Carnegie Mellon

Recitation 14: Proxy Lab Part 2

Instructor: TA(s)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 1

Carnegie Mellon

Outline

m Proxylab

m Makefiles

m Threading

m Threads and Synchronization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third

Carnegie Mellon

Makefiles

m Make a separate file for your cache!
= Need to update the makefile
= Push your new makefile to GitHub!

= Makefile: tells program how to compile and link files

List of all header files (for fake cache.c file)
DEPS = csapp.h transpose.h

Rules for building cache

cache: cache.o transpose.o csapp.o

transpose.o: transpose.c $(DEPS)

cache.o: cache.c $ (DEPS)

csapp.o: csapp.c csapp.h

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 3

Carnegie Mellon

ProxylLab

m ProxylLab is due next Thursday. Checkpoint is due tomorrow.
= One grace day for each

= Make sure to submit well in advance of the deadline in case there are
errors in your submission.

= Build errors are a common source of failure

m A proxy is a server process
= |tis expected to be long-lived
= To not leak resources

* To be robust against user input

m Note on CSAPP
= Most CSAPP functions have been removed

= Error check all system calls and exit only on critical failure

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 4

Carnegie Mellon

Proxies and Threads

m Network connections can be handled concurrently
*= Three approaches were discussed in lecture for doing so
= Your proxy should (eventually) use threads

= Threaded echo server is a good example of how to do this

m Multi-threaded cache design

= Be careful how you use mutexes. Do not hold locks over network /
file operations (read, write, etc)

= Using semaphores is not permitted

= Be careful how you maintain your object age

m Tools

= Use Firefox’s Network Monitor (Developer > Network) to see if all
requests have been fulfilled

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 5

Carnegie Mellon

Join / Detach

m Does the following code terminate? Why or why not?

int main(int argc, char** argv)

{

pthread create(&tid, NULL, work, NULL);
if (pthread join(tid, NULL) !'= 0) printf(“Done.\n”);

void* work (void* a)

{
pthread detatch(pthread self())

while (1) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 6

Carnegie Mellon

Join / Detach cont.

m Does the following code terminate now? Why or why
not?

int main(int argc, char** argv)

{

pthread create(&tid, NULL, work, NULL); sleep(l) ;
if (pthread join(tid, NULL) '= 0) printf(“Done.\n”);

void* work (void* a)

{
pthread detach (pthread self())

while (1) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 7

When should threads detach?

m In general, pthreads will wait to be reaped via
pthread_join.

m When should this behavior be overridden?

m When termination status does not matter.

= pthread_join provides a return value

m When result of thread is not needed.

= When other threads do not depend on this thread having
completed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 8

Threads

Carnegie Mellon

m What is the range of value(s) that main will print?

m A programmer proposes removing j from thread and just
directly accessing count. Does the answer change?

volatile int count 0; int

{
void* thread(void* v)

{

int j = count;
j=3+1;
count = j;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third

main (int argc, char** argv)

pthread t tid[2];

for(int i 0; 1 < 2; i++)
pthread create(&tid[i], NULL,

thread, NULL) ;

for (int i 0; i < 2; i++)
pthread join(tid[i]);

printf (“$d\n”, count) ;

return 0O;

Carnegie Mellon

Synchronization

m Is not cheap

= 100s of cycles just to acquire without waiting

m Is also not that expensive
= Recall your malloc target of 15000kops => ~100 cycles

m May be necessary

= Correctness is always more important than performance

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 10

Carnegie Mellon

Which synchronization should | use?

m Counting a shared resource, such as shared buffers

= Semaphore

m Exclusive access to one or more variables

= Mutex

s Most operations are reading, rarely writing / modifying
= RWLock

For proxy it’s sufficient to just use mutexes!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 11

Carnegie Mellon

Threads Revisited

m Which lock type should be used?
s Where should it be acquired / released?

volatile int count = 0; int main(int argc, char** argv)

void* thread(void* v) { pthread t tid[2];

{ for(int i = 0; i < 2; i++)
int j = count; pthread create(&tid[i], NULL,
] =3+ - thread, NULL) ;
count = j;

) for (int i = 0; 1 < 2; i++)
pthread join(tid[i]);
printf (“$d\n”, count) ;
return O;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 12

Carnegie Mellon

Associating locks with data

m Given the following key-value store
= Key and value have separate RWLocks: klock and vlock

= When an entry is replaced, both locks are acquired.

m Describe why the printf may not be accurate.

typedef struct data t {

int key: pthread rwlock rdlock (klock);
size t ;alue° match = search (k) ;
} data t: ' pthread rwlock unlock (klock);
1 = —
#define SIZE 10 1t (match 1= -1)
data t space[SIZE]; {
int ;éarch(int k) pthread rwlock rdlock (vlock);
(printf (“%$zd\n”, space[match])
for(int § = 0; j < SIZE; j++) pthread rwlock unlock (vlock);
if (space[j].key == k) return j; }

return -1;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 13

Carnegie Mellon

Locks gone wrong

1. _RWLocks are particularly susceptible to which issue:
=@ b. Livelock c. Deadlock

1. If some code acquires rwlocks as readers: LockA then
LockB, while other readers go LockB then LockA. What, if
any, order can a writer acquire both LockA and LockB?

No order is possible without a potential deadlock.

3. Design an approach to acquiring two semaphores that
avoids deadlock and livelock, while allowing progress to
other threads needing only one semaphore.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 14

Carnegie Mellon

Client-to-Client Communication

m Clients don’t have to fetch content from servers
= Clients can communicate with each other
* |n a chat system, a server acts as a facilitator between clients

= Clients could also send messages directly to each other, but this is
more complicated (peer-to-peer networking)

m Running the chat server

» . /chatserver <port>

m Running the client

" telnet <hostname> <port>

s What race conditions could arise from having
communication between multiple clients?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 15

Carnegie Mellon

Proxylab Reminders

m Plan out your implementation

= “Weeks of programming can save you hours of planning”
— Anonymous

= Arbitrarily using mutexes will not fix race conditions
m Read the writeup

m Submit your code (days) early

= Test that the submission will build and run on Autolab

m Final exam is only a few weeks away!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 16

Appendix

m Calling exit() will terminate all threads

m Calling pthread_join on a detached thread is technically
undefined behavior. Was defined as returning an error.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 17

