plus software (operating systems, compilers, libraries, network protocols)
combine to support the execution of application programs

" How you as a programmer can best use these resources

m Useful outcomes from taking 213/513
= Become more effective programmers
= Able to find and eliminate bugs efficiently
= Able to understand and tune for program performance
" Prepare for later “systems” classes in CS & ECE

= Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems, Storage Systems, etc.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

It’s Important to Understand How Things Work

m Why do | need to know this stuff?
" Abstraction is good, but don’t forget reality

m Most CS and CE courses emphasize abstraction
= Abstract data types
= Asymptotic analysis

m These abstractions have limits
= Especially in the presence of bugs

" Need to understand details of underlying implementations

= Sometimes the abstract interfaces don’t provide the level of control or
performance you need

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #1:
Ints are not Integers, Floats are not Reals

m Example 1: Is x2 2> 0?

| [P . 1306... 1,307... v 32767..,-32,78...| | . -32,767...-32,766 ...

el R = ol B e
B e o P
LAA A~ AL A A_A A A 2

|| || H|| F

= 40000 * 40000 --> 1600000000
= 50000 * 50000 -->?

m Example 2:Is (x+y)+z = x+(y +2)?
" Unsigned & Signed Int’s: Yes!
= Float’s:
= (1e20 +-1e20) + 3.14-->3.14
= 1e20 + (-1e20 + 3.14) --> ??

" Float’s: Yes! "

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Source: xked.com/571 8

Carnegie Mellon

Computer Arithmetic

m Does not generate random values
= Arithmetic operations have important mathematical properties

I (] I”

m Cannot assume all “usual” mathematical properties
" Due to finiteness of representations
" Integer operations satisfy “ring” properties
= Commutativity, associativity, distributivity
" Floating point operations satisfy “ordering” properties
= Monotonicity, values of signs

m Observation
" Need to understand which abstractions apply in which contexts
" Important issues for compiler writers and serious application programmers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Great Reality #2:

You’'ve Got to Know Assembly

m Chances are, you’ll never write programs in assembly
" Compilers are much better & more patient than you are

m But: Understanding assembly is key to machine-level execution
model
Behavior of programs in presence of bugs
= High-level language models break down
Tuning program performance
= Understand optimizations done / not done by the compiler
= Understanding sources of program inefficiency
Implementing system software
= Compiler has machine code as target
= Operating systems must manage process state
Creating / fighting malware
= x86 assembly is the language of choice!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Great Reality #3: Memory Matters

Random Access Memory Is an Unphysical Abstraction

m Memory is not unbounded
" |t must be allocated and managed
= Many applications are memory dominated

m Memory referencing bugs especially pernicious

= Effects are distant in both time and space

m Memory performance is not uniform
= Cache and virtual memory effects can greatly affect program performance

= Adapting program to characteristics of memory system can lead to major
speed improvements

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Memory Referencing Bug Example

typedef struct {
int a[2];
double d;

} struct_t;

double fun(int 1) {
volatile struct t s;
s.d = 3.14;
s.a[i] = 1073741824; /* Possibly out of bounds */
return s.d;

}

fun(0) =--> 3.14

fun(l) --> 3.14

fun(2) --> 3.1399998664856
fun (3) --> 2.00000061035156
fun(4) --> 3.14

fun (6) --> Segmentation fault

= Result is system specific

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Memory Referencing Bug Example

typedef struct { fun(0) --> 3.14
int a[2]; fun (1) --> 3.14
diubli :{ fun (2) --> 3.1399998664856
- DECEs (5f fun (3) --> 2.00000061035156
fun(4) --> 3.14
fun (6) --> Segmentation fault
Explanation:
Critical State 6 A
? 5
? 4
" g7 44 3 Location accessed by
fun (1)
d3 do 2
struct t =<
- alll] 1
_ al0] 0 Y

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Memory Referencing Errors

m C and C++ do not provide any memory protection
® Qut of bounds array references
" |nvalid pointer values
= Abuses of malloc/free

m Can lead to nasty bugs
= Whether or not bug has any effect depends on system and compiler
= Action at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated

m How can | deal with this?
" Program in Java, Ruby, Python, ML, ...

= Understand what possible interactions may occur
= Use or develop tools to detect referencing errors (e.g. Valgrind)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Great Reality #4: There’s more to

performance than asymptotic complexity

m Constant factors matter too!

m And even exact op count does not predict performance
= Easily see 10:1 performance range depending on how code written
= Must optimize at multiple levels: algorithm, data representations,
procedures, and loops
m Must understand system to optimize performance
" How programs compiled and executed
" How to measure program performance and identify bottlenecks

" How to improve performance without destroying code modularity and
generality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Memory System Performance Example

void copyij(int src[2048][2048], void copyji(int src[2048][2048],
int dst[2048][2048]) int dst[2048][2048])
{ {
int i,j; int i,j;
for (i = 0; i < 2048; i++) for (j = 0; j < 2048; j++)
for (j = 0; j < 2048; j++)::><\‘ for (i = 0; i < 2048; i++)
dst[i] []J] = sxc[i][]]’ dst[i] []J] = src[i][]]~’
} }
4.3ms 81.8ms

2.0 GHz Intel Core i7 Haswell

m Hierarchical memory organization
m Performance depends on access patterns

" |ncluding how step through multi-dimensional array

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Why The Performance Differs

copyij

16000
14000
v
m
= 12000
3
2 10000
o
2
- 8000
K
S 6000
(14

s5

7 2m

Stride (x8 bytes) 8m

s11
128m

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

512k

128k

30m Size (bytes)

32k

Carnegie Mellon

17

Great Reality #5:

Computers do more than execute programs

m They need to get data in and out

= |/O system critical to program reliability and performance

m They communicate with each other over networks
" Many system-level issues arise in presence of network
= Concurrent operations by autonomous processes
= Coping with unreliable media
= Cross platform compatibility
= Complex performance issues

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Course Perspective

m Most Systems Courses are Builder-Centric
" Computer Architecture
= Design pipelined processor in Verilog
® Operating Systems
= Implement sample portions of operating system
= Compilers
= Write compiler for simple language
" Networking
= Implement and simulate network protocols

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Course Perspective (Cont.)

m Our Course is Programmer-Centric

" By knowing more about the underlying system, you can be more effective
as a programmer

" Enable you to
= Write programs that are more reliable and efficient
= [ncorporate features that require hooks into OS
— E.g., concurrency, signal handlers
= Cover material in this course that you won’t see elsewhere
" Not just a course for dedicated hackers
= We bring out the hidden hacker in everyone!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Role within CS/ECE Curriculum | c122

Imperative
Programming

Foundation of Computer Systems
Underlying principles for hardware,
software, and networking

ECE Systems
CS Systems 18-330 Computer Security
* 15-319 Cloud Computing « 18-349 Intro to Embedded Systems
* 15-330 Computer Security « 18-441 Computer Networks
* 15-410 Operating Systems e 18-447 Computer Architecture
* 15-411 Compiler Design e 18-452 Wireless Networking
e 15-415 Database Applications e 18-451 Cyberphysical Systems
e 15-418 Parallel Computing !
e 15-440 Distributed Systems CS Graphics
e 15-441 Computer Networks 15-462 Computer Graphics
e 15-445 Database Systems e 15-463 Comp. Photography

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Academic Integrity

Please pay close attention, especially
if this is your first semester at CMU

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating/Plagiarism: Description

m Unauthorized use of information
= Borrowing code: by copying, retyping, looking at a file
= Describing: verbal description of code from one person to another

= Even if you just describe/discuss how to put together CS:APP code
snippets to solve the problem

Searching the Web for solutions, discussions, tutorials, blogs, other
universities’ 213 instances,... in English or any other language

Copying code from a previous course or online solution

Reusing your code from a previous semester (here or elsewhere)

= If you take the course this semester, all work has to be done this
semester (unless you have special permission from the instructors)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Cheating/Plagiarism: Description (cont.)

m Unauthorized supplying of information
" Providing copy: Giving a copy of a file to someone
" Providing access:
= Putting material in unprotected directory
= Putting material in unprotected code repository (e.g., Github)
— Or, letting protections expire
= Applies to this term and the future
= There is no statute of limitations for academic integrity violations

m Collaborations beyond high-level, strategic advice

Anything more than block diagram or a few words

Code / pseudo-code is NOT high level

Coaching, arranging blocks of allowed code is NOT high level

Code-level debugging is NOT high level

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Cheating/Plagiarism: Description

m Attribution Requirements
= Starter code: No
= Other allowed code (course, CS:APP): Yes
" |Indicate source, beginning, and end

m See the course syllabus for details.

" |gnorance is not an excuse

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Cheating/Plagiarism: Description

m What is NOT cheating?

= Explaining how to use systems or tools

" Helping others with high-level design issues
High means VERY high

= Using code supplied by us

= Using code from the CS:APP web site

= Using books from the library, Unix manpages, other published material
= Except the “Solutions Manual for CS:APP”

= Using general online references
= OK: The GNU C Library Manual, Beej’s Guide to C, cplusplus.com
= Not OK: searching for “213 malloc solution”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

https://www.gnu.org/software/libc/manual/html_node/index.html
https://beej.us/guide/bgc/
https://cplusplus.com/

Carnegie Mellon

Cheating: Consequences

m Penalty for cheating:
= Best case: -100% for assignment
= You would be better off to turn in nothing

Worst case: Removal from course with failing grade
= This is the default

Permanent mark on your record
Loss of respect by you, the instructors and your colleagues
If you do cheat — come clean asap!

m Detection of cheating:

" We have sophisticated tools for detecting code plagiarism
" |n Fall 2015, 20 students were caught cheating and failed the course.
= Some were expelled from the University

In January 2016, 11 students were penalized for cheating violations that occurred as far back as
Spring 2014.

In May 2019, we gave an AlV to a student who took the course in Fall 2018 for unauthorized
coaching of a Spring 2019 student. His grade was changed retroactively.

m Don’t doit!
" Manage your time carefully
= Ask the staff for help when you get stuck

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Cheating Notes

m We have written over 100 letters for cheating cases
" Don’t add to this total
= Some have been for years earlier

m Your work is sophisticated enough that there are many
different solutions
" Things that look the same are very suspicious
" |f you do your own work and commit regularly, your work is unique

m We use PhD-level research to detect similarities

" |Inputs include: multiple tools, online searches, past semester submissions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Some Concrete Examples:

m This is Cheating:

Searching the internet with the phrase 15-213, 15213, 213, 18213, 513,
malloclab, etc.

= That's right, just entering it in a search engine

Looking at someone’s code on the computer next to yours

Giving your code to someone else, now or in the future

Posting your code in a publicly accessible place on the Internet, now or in
the future

Hacking the course infrastructure

m This is OK (and encouraged):

" Googling a man page for fputs

Asking a friend for help with gdb

Asking a TA or course instructor for help, showing them your code, ...

Looking in the textbook for a code example

Talking about a (high-level) approach to the lab with a classmate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

How it Feels: Student and Instructor

m Fred is desperate. He can’t get his code to work and the deadline is drawing
near. In panic and frustration, he searches the web and finds a solution
posted by a student at U. Oklahoma on Github. He carefully strips out the
comments and inserts his own. He changes the names of the variables and
functions. Phew! Got it done!

m The course staff run checking tools that compare all submitted solutions to
the solutions from this and other semesters, along with ones that are on the
Web.

= Remember: We are as good at web searching as you are

m Meanwhile, Fred has had an uneasy feeling: Will | get away with it? Why
does my conscience bother me?

m Fred gets email from an instructor: “Please see me tomorrow at 9:30 am.”
" Fred does not sleep well that night

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

How it Feels: Student and Instructor

m The instructor feels frustrated. His job is to help students learn, not to be
police. Every hour he spends looking at code for cheating is time that he
cannot spend providing help to students. But, these cases can’t be
overlooked

m At the meeting:
= Instructor: “Explain why your code looks so much like the code on Github.”
" Fred: “Gee, | don’t know. | guess all solutions look pretty much alike.”
= Instructor: “I don’t believe you. | am going to file an academic integrity violation.”
= Fred will have the right to appeal, but the instructor does not need him to admit
his guilt in order to penalize him.
m Consequences
" Fred may (most likely) will be given a failing grade for the course
" Fred will be reported to the university
= A second AIV will lead to a disciplinary hearing
= Fred will go through the rest of his life carrying a burden of shame

® The instructor will experience a combination of betrayal and distress

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Why It’s a Big Deal

m This material is best learned by doing
" Even though that can, at times, be difficult and frustrating

= Starting with a copy of a program and then tweaking it is very different
from writing from scratch

= Planning, designing, organizing a program are important skills
m We are the gateway to other system courses

= Want to make sure everyone completing the course has mastered the
material

m Industry appreciates the value of this course
= We want to make sure anyone claiming to have taken the course is
prepared for the real world
m Working in teams and collaboration is an important skill
= But only if team members have solid foundations
® This course is about foundations, not teamwork

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

A Scenario: Cheating or Not?

Alice is working on malloc lab and is just plain stuck. Her code is
seg faulting and she doesn't know why. It is only 2 days until
malloc lab is due and she has 3 other assignments due this same
week. She is in the cluster.

Bob is sitting next to her. He is pretty much done.
Sitting next to Bob is Charlie. He is also stuck.

m 1. Charlie gets up for a break and Bob makes a printout of his own
code and leaves it on Charlie’s chair.

® Who cheated: Charlie? Bob?

m 2. Charlie finds the copy of Bob’s malloc code, looks it over, and
then copies one function, but changes the names of all the
variables.

® Who cheated: Charlie? Bob?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Another Scenario

Alice is working on malloc lab and is just plain stuck. Her code is seg faulting and
she doesn't know why. It is only 2 days until malloc lab is due and she has 3
other assignments due this same week. She is in the cluster.

Bob is sitting next to her. He is pretty much done.
Sitting next to Bob is Charlie. He is also stuck.

m 1. Bob offers to help Alice and they go over her code together.
= Who cheated: Bob? Alice?

m 2. Bob gets up to go to the bathroom and Charlie looks over at his
screen to see how Bob implemented his free list.

® Who cheated: Charlie? Bob?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Another Scenario (cont.)

m 3. Alice is having trouble with GDB. She asks Bob how to set a
breakpoint, and he shows her.

= Who cheated: Bob? Alice?
m 4. Charlie goes to a TA and asks for help

" Who cheated: Charlie?

m If you are uncertain which of these constitutes cheating, and
which do not, please read the syllabus carefully. If you’re still
uncertain, ask one of the staff

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Version Control: Your Good Friend

m Most labs will be distributed via GitHub Classroom
m Must be used by all students
m Students must commit early and often

m If a student is accused of cheating (plagiarism), we will consult
the GIT server and look for a reasonable commit history

m Missing GIT history will count against you
m Please make sure you have one!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

How to Avoid AlVs

m Start early
m Don’t rely on marathon programming sessions

® Your brain works better in small bursts of activity
" |deas / solutions will come to mind while you’re doing other things

m Plan for stumbling blocks

= Assignment is harder than you expected

Code doesn’t work

Bugs hard to track down

Life gets in the way
= Minor health issues
= Unanticipated events

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Logistics

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

EEEEEEE———————————————————————
15-213, 14-513, 15-513, 18-213, 18-613

m 15-213)
® CS Undergraduates and other Undergraduates

" |n-class lectures in CUC McConomy (with in-class quizzes)

m 14-513
= |NI Masters students - 15-
" |n-class lectures in CIC 1201 / B23 118 (with in-class quizzes) COhOrt (for
m 15-513 TAs, office
= CS Masters and other Masters students hours, etc)
= Watch recorded lectures (no in-class quizzes)]
m 18-213 .
® ECE Undergraduates
® |n-class lectures in DH A302 (with in-class quizzes)
m 18-613 — 18-
" ECE Masters students cohort (for
" In-class lectures in BH A51 / B23 109 (with in-class quizzes) | TAs, office
m Same material & labs for all the courses hours, etc)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Primary Textbook

m Randal E. Bryant and David R. O’Hallaron,

= Computer Systems: A Programmer’s Perspective, Third Edition (CS:APP3e),
Pearson, 2016

https://csapp.cs.cmu.edu

This book really matters for the course!
= How to solve labs
= Practice problems typical of exam problems

Electronic editions available (Don’t get paperback version!)

On reserve in Sorrells Library

m Note: All textbooks have errors
" Don’t panic if you see something that seems wrong
" Come talk to us about it if you can’t make it make sense

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

https://csapp.cs.cmu.edu/

Carnegie Mellon

Recommended reading

m Brian Kernighan and Dennis Ritchie,
" The C Programming Language, Second Edition, Prentice Hall, 1988
" Everyone calls this book “K&R”

Guide to C by the designers of the language

Well-written, concise
A little dated
= Doesn’t cover additions to C since 1988 (that’s thirty years ago...)

= Casual about issues we consider serious problems now

On reserve in Sorrells Library

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

If you want more books about C

m Cfor Programmers with an introduction to C11
= Paul and Harvey Deitel
= QOpposite of K&R: modern, verbose
= Lots of worked-out examples
= Ugly code style (compare readability to K&R)

m 215t Century C
= Ben Klemens
= Supplement to full C textbooks: goes into the corners of the language
= QOpinionated
= First half is about how to build C programs in the Unix environment
= So, if you want to understand the Makefiles we give you...

m Learn C the Hard Way
= Zed A. Shaw
= Extremely opinionated
= Also has lots of worked-out examples
= Only book | can find that takes “undefined behavior” seriously enough

m These books are not on reserve
" The library may still have them, or you can borrow a copy from Weinberg

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Course Components

m Lectures
= Higher level concepts
" |n-class quizzes (except 15-513) could tilt you to a higher grade if borderline

m Labs (8)

= 1-2+ weeks each
" Provide in-depth understanding of an aspect of systems
" Programming and measurement

m Written Assignments (best 10 of 12)
= Reinforce concepts
" You earn 1/3 of score by grading your peers’ work according to our rubric
" Due Wednesdays at 11:59pm ET with peer grades due the next Wednesday

m Final Exam

" Test your understanding of concepts & mathematical principles
= Covers content from the whole semester

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Programs and Data

m Topics
" Bit operations, arithmetic, assembly language programs
" Representation of C control and data structures
" Includes aspects of architecture and compilers

m Assignments
" L0 (C programming Lab): Test/refresh your C programming abilities
= |1 (datalab): Manipulating bits
= |2 (bomblab): Defusing a binary bomb
= |3 (attacklab): The basics of code injection attacks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

The Memory Hierarchy

m Topics
" Memory technology, memory hierarchy, caches, disks, locality
" Includes aspects of architecture and OS

m Assignments
= |4 (cachelab): Building a cache simulator and optimizing for locality.
= Learn how to exploit locality in your programs.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Virtual Memory

m Topics
= Virtual memory, address translation, dynamic storage allocation
" Includes aspects of architecture and OS

m Assignments
= L5 (malloclab): Writing your own malloc package
= Get a real feel for systems-level programming

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Exceptional Control Flow

m Topics

= Hardware exceptions, processes, process control, Unix signals,
nonlocal jumps

" Includes aspects of compilers, OS, and architecture

m Assignments
= L6 (tshlab): Writing your own Unix shell.
= A first introduction to concurrency

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Networking, and Concurrency

m Topics
" High level and low-level 1/O, network programming
" |nternet services, Web servers
" concurrency, concurrent server design, threads

|/O multiplexing with select
" Includes aspects of networking, OS, and architecture

m Assignments
= L7 (proxylab): Writing your own Web proxy

= Learn network programming and more about concurrency and
synchronization.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Lab Rationale

m Each lab has a well-defined goal such as solving a puzzle or
winning a contest

m Doing the lab should result in new skills and concepts

m We try to use competition in a fun and healthy way
= Set a reasonable threshold for full credit
= Post intermediate results (anonymized) on Autolab scoreboard for glory!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

LabO: C Programming

m You can start now: see 213 schedule page

m It should all be review:
= Basic C control flow, syntax, etc.
" Explicit memory management, as required in C.
" Creating and manipulating pointer-based data structures.

" Implementing robust code that operates correctly with invalid arguments,
including NULL pointers.

® Creating rules in a Makefile

m If this lab takes you more than 10 hours, please think hard
about taking the course.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

http://www.cs.cmu.edu/%7E213/schedule.html

Carnegie Mellon

Policies: Lab

m Work groups

" You must work alone on all lab assignments

m Handins
" Labs due at 11:59pm ET
" Electronic handins using Autolab (no exceptions!)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Timeliness

m Grace days

= 5 grace days for the semester

= Limitof 0, 1, or 2 grace days per lab used automatically

= Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks
m Lateness penalties

= Once grace day(s) used up, get penalized 15% per day

" No handins later than 3 days after due date
m Catastrophic events

= Major illness, death in family, ...

" Formulate a plan (with your academic advisor) to get back on track

= Advice Really, Really Hard!

= Once you start running late, it’s really hard to catch up
" Try to save your grace days until the last few labs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Facilities

m Labs will use the Intel Computer Systems Cluster

" The “shark machines”
®]inux> ssh shark.ics.cs.cmu.edu

21 servers donated by Intel for 213/513
= 10 student machines (for student logins)
= 1 head node (for instructor logins)
= 10 grading machines (for autograding)
Each server: Intel Core i7: 8 Nehalem cores, 32 GB DRAM, RHEL 6.1
Login using your Andrew ID and password
Storage shared with general-purpose Andrew clusters (AFS)

Please don’t use the general-purpose Andrew clusters for 213 work
= They get overloaded

You can try to do the labs on your local machine
= But it’s not guaranteed to work
= You may get very strange errors

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Autolab (https://autolab.andrew.cmu.edu)

m Labs are provided by the CMU Autolab system
" Project page: http://autolab.andrew.cmu.edu
" Developed by CMU faculty and students
= Key ideas: Autograding and Scoreboards
= Autograding: Providing you with instant feedback.
= Scoreboards: Real-time, rank-ordered, and anonymous summary.

= Used by over 3,000 students each semester

m With Autolab you can use your Web browser to:

= Download the lab materials

" Handin your code for autograding by the Autolab server

= View the class scoreboard

= View the complete history of your code handins, autograded results,
instructor’s evaluations, and gradebook.

= View the TA annotations of your code for Style points.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

http://autolab.cs.cmu.edu/

Carnegie Mellon

Autolab accounts

m Students enrolled on Monday, August 30 have Autolab accounts

m You must be enrolled to get an account
= Autolab is not tied into the Hub’s rosters
= |f you add in, sign up with Google form (check on Piazza)
= We will update the autolab accounts once a day, so check back in 24 hours.

m For those who are waiting to add in, the first lab (C
Programming Lab) is available on the Schedule page of the
course Web site.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Getting Help

m Class Web page:
= http://www.cs.cmu.edu/~213 for 15-213/14-513/15-513
" Complete schedule of lectures, exams, and assignments

= Copies of lectures, assignments, exams, solutions
= FAQ
m Piazza
= Best place for questions about assignments
= We will fill the FAQ and Piazza with answers to common questions
= Be careful about public posts: Remember the AlIV policy

m Canvas
= Zoom links / recorded lectures
" In-class quizzes

= Written assignments

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

http://www.cs.cmu.edu/%7E213

Carnegie Mello

Getting Help

m Email

= Send email to individual instructors or TAs only to schedule appointments

m Office hours
" TAs: See separate slide for 15-cohort vs. 18-cohort
" |nstructors: See course home page

m Walk-in Tutoring
= Details TBA. Will put information on class webpage.

m 1:1 Appointments

" You can schedule 1:1 appointments with any of the teaching staff

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Recitations

m Begins Monday 9/13
m You must go to the recitation the registrar put you in.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

Policies: Grading

m Final Exam (30%)

m Labs (50%): weighted according to effort

m Written Assignments (20%): drop lowest 2 out of 12
= 1/3 points for making a credible submission
= 1/3 points from average of the three scores assigned by the peer graders
= 1/3 points for completing the peer reviews with constructive feedback

m Final grades based on a straight scale (90/80/70/60) with a
small amount of curving
= Only upward

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Carnegie Mellon

Bootcamps

m Bootcamp #1
= | inux, the Command Line and Git
= Sunday, 9/5 6-8pm, Rashid

m Bootcamp #2

= Debugging Fundamentals & GDB
= See schedule page on the web

m Bootcamp #3

= GCC & Build Automation (makefiles)
= See schedule page on the web

m More bootcamps to be announced for specific labs later

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

https://www.cs.cmu.edu/%7E213/schedule.html
https://www.cs.cmu.edu/%7E213/schedule.html

Carnegie Mellon

Waitlist questions

m 15-213: Mary Widom (marwidom@cs.cmu.edu)
m 15-513: Mary Widom (marwidom@cs.cmu.edu)
m 14-513: INI Enrollment (ini-academic@andrew.cmu.edu)

m Please don’t contact the instructors with waitlist questions.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Carnegie Mellon

Managing this course

m Time management is key

= Start early.
= Office hours are basically empty the first few days an assignment is out.

= |f you feel pressured, do appropriate risk analysis
m Read the Textbook!
m Come to lecture
m Go to recitation

m (Finally, remember linux bootcamp this Sunday at 6pm)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

Welcome
and Enjoy!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon

Appendix: GitHub Classroom Example

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

Carnegie Mellon

Git basics — create a project for your lab

m Follow link from writeup in TPZ
m Use link to create a repo

GitHub Classroom

15213 /18213 / 15513 / 18613 S19

@cmu15213s19

L Accept the Lab0 assignment

Accepting this assignment will give you access to the 213s19-lab0-seth4618 repository in the @cmul5213s19 organization on
GitHub.

Accept this assignment

Bryan 67

Carnegie Mellon

Git basics — create a project for your lab

m Follow link from writeup in TPZ
m Use link to create a repo

GitHub Classroom

15213 /18213 /15513 /18613 S19

@cmui15213s19

& Accepted the Lab0 assignment

You are ready to go!

You may receive an invitation to join @cmu15213s19 via email invitation on your behalf. No further action is necessary.

Your assignment has been created here: https://github.com/cmu15213s19/213s19-lab0-seth4618

Bryan 68

Carnegie Mellon

Git basics — create a project for your lab

m Follow link from writeup in TPZ
m Use link to create a repo

Pull requests Issues Marketplace Explore

& cmul5213s19 / 213s19-lab0-seth4618 erivate ® Unwatch~ = 2 % Star | 0 0
<> Code Issues 0 Pull requests 0 Projects 0 Wiki Insights

213s19-lab0-seth4618 created by GitHub Classroom

1 commit ¥ 1 branch © 0 releases 22 1 contributor
|]
Branch: master » New pull request Create new file Upload files Find file Clone or download v
& PatrickRen init Latest commit 45f98@b a day ago
I traces init a day ago
E) Makefile init a day ago
[E) README init a day ago
E) console.c init a day ago
E) console.h init a day ago

Bryan [E] driver.py init a day ago 69

Carnegie Mellon

Git basics — create a project for your lab

m Follow link from writeup in TPZ
m Use link to create a repo

m Clone to your local machine

m Commit often!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 70

Carnegie Mellon

Git basics — clone it to a working directory

m Clone into a directory with the proper permissions

git clone gitRgithub.com:cmul5213s19/213s19-1ab0-
seth4618.git
cd 213s19-1ab0-seth4618

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 71

mailto:git@github.com:cmu15213s19/213s19-lab0-seth4618.git

	Slide Number 1
	Slide Number 2
	Overview
	Instructors
	The Big Picture
	Course Theme: �(Systems) Knowledge is Power!
	It’s Important to Understand How Things Work
	Great Reality #1: �Ints are not Integers, Floats are not Reals
	Computer Arithmetic
	Great Reality #2: �You’ve Got to Know Assembly
	Great Reality #3: Memory Matters�Random Access Memory Is an Unphysical Abstraction�
	Memory Referencing Bug Example
	Memory Referencing Bug Example
	Memory Referencing Errors
	Great Reality #4: There’s more to performance than asymptotic complexity�
	Memory System Performance Example
	Why The Performance Differs
	Great Reality #5:�Computers do more than execute programs
	Course Perspective
	Course Perspective (Cont.)
	Role within CS/ECE Curriculum
	Academic Integrity
	Cheating/Plagiarism: Description
	Cheating/Plagiarism: Description (cont.)
	Cheating/Plagiarism: Description
	Cheating/Plagiarism: Description
	Cheating: Consequences
	Cheating Notes
	Some Concrete Examples:
	How it Feels: Student and Instructor
	How it Feels: Student and Instructor
	Why It’s a Big Deal
	A Scenario: Cheating or Not?
	Another Scenario
	Another Scenario (cont.)
	Version Control: Your Good Friend
	How to Avoid AIVs
	Logistics
	15-213, 14-513, 15-513, 18-213, 18-613
	Primary Textbook
	Recommended reading
	If you want more books about C
	Course Components
	Programs and Data
	The Memory Hierarchy
	 Virtual Memory
	Exceptional Control Flow
	 Networking, and Concurrency
	Lab Rationale
	Lab0: C Programming
	Policies: Lab
	Timeliness
	Facilities
	 Autolab	(https://autolab.andrew.cmu.edu)
	 Autolab accounts
	Getting Help	
	Getting Help	
	Recitations
	Policies: Grading
	Bootcamps
	 Waitlist questions
	Managing this course
	Welcome and Enjoy!
	Appendix: GitHub Classroom Example
	Git basics – create a project for your lab
	Git basics – create a project for your lab
	Git basics – create a project for your lab
	Git basics – create a project for your lab
	Git basics – clone it to a working directory

