
Compiling Fundamentals

15-213/15-513/14-513: Introduction to Computer Systems

Questions that will be answered today

● What does it mean to compile code?

● What does compiling code look like?

● How can code be compiled?

● What are Makefiles?

● It is important to understand how programs are compiled to have a better understanding of

how different parts of a computer interact with each other.

● Fundamental aspect of how computers run code.

Why is this important?

Levels of Abstraction
● C [and other high level languages]

are easy for programmers to
understand, but computers
require lots of software to process
them

● Machine code is just the opposite:
easy for the computer to process,
humans need lots of help to
understand it

● Assembly language is a
compromise between the two:
readable by humans (barely), close
correspondence to machine code

What does it mean to compile code?

● The computer only understands
machine code directly

● All other languages must be either
○ interpreted: executed by software
○ compiled: translated to machine

code by software

What does it mean to compile code?

● Computer follows steps to translate your

code into something the computer can

understand

● This is the process of compiling code [a

compiler completes these actions]

● Four steps for C: preprocessing, compiling,

assembling, linking

○ Most other compiled languages don’t

have the preprocessing step, but do

have the other three

Stepping through the stages

● Pre-Processor
○ $ gcc -E [flags] [filenames]

● Compiler
○ $ gcc -S [flags] [filenames]

● Assembler
○ $ gcc -c [flags] [filenames]
○ $ objdump -d [filenames]

● Linker
○ $ gcc -o [exename] [flags] [filenames]

C Code to Machine Code

Pre-Processor
● Peculiar to the C family; other languages

don’t have this

● Processes #include, #define, #if, macros
○ Combines main source file with

headers (textually)

○ Defines and expands macros

(token-based shorthand)

○ Conditionally removes parts of the

code (e.g. specialize for Linux, Mac, …)

● Removes all comments

● Output looks like C still

Before and after preprocessing
#include <limits.h>

#include <stdio.h>

int main(void) {

 // Report the range of `char` on this system

 printf("CHAR_MIN = %d\n"

 "CHAR_MAX = %d\n",

 CHAR_MIN, CHAR_MAX);

 return 0;

}

1 "test.c"
1 "/usr/lib/gcc/x86_64-linux-gnu/10/include/limits.h" 1 3 4
...
1 "/usr/include/stdio.h" 1 3 4
...
extern int fprintf (FILE *__restrict __stream,
 const char *__restrict __format, ...);
extern int printf (const char *__restrict __format, ...);
...
874 "/usr/include/stdio.h" 3 4
3 "test.c" 2

int main(void) {
 printf("CHAR_MIN = %d\n"
 "CHAR_MAX = %d\n",
6 "test.c" 3 4
 (-0x7f - 1)
6 "test.c"
 , 0x7f);
 return 0;
}

● Contents of header files inserted inline

● Comments removed

● Macros expanded

● “Directive” lines (beginning with #)

communicate things like original line numbers

Compiler

● The compiler translates the preprocessed

code into assembly code
○ This changes the format and structure

of the code but preserves the

semantics (what it does)

○ Can change lots of details for

optimization, as long as the overall

effect is the same

Before and after compilation

extern int printf (const char *__restrict
 __format, ...);
int main(void) {
 printf("CHAR_MIN = %d\n"
 "CHAR_MAX = %d\n",
 (-0x7f - 1), 0x7f);
 return 0;
}

 .file "test.c"
 .section .rodata.str1.1,"aMS",@progbits,1
.LC0:
 .string "CHAR_MIN = %d\nCHAR_MAX = %d\n"
 .text
 .globl main
main:
 subq $8, %rsp
 movl $127, %edx
 movl $-128, %esi
 leaq .LC0(%rip), %rdi
 xorl %eax, %eax
 call printf@PLT
 xorl %eax, %eax
 addq $8, %rsp
 ret
 .size main, .-main

● C source code converted to assembly language
● Textual, but 1:1 correspondence to machine

language

● String out-of-line, referred to by label (.LC0)

● printf just referred to, not declared

Assembler

● Parses assembly code and mainly

translates into bits
○ There is some flexibility to

generate the most efficient

version of machine code

Before and after assembling
 .file "test.c"
 .section .rodata.str1.1,"aMS",@progbits,1
.LC0:
 .string "CHAR_MIN = %d\nCHAR_MAX = %d\n"
 .text
 .globl main
main:
 subq $8, %rsp
 movl $127, %edx
 movl $-128, %esi
 leaq .LC0(%rip), %rdi
 xorl %eax, %eax
 call printf@PLT
 xorl %eax, %eax
 addq $8, %rsp
 ret
 .size main, .-main

$ objdump -s -r test.o
test.o: file format elf64-x86-64

RELOCATION RECORDS FOR [.text]:
OFFSET TYPE VALUE
0000000000000011 R_X86_64_PC32 .LC0-0x0000000000000004
0000000000000018 R_X86_64_PLT32 printf-0x0000000000000004

Contents of section .rodata.str1.1:
 0000 43484152 5f4d494e 203d2025 640a4348 CHAR_MIN = %d.CH
 0010 41525f4d 4158203d 2025640a 00 AR_MAX = %d..

Contents of section .text:
 0000 4883ec08 ba7f0000 00be80ff ffff488d H.............H.
 0010 3d000000 0031c0e8 00000000 31c04883 =....1......1.H.
 0020 c408c3 ...

● Everything is now binary

● “Relocations” for addresses not yet known

Before and after assembling
 .file "test.c"
 .section .rodata.str1.1,"aMS",@progbits,1
.LC0:
 .string "CHAR_MIN = %d\nCHAR_MAX = %d\n"
 .text
 .globl main
main:
 subq $8, %rsp
 movl $127, %edx
 movl $-128, %esi
 leaq .LC0(%rip), %rdi
 xorl %eax, %eax
 call printf@PLT
 xorl %eax, %eax
 addq $8, %rsp
 ret
 .size main, .-main

$ objdump -d -r test.o
test.o: file format elf64-x86-64
Disassembly of section .text.startup:

0000000000000000 <main>:
 0: 48 83 ec 08 sub $0x8,%rsp
 4: ba 7f 00 00 00 mov $0x7f,%edx
 9: be 80 ff ff ff mov $0xffffff80,%esi
 e: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi
 11: R_X86_64_PC32 .LC0-0x4
 15: 31 c0 xor %eax,%eax
 17: e8 00 00 00 00 call 1c <main+0x1c>
 18: R_X86_64_PLT32 printf-0x4
 1c: 31 c0 xor %eax,%eax
 1e: 48 83 c4 08 add $0x8,%rsp
 22: c3 ret

● Just to emphasize that 1:1 correspondence

between assembly and machine instructions

● Aggregates multiple independently

compiled files containing machine code

● Fills in those unknown addresses

● The goal is to create 1 file with all of the

needed code to run the program
○ This is the file you run to check your

code!

Linker Static Library
Files (.lib, .a)

How to Use The Compiler (gcc)

GCC - What is it?

● GNU Compiler Collection

○ GCC is a set of compilers for various languages. It provides all of the infrastructure for

building software in those languages from source code to assembly.

● The compiler can handle compiling everything on its own, but you can use various flags to

breakdown the compilation steps

● Example:

 gcc [flags] [infile(s)]

Common GCC Flags

-o [EXECUTABLE NAME] : names executable file

-Ox : Code optimization

-O0 : Compile as fast as possible, don’t optimize [this is the default]

-O1, -O2, -O3: Optimize for reduced execution time [higher numbers are more optimized]

-Os : Optimize for code size instead of execution time.

-Og : Optimize for execution time, but try to avoid making interactive debugging harder.

-g : produce “debug info”: annotate assembly so gdb can find variables and source code

-Wall : enable many “warning” messages that should be on by default, but aren’t

- Does not turn on all of the warning messages GCC can produce.

- See https://gcc.gnu.org/onlinedocs/gcc-4.8.0/gcc/Warning-Options.html for many more

-Werror : turns all warnings into errors

-std=c99 : use the 1999 version of the C standard and disable some (not all!) extensions

https://gcc.gnu.org/onlinedocs/gcc-4.8.0/gcc/Warning-Options.html

Makefiles

What is a makefile?
● Automates the process of creating files (using a compiler)
● For example, create bomb from bomb.c, phases.c, and util.c
● Running make bomb will update bomb

○ Only if any of the source files have changed;
avoids unnecessary work

○ Remembers complicated compiler commands for you
● Can also store recipes for automating development tasks

○ make format to reformat source files

Makefiles are lists of rules

● There are two kinds of rules: normal and phony
○ Normal rules create files
○ Phony rules don’t directly create files

● Each rule has a target.
○ For normal rules, the target is the name of the file that the rule will create
○ For phony rules, the target is an arbitrary name for what the rule does

● Rules may have prerequisites (also known as dependencies)
○ Prerequisites are the files that are needed to create the target
○ If any of the prerequisites doesn’t exist, it must be created first
○ If any of the prerequisites is newer than the target, the target is “out of date” and must be re-created

● Rules may have commands.
○ One or more shell commands that create the target from its prerequisites
○ For phony rules, just some commands to be run

Normal rule example

bomb: bomb.o phases.o util.o

$(CC) -o bomb bomb.o phases.o util.o

Normal rule example

bomb: bomb.o phases.o util.o

$(CC) -o bomb bomb.o phases.o util.o

If this file
doesn’t exist… … or if it is older than any of these files…

… then run this command.

Normal rule example

bomb: bomb.o phases.o util.o

$(CC) -o bomb bomb.o phases.o util.o

If this file
doesn’t exist… … or if it is older than any of these files…

… then run this command.This refers to the value of a
variable, named CC, that holds

the name of a C compiler.

Normal rule without prerequisites

output_dir:

mkdir output_dir

● Run mkdir output_dir if output_dir does not exist
● If it does exist, no action

Normal rule without commands

bomb.o: bomb.c support.h phases.h

● Re-create bomb.o if any of bomb.c, support.h, phases.h is newer
● The commands to do this are given somewhere else

○ A pattern rule elsewhere in the Makefile
○ An implicit rule built into Make

Pattern and implicit rules

%.o: %.c

$(CC) $(CFLAGS) -c -o $@ $<

● To create an .o file from a .c file with the same base name, use this command
● Special variables $@ and $< give the name of the .o and .c files respectively
● Variables CC and CFLAGS can be set to customize behavior

● This rule is implicit — built into Make — you don’t have to write it yourself

Phony rule example

all: bomb bomb-solve

.PHONY: all

● When asked to create “all”, create bomb and bomb-solve
● Does not create a file named “all”
● The .PHONY annotation can be anywhere in the makefile

Phony rule example 2

clean:

rm -f bomb bomb-solve *.o

.PHONY: clean

● When asked to create “clean”, run this command
○ Which deletes bomb, bomb-solve, and all object files

● Does not create a file named “clean”

The make command

● Running make in the shell will cause the shell to look for a Makefile in the current

directory. If it finds one, it will attempt to create the first target listed in the Makefile.

● You can also run make <target_name> to indicate exactly which target you want to

create.

● By convention, the first target is a phony target named all
○ so make and make all do the same thing

○ as the name implies, this is to create everything that the makefile knows how to create

● Phony rules serve as entry points into the Makefile
○ make all creates everything, make clean deletes all generated files, make check runs

tests, …

○ But you can also make bomb.o if that’s the only thing you want

A complete Makefile
CC = gcc
CFLAGS = -std=c99 -g -O2 -Wall -Werror

all: bomb bomb-solve
bomb: bomb.o phases.o util.o

$(CC) $(LDFLAGS) -o $@ $^ $(LIBS)

bomb-solve: bomb.o phases-solve.o util.o
$(CC) $(LDFLAGS) -o $@ $^ $(LIBS)

bomb.o: bomb.c phases.h support.h
phases.o: phases.c phases.h support.h
phases-solve.o: phases-solve.c phases.h support.h
util.o: util.c support.h

clean:
rm -f bomb bomb-solve *.o

.PHONY: all clean

● OK to use undefined variables
○ LDFLAGS, LIBS
○ Found in environment or treated as empty

● Don’t need to give commands to create object

files from C source
○ But do need to list header file dependencies

for each object file

● Do need to give commands to create

executables (missing feature)

● all rule at the top, clean rule at the bottom

● One .PHONY annotation for all phony rules

Rules form a graph
CC = gcc
CFLAGS = -std=c99 -g -O2 -Wall -Werror

all: bomb bomb-solve
bomb: bomb.o phases.o util.o

$(CC) $(LDFLAGS) -o $@ $^ $(LIBS)

bomb-solve: bomb.o phases-solve.o util.o
$(CC) $(LDFLAGS) -o $@ $^ $(LIBS)

bomb.o: bomb.c phases.h support.h
phases.o: phases.c phases.h support.h
phases-solve.o: phases-solve.c phases.h support.h
util.o: util.c support.h

clean:
rm -f bomb bomb-solve *.o

.PHONY: all clean

all

bomb bomb-solve

bomb.o phases.o phases-solve.o util.o

bomb.c phases.c phases-solve.c util.c

clean

● Make avoids unnecessary work
○ If bomb.c changes, make all will

re-create bomb.o, bomb, bomb-solve
○ If phases.c changes, make all will

only re-create phases.o and bomb

● Make can see through missing
targets
○ If bomb.o does not exist, make bomb

creates it from bomb.c

Practice!
https://www.cs.cmu.edu/~213/bootc
amps/lab3_handout.pdf

https://www.cs.cmu.edu/~213/bootcamps/lab3_handout.pdf
https://www.cs.cmu.edu/~213/bootcamps/lab3_handout.pdf

Feedback:
https://tinyurl.com/213bootcam
p2

https://tinyurl.com/213bootcamp2
https://tinyurl.com/213bootcamp2

Appendix

Linking Files

Why are we learning about linking files?

● Linker is a computer system program

that object files (generated by a

compiler or an assembler) and

combines them into a single executable

file, library file, or another object file.

● Programs are translated and linked

using a compiler driver:
○ linux> gcc -Og -o prog main.c sum.c
○ linux> ./prog

● More in future lecture!

What does a linker do?

● Symbol resolution
○ Programs define and reference symbols (global variables and functions)

○ Linker associates each symbol reference with exactly 1 symbol definition

● Relocation
○ Merges separate code and data sections into single sections

○ Relocates symbols from relative locations in .o files to final memory locations

○ Updates all references to symbols to reflect new positions

Linker symbols

● Global symbols
○ Symbols defined by module m that can be referenced by other modules.

■ e.g., non-static C functions and non-static global variables.

● External symbols
○ Global symbols that are referenced by module m but defined by some other module.

● Local symbols
○ Symbols that are defined and referenced exclusively by module m.

■ e.g., C functions and global variables defined with the static attribute.
○ Local linker symbols are not local program variables

Symbols

Why do you need linkers?
● Modularity

○ Program can be written as a collection of smaller source files, rather than one

monolithic mass.

● Efficiency
○ Time: Separate compilation

■ Change one source file, compile, and then relink. No need to recompile other

source files.

○ Space: Libraries

■ Common functions can be aggregated into a single file…

Static vs Dynamic Linking

● Static Linking
○ Executable files and running memory images contain only the library code they

actually use

● Dynamic linking
○ Executable files contain no library code

○ During execution, single copy of library code can be shared across all executing

processes

Types of object files

● Relocatable object file (.o file)
○ Code and data that can be combined with other relocatable object files to form executable

object file

■ Each .o file is produced from exactly one source (.c) file

● Executable object file (a.out file)
○ Code and data that can be copied directly into memory and then executed

● Shared object file (.so file)
○ Special type of relocatable object file that can be loaded into memory and linked

dynamically, at either load time or run-time

How Linker resolves duplicate symbol definitions

● Program symbols are either strong or weak
○ Strong: procedures and initialized globals
○ Weak: uninitialized globals

■ Or one's declared with specifier extern

Symbol rules

1. Multiple strong symbols are not allowed
○ Each item can be defined only once

2. Given a strong symbol and multiple weak symbols, choose the strong
symbol
○ References to the weak symbol resolve to the strong symbol

3. If there are multiple weak symbols, pick an arbitrary one

● If you are using dynamic libraries, you need to tell the compiler where to look for the

library!

● It is easiest to use dynamic libraries with makefiles, just include this line:

LD_LIBRARY_PATH = “~/my/path”

● If you are interested in creating a dynamic library, follow the steps here:
○ Shared Libraries: https://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html
○ Dynamic Libraries: https://tldp.org/HOWTO/Program-Library-HOWTO/dl-libraries.html

LD_LIBRARY_PATH

https://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html
https://tldp.org/HOWTO/Program-Library-HOWTO/dl-libraries.html

Resources

https://missing.csail.mit.edu/2020/metaprogramming/

https://www.cs.cmu.edu/~15131/f17/topics/makefiles/

https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html

https://makefiletutorial.com/

https://www.oreilly.com/library/view/programming-embedded-systems/0596009836/ch04.html

https://gcc.gnu.org/onlinedocs/gcc/

https://daveparillo.github.io/cisc187-reader/build-tools/make.html

https://missing.csail.mit.edu/2020/metaprogramming/
https://www.cs.cmu.edu/~15131/f17/topics/makefiles/
https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html
https://makefiletutorial.com/
https://www.oreilly.com/library/view/programming-embedded-systems/0596009836/ch04.html
https://gcc.gnu.org/onlinedocs/gcc/
https://daveparillo.github.io/cisc187-reader/build-tools/make.html

