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Outline

⬛ Proxylab

⬛ Makefiles

⬛ Threading

⬛ Threads and Synchronization
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Makefiles
⬛ Make a separate file for your cache!

▪ Need to update the makefile

▪ Push your new makefile to GitHub!

▪ Makefile: tells program how to compile and link files

# List of all header files (for fake cache.c file)
 

DEPS = csapp.h transpose.h 
 

# Rules for building cache
 

cache: cache.o transpose.o csapp.o
 

transpose.o: transpose.c $(DEPS)
 

cache.o: cache.c $(DEPS)
 

csapp.o: csapp.c csapp.h
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ProxyLab
⬛ ProxyLab is due next Thursday. Checkpoint is due tomorrow.

▪ One grace day for each

▪ Make sure to submit well in advance of the deadline in case there are 
errors in your submission.

▪ Build errors are a common source of failure

⬛ A proxy is a server process
▪ It is expected to be long-lived

▪ To not leak resources

▪ To be robust against user input

⬛ Note on CSAPP
▪ Most CSAPP functions have been removed

▪ Error check all system calls and exit only on critical failure
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Proxies and Threads
⬛ Network connections can be handled concurrently

▪ Three approaches were discussed in lecture for doing so

▪ Your proxy should (eventually) use threads

▪ Threaded echo server is a good example of how to do this

⬛ Multi-threaded cache design
▪ Be careful how you use mutexes. Do not hold locks over network / 

file operations (read, write, etc)

▪ Using semaphores is not permitted

▪ Be careful how you maintain your object age

⬛ Tools
▪ Use Firefox’s Network Monitor (Developer > Network) to see if all 

requests have been fulfilled
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Join / Detach

⬛ Does the following code terminate?  Why or why not?

int main(int argc, char** argv)
{
…
    pthread_create(&tid, NULL, work, NULL);
    if (pthread_join(tid, NULL) != 0) printf(“Done.\n”);
…
void* work(void* a)
{
    pthread_detatch(pthread_self());
    while(1);
}



Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 
Edition

Join / Detach cont.

⬛ Does the following code terminate now?  Why or why 
not?

int main(int argc, char** argv)
{
…
    pthread_create(&tid, NULL, work, NULL); sleep(1);
    if (pthread_join(tid, NULL) != 0) printf(“Done.\n”);
…
void* work(void* a)
{
    pthread_detach(pthread_self());
    while(1);
}
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When should threads detach?

⬛ In general, pthreads will wait to be reaped via 
pthread_join.

⬛ When should this behavior be overridden?

⬛ When termination status does not matter.
▪ pthread_join provides a return value

⬛ When result of thread is not needed.
▪ When other threads do not depend on this thread having 

completed 
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Threads

⬛ What is the range of value(s) that main will print?

⬛ A programmer proposes removing j from thread and just 
directly accessing count.  Does the answer change?

volatile int count = 0;

void* thread(void* v)
{
    int j = count;
    j = j + 1;
    count = j;
}

int main(int argc, char** argv)
{
    pthread_t tid[2];
    for(int i = 0; i < 2; i++)
        pthread_create(&tid[i], NULL,
                       thread, NULL);
    for (int i = 0; i < 2; i++)
        pthread_join(tid[i]);
    printf(“%d\n”, count);
    return 0;
}
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Synchronization

⬛ Is not cheap
▪ 100s of cycles just to acquire without waiting

⬛ Is also not that expensive
▪ Recall your malloc target of 15000kops => ~100 cycles

⬛ May be necessary
▪ Correctness is always more important than performance
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Which synchronization should I use?

⬛ Counting a shared resource, such as shared buffers
▪ Semaphore 

⬛ Exclusive access to one or more variables
▪ Mutex

⬛ Most operations are reading, rarely writing / modifying
▪ RWLock

For proxy it’s sufficient to just use mutexes!
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Threads Revisited

⬛ Which lock type should be used?

⬛ Where should it be acquired / released? 

volatile int count = 0;

void* thread(void* v)
{
    int j = count;
    j = j + 1;
    count = j;
}

int main(int argc, char** argv)
{
    pthread_t tid[2];
    for(int i = 0; i < 2; i++)
        pthread_create(&tid[i], NULL,
                       thread, NULL);
    for (int i = 0; i < 2; i++)
        pthread_join(tid[i]);
    printf(“%d\n”, count);
    return 0;
}
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Associating locks with data

⬛ Given the following key-value store
▪ Key and value have separate RWLocks: klock and vlock

▪ When an entry is replaced, both locks are acquired.

⬛ Describe why the printf may not be accurate.

...
pthread_rwlock_rdlock(klock);
match = search(k);
pthread_rwlock_unlock(klock);

if (match != -1)
{
  pthread_rwlock_rdlock(vlock);
  printf(“%zd\n”, space[match]);
  pthread_rwlock_unlock(vlock);
}

typedef struct _data_t {
  int key;
  size_t value;
} data_t;

#define SIZE 10
data_t space[SIZE];
int search(int k)
{
  for(int j = 0; j < SIZE; j++)
    if (space[j].key == k) return j;
  return -1;
}
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Locks gone wrong

1. RWLocks are particularly susceptible to which issue:
a. Starvation b. Livelock c. Deadlock

1. If some code acquires rwlocks as readers: LockA then 
LockB, while other readers go LockB then LockA.  What, if 
any, order can a writer acquire both LockA and LockB?

No order is possible without a potential deadlock.

3. Design an approach to acquiring two semaphores that 
avoids deadlock and livelock, while allowing progress to 
other threads needing only one semaphore.
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Client-to-Client Communication

⬛ Clients don’t have to fetch content from servers
▪ Clients can communicate with each other

▪ In a chat system, a server acts as a facilitator between clients

▪ Clients could also send messages directly to each other, but this is 
more complicated (peer-to-peer networking)

⬛ Running the chat server
▪ ./chatserver <port>

⬛ Running the client
▪ telnet <hostname> <port>

⬛ What race conditions could arise from having 
communication between multiple clients?
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Proxylab Reminders

⬛ Plan out your implementation
▪ “Weeks of programming can save you hours of planning” 

– Anonymous

▪ Arbitrarily using mutexes will not fix race conditions

⬛ Read the writeup

⬛ Submit your code (days) early
▪ Test that the submission will build and run on Autolab

⬛ Final exam is only a few weeks away!
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Appendix

⬛ Calling exit() will terminate all threads

⬛ Calling pthread_join on a detached thread is technically 
undefined behavior.  Was defined as returning an error.


