
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Recitation 14: Proxy Lab Part 2

Instructor: TA(s)

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Outline

⬛ Proxylab

⬛ Makefiles

⬛ Threading

⬛ Threads and Synchronization

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Makefiles
⬛ Make a separate file for your cache!

▪ Need to update the makefile

▪ Push your new makefile to GitHub!

▪ Makefile: tells program how to compile and link files

List of all header files (for fake cache.c file)

DEPS = csapp.h transpose.h

Rules for building cache

cache: cache.o transpose.o csapp.o

transpose.o: transpose.c $(DEPS)

cache.o: cache.c $(DEPS)

csapp.o: csapp.c csapp.h

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

ProxyLab
⬛ ProxyLab is due next Thursday. Checkpoint is due tomorrow.

▪ One grace day for each

▪ Make sure to submit well in advance of the deadline in case there are
errors in your submission.

▪ Build errors are a common source of failure

⬛ A proxy is a server process
▪ It is expected to be long-lived

▪ To not leak resources

▪ To be robust against user input

⬛ Note on CSAPP
▪ Most CSAPP functions have been removed

▪ Error check all system calls and exit only on critical failure

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Proxies and Threads
⬛ Network connections can be handled concurrently

▪ Three approaches were discussed in lecture for doing so

▪ Your proxy should (eventually) use threads

▪ Threaded echo server is a good example of how to do this

⬛ Multi-threaded cache design
▪ Be careful how you use mutexes. Do not hold locks over network /

file operations (read, write, etc)

▪ Using semaphores is not permitted

▪ Be careful how you maintain your object age

⬛ Tools
▪ Use Firefox’s Network Monitor (Developer > Network) to see if all

requests have been fulfilled

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Join / Detach

⬛ Does the following code terminate? Why or why not?

int main(int argc, char** argv)
{
…
 pthread_create(&tid, NULL, work, NULL);
 if (pthread_join(tid, NULL) != 0) printf(“Done.\n”);
…
void* work(void* a)
{
 pthread_detatch(pthread_self());
 while(1);
}

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Join / Detach cont.

⬛ Does the following code terminate now? Why or why
not?

int main(int argc, char** argv)
{
…
 pthread_create(&tid, NULL, work, NULL); sleep(1);
 if (pthread_join(tid, NULL) != 0) printf(“Done.\n”);
…
void* work(void* a)
{
 pthread_detach(pthread_self());
 while(1);
}

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

When should threads detach?

⬛ In general, pthreads will wait to be reaped via
pthread_join.

⬛ When should this behavior be overridden?

⬛ When termination status does not matter.
▪ pthread_join provides a return value

⬛ When result of thread is not needed.
▪ When other threads do not depend on this thread having

completed

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Threads

⬛ What is the range of value(s) that main will print?

⬛ A programmer proposes removing j from thread and just
directly accessing count. Does the answer change?

volatile int count = 0;

void* thread(void* v)
{
 int j = count;
 j = j + 1;
 count = j;
}

int main(int argc, char** argv)
{
 pthread_t tid[2];
 for(int i = 0; i < 2; i++)
 pthread_create(&tid[i], NULL,
 thread, NULL);
 for (int i = 0; i < 2; i++)
 pthread_join(tid[i]);
 printf(“%d\n”, count);
 return 0;
}

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Synchronization

⬛ Is not cheap
▪ 100s of cycles just to acquire without waiting

⬛ Is also not that expensive
▪ Recall your malloc target of 15000kops => ~100 cycles

⬛ May be necessary
▪ Correctness is always more important than performance

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Which synchronization should I use?

⬛ Counting a shared resource, such as shared buffers
▪ Semaphore

⬛ Exclusive access to one or more variables
▪ Mutex

⬛ Most operations are reading, rarely writing / modifying
▪ RWLock

For proxy it’s sufficient to just use mutexes!

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Threads Revisited

⬛ Which lock type should be used?

⬛ Where should it be acquired / released?

volatile int count = 0;

void* thread(void* v)
{
 int j = count;
 j = j + 1;
 count = j;
}

int main(int argc, char** argv)
{
 pthread_t tid[2];
 for(int i = 0; i < 2; i++)
 pthread_create(&tid[i], NULL,
 thread, NULL);
 for (int i = 0; i < 2; i++)
 pthread_join(tid[i]);
 printf(“%d\n”, count);
 return 0;
}

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Associating locks with data

⬛ Given the following key-value store
▪ Key and value have separate RWLocks: klock and vlock

▪ When an entry is replaced, both locks are acquired.

⬛ Describe why the printf may not be accurate.

...
pthread_rwlock_rdlock(klock);
match = search(k);
pthread_rwlock_unlock(klock);

if (match != -1)
{
 pthread_rwlock_rdlock(vlock);
 printf(“%zd\n”, space[match]);
 pthread_rwlock_unlock(vlock);
}

typedef struct _data_t {
 int key;
 size_t value;
} data_t;

#define SIZE 10
data_t space[SIZE];
int search(int k)
{
 for(int j = 0; j < SIZE; j++)
 if (space[j].key == k) return j;
 return -1;
}

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Locks gone wrong

1. RWLocks are particularly susceptible to which issue:
a. Starvation b. Livelock c. Deadlock

1. If some code acquires rwlocks as readers: LockA then
LockB, while other readers go LockB then LockA. What, if
any, order can a writer acquire both LockA and LockB?

No order is possible without a potential deadlock.

3. Design an approach to acquiring two semaphores that
avoids deadlock and livelock, while allowing progress to
other threads needing only one semaphore.

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Client-to-Client Communication

⬛ Clients don’t have to fetch content from servers
▪ Clients can communicate with each other

▪ In a chat system, a server acts as a facilitator between clients

▪ Clients could also send messages directly to each other, but this is
more complicated (peer-to-peer networking)

⬛ Running the chat server
▪ ./chatserver <port>

⬛ Running the client
▪ telnet <hostname> <port>

⬛ What race conditions could arise from having
communication between multiple clients?

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Proxylab Reminders

⬛ Plan out your implementation
▪ “Weeks of programming can save you hours of planning”

– Anonymous

▪ Arbitrarily using mutexes will not fix race conditions

⬛ Read the writeup

⬛ Submit your code (days) early
▪ Test that the submission will build and run on Autolab

⬛ Final exam is only a few weeks away!

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Appendix

⬛ Calling exit() will terminate all threads

⬛ Calling pthread_join on a detached thread is technically
undefined behavior. Was defined as returning an error.

